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a b s t r a c t

Three new multivariate semi-logistic distributions (denoted by MSL(1), MSL(2), and GMSL
respectively) are studied in this paper. They are more general than Gumbel’s (1961) [1]
and Arnold’s (1992) [2] multivariate logistic distributions. They may serve as competitors
to these commonly used multivariate logistic distributions. Various characterization
theorems via geometricmaximization and geometricminimization procedures of the three
MSL(1), MSL(2) and GMSL are proved. The particular multivariate logistic distribution used
in the multiple logistic regression model is introduced. Its characterization theorem is
also studied. Finally, some further research work on these MSL is also presented. Some
probability density plots and contours of the bivariate MSL(1), MSL(2) as well as Gumbel’s
and Arnold’s bivariate logistic distributions are presented in the Appendix.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Research work on multivariate logistic distribution (denoted by ML) in recent decades is rather scarce compared to
the voluminous work that has been carried out on the univariate logistic distribution (see the books of Johnson, Kotz and
Balakrishnan’s [3] ch. 23 and Kotz, Balakrishnan and Johnson’s [4] ch. 51 and the references therein). Gumbel [1] made the
first attempt to define bivariate logistic distribution. A lucid review of ML was prepared by Arnold [2].
Numerous applications of univariate andGumbel’s [1]multivariate logistic distributions can be found inmany literatures,

such as the logit regression in categorical data analysis [5], the logistic growthmodel and the proportional hazard ratemodel
in biomedical sciences [6,7]. The problem of medical diagnosis through the logistic discriminant function was introduced
first by Cox [8]. The univariate logistic function was also used in studies on physiochemical phenomenon by Reed and
Berkson [9]. Moreover, the univariate and Gumbel’s [1] multivariate logistic distributions are also in the parametric families
of the univariate and multivariate extreme value distributions respectively ([10], [4, ch. 53] and the references therein).
Many other fields of applications of the univariate and multivariate logistic distributions in the recent twenty years can be
found in the volume of [11].
Owing to the plentiful applications of the logistic distributions including univariate and multivariate variables, the

importance of the logistic distributions is evident. Pillai [12] was the pioneer to study the univariate semi-distributions
including the semi-Pareto and semi-Weibull distributions. Some special bivariate semi-Pareto distributions were studied
by Balakrishna and Jayakumar [13] and Thomas and Jose [14]. Yeh [15–17] extends their results to more general cases
and studies many properties of the multivariate semi-Pareto distribution. Arnold, Robertson and Yeh [18] study the
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characterizations of univariate Pareto and univariate logistic distributions. Arnold [2,19] briefly introduces the univariate
semi-logistic distribution. In the past decade, few properties of the multivariate semi-logistic distribution (denoted byMSL)
have been discussed in the existent literatures since [19].
The relative few literatures about the characterizations of the existent ML and the MSL drives the author to study the

properties of the MSL in this paper.
Three general MSL distributions denoted by MSL(1), MSL(2), and GMSL respectively are introduced in Section 2. Various

characterization theorems of MSL(1), MSL(2) and GMSL are studied in Sections 3 and 4. The most well-known application of
ML is the multiple logistic regressionmodel, the particular ML distribution in logit regression is introduced in Section 5, and
its characterization is also studied. Some further research work of these multivariate semi-logistic distributions is given in
Section 6. Some probability density plots of the bivariate MSL(1), MSL(2) as well as Gumbel’s and Arnold’s bivariate logistic
distributions and their corresponding contour plots are presented in the Appendix.
From the results of this paper. It is discerned that Gumbel’s [1] ML is in the class of MSL(1), and Arnold’s [2] ML is in the

class of MSL(2), and the logit multivariate logistic distribution (denoted by LML) introduced in Section 5 is also in the class of
MSL(1). Therefore, all the characterization theorems proved in this paper can be applied directly to the existent univariate
andmultivariate logistic distributions. On the other hand, since all the characteristic theorems are located on the borderline
between probability theory andmathematical statistics, so theMSL(1), andMSL(2) can be identified by Theorems 3.1 and 3.2
respectively. Analogously, Theorem 4.1 is used to identify the GMSL, Theorems 5.1–5.3 are the characterizations of the logit
multivariate logistic distributions, LML and GLML in multiple logistic regression models. The three proposed multivariate
semi-logistic distributions, MSL(1), MSL(2), and GMSL may serve as competitors to the commonly used Gumbel’s [1] and
Arnold’s [2] multivariate logistic distributions. The physical reasons for the particular generalizations are drawn from the
idea of Pillai [12] who was the first to study the univariate semi-Pareto distribution through a functional equation. Later
Arnold [2,19] extends Pillai’s result to univariate semi-logistic distribution through some functional equations analogous
to Eqs. (2.2), (2.5), (2.8) and (2.10) in this paper. Yeh [20] studies the multivariate semi-Weibull distribution through
the functional Eq. (2.1) in [20] which is more closely related to the multivariate semi-logistic distributions developed in
this paper. The moments, the covariance structures and the estimation problems of the various multivariate semi-logistic
distributions studied in this paper may be the author’s further research topics in the near future.

2. Three multivariate semi-logistic distributions

Three more general MSL than those proposed by Gumbel [1]. Arnold [2], as well as Kotz, Balakrishnan and Johnson [4]
(ch. 51 and the references therein) are introduced in this section.

Definition 2.1. A random vector X = (X1, X2, . . . , Xk) is said to have a k-variate semi-logistic distribution with parameters
p ∈ (0, 1), σ = (σ1, σ2, . . . , σk) > 0, if its joint cumulative distribution function (cdf) is of the form

F(x) =
1

1+ ϕ (x)
, x ∈ Rk, (2.1)

where ϕ(·) is nonincreasing and right continuous k-valued real function and satisfies

ϕ(x) =
1
p
ϕ (x− σ ln p) (2.2)

with the point x − σ ln p = (x1 − σ1 ln p, . . . , xk − σk ln p), and X is denoted by X ∼ MSL(1) (p, σ ), where ln represents
nature logarithm and throughout this paper.

Remark 1. The simplest and best behaved solution to Eq. (2.2) is ϕ (x) =
∑k
i=1 e

−xi/σi and thus the joint cdf of X is

F(x) =
1

1+
k∑
i=1
e−xi/σi

, x ∈ Rk, (2.3)

which reduces back to Gumbel’s [1] ML distribution.

Remark 2. The general solution of the functional equation (2.2) is given by

ϕ(x) =
k∑
i=1

e−xi /σihi(xi),

where hi(xi) are periodic functional in xi with period σi(ln p) respectively for 1 6 i 6 k. A proof of this result can be found
in [21] p. 163.
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As an example initiated by Pillai [12], if we consider the bivariate case, take p = e−2π , hi(xi) = eβ(Cos(xi/σi)) i = 1, 2, then
we see that it satisfies Eq. (2.2) for bivariate vector x = (x1, x2). Fig. 2.1 presents the probability density function (denoted
by pdf) and contours of the bivariate semi-logistic distribution (denoted by BSL(1)) (p = e−2π , σ = (σ1, σ2)) for various
values of σ1, σ2 and β . The cdf of BSL(1) is

F(x1, x2) =
1

1+ e−x1/ σ1h1(x1)+ e−x2/ σ2h2(x2)
,

where hi(xi) = eβ(Cos(xi/σi)), i = 1, 2, x = (x1, x2) ∈ R2.
In particular if we choose hi(xi) = 1, i = 1, 2, then BSL(1)(p, σ ) reduces to Gumbel’s [1] bivariate logistic distribution

with cdf as

F(x) =
1

1+ e−x1/ σ1 + e−x2/ σ2
, x ∈ R2.

Density plots and contours of Gumbel’s bivariate logistic distribution for various values of σ1 and σ2 are presented in Fig. 2.2.
The second MSL is given below:

Definition 2.2. A random vector X is said to have the MSL of the second type if its joint survival function is of the form

F(x) =
1

1+ ψ (x)
, x ∈ Rk, (2.4)

where ψ(·) is nondecreasing, right continuous k-valued real function and satisfies

ψ (x) =
1
p
ψ (x+ σ ln p) (2.5)

for some σ > 0 and the point x+ σ ln p = (x1 + σ1 ln p, . . . , xk + σk ln p), then X is denoted by X ∼ MSL(2) (p, σ ).

Remark 3. The simplest solution to Eq. (2.5) is of the form ψ (x) =
∑k
i=1 e

xi /σ i ; then the joint survival function of X is

F(x) =
1

1+
k∑
i=1
exi/σi

, x ∈ Rk (2.6)

which is the special case of Arnold’s [2] ML distribution.

Remark 4. Analogous discussions as in Remark 2, the general solution of the functional equation (2.5) is given by ψ(x) =∑k
i=1 e

xi/σihi(xi), where hi(xi) are the same as in Remark 2. If we take p = e−2π , hi(xi) = eβ(Cos(xi/σi))i = 1, 2, then it is clear
that the particular choice of hi(·) satisfies Eq. (2.5). Fig. 2.3 is the probability density function and contours of the bivariate
semi-logistic distribution (denoted by BSL(2)) (p = e−2π , σ ) for various values of σ1, σ2 and β .
The survival function of BSL(2) is

F(x) =
1

1+ ex1/σ1h1(x1)+ ex2/σ2h2(x2)
,

where hi(xi) = eβ(Cos(xi/σi)), i = 1, 2, x = (x1, x2) ∈ R2.
In particular if we choose hi(xi) = 1, i = 1, 2, then BSL(2)(p, σ ) reduces to Arnold’s [2] bivariate logistic distribution with

survival function as

F(x) =
1

1+ ex1/σ1 +ex1/σ2
, x ∈ R2.

Density plots and contours of Arnold’s bivariate logistic distribution for various values of σ1 and σ2 are presented in Fig. 2.4.
Figs. 2.1–2.4 are presented in the Appendix.

Remark 5. (i) According to Arnold’s [19] definition, if Eqs. (2.2) and/or (2.5) hold for one particular value of p ∈ (0, 1), then
this two types of distribution (2.1) and (2.4) are the so calledmultivariate semi-logistic distributions, MSL(1) andMSL(2)
respectively (Pillai [12]) introduced closely related semi-Pareto distributions as well as for the bivariate semi-Pareto
distributions [13].

(ii) If Eq. (2.2) and/or (2.5) hold for every p ∈ (0, 1), or for two distinct values of p, say p1 and p2 provided that
{pj1/p

k
2; j = 0, 1, 2, . . . , k = 0, 1, 2, . . .} is dense in R

+, then MSL(1) will reduce to Gumbel’s [1] ML as in Eq. (2.3)
and MSL(2) will reduce to Arnold’s [2] ML as in Eq. (2.6) respectively.
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(iii) The result of (ii) is cited from Arnold [19] p. 140. The main idea is drawn from Galambos and Kotz [22] p.38 or from a
well-known result in number theory that the set E = {v|v = i ln n1 + j ln n2, i, j = 0,±1,±2, . . .} is dense in the
real line R, if n1, n2 ∈ N, n1 6= n2, ln n1/ ln n2 is irrational ([23] p. 4), then the set F

∆
= exp(E) = {ev = ni1 · n

j
2|i, j ∈

I (integer set)} is dense in the positive real line R+.

These two types of MSL distributions MSL(1) and MSL(2) have the following property.

Property 2.1. Suppose that X ∼ MSL(1) (p, σ ), then the necessary and sufficient condition for X ∼ MSL(2) (p, σ ) is that the two
functional equations (2.2) and (2.5) have the radial symmetric property about 0 ∈ Rk, i.e., ϕ (x) = ψ (−x) for x ∈ Rk.

Note: The proof of this property is straightforward and hence is omitted.

Remark 6. Both of theMSL(1) (p, σ ) and MSL(2) (p, σ ) have the univariate semi-logistic distributions [19] as marginals and
are denoted by SL(1) (p, σi), SL(2) (p, σi) respectively i = 1, 2, . . . , k, i.e., the ith marginal d.f of Eq. (2.1) is

Fi(xi) =
1

1+ ϕi(xi)
, xi ∈ R, (2.7)

where ϕi(xi) = ϕ (∞, . . . ,∞, xi,∞, . . . ,∞) and ϕi(·) satisfies

ϕi(xi) =
1
p
ϕi(xi − σi ln p) for some p ∈ (0, 1), (2.8)

and the Xi in X is denoted by Xi ∼ SL(1) (p, σi).

Analogously, the ith survival function of Eq. (2.4) is

F i(xi) =
1

1+ ψi(xi)
, xi ∈ R, (2.9)

where ψi(xi) = ψ (−∞, . . . ,−∞, xi,−∞, . . . ,−∞) and ψi(·) satisfies

ψi(xi) =
1
p
ψi(xi + σi ln p) for some p ∈ (0, 1), (2.10)

and Xi in X is denoted by Xi ∼ SL(2) (p, σi).
The univariate semi-logistic distribution was first briefly introduced by Arnold [19]. Its cdf is of the form Eqs. (2.9) and

(2.10). Arnold et al. [18] studied the characterizations of the univariate Pareto and univariate logistic distributions. Some
of their results can be parallelly extended to the MSL case, if we impose some conditions on the marginal distribution of
Xi in X , then a potentially rich and more general collection of MSL distribution is defined as follows which is the third MSL
introduced in this section.

Definition 2.3. A randomvector X = (X1, X2, . . . , Xk) is said to have a generalmultivariate semi-logistic (denoted byGMSL)
distribution if its kmarginals of each Xi in X are both SL(1) (p, σi) and SL(2) (p, σi) distributed, i.e., the cdf of each Xi is of the
form

Fi(xi) =
1

1+ ϕi(xi)
= 1− F i(xi) = 1−

1
1+ ψi(xi)

, xi ∈ R, (2.11)

or equivalently ϕi(xi) = 1/ψi (xi), i = 1, . . . , k, where ϕi(·) satisfies Eq. (2.8), andψi(·) satisfies Eq. (2.10), then X is denoted
by X ∼ GMSL(p, σ ) for some p ∈ (0, 1), and σ = (σ1, . . . , σk) > 0.

3. Geometric maxima and minima

In this section, we consider the first two types of MSL, i.e., MSL(1) and MSL(2) and study their geometric maxima
and geometric minima respectively. Conversely, the closure property under geometric maximization and geometric
minimization can be utilized to characterize the MSL(1) and MSL(2) respectively.

Theorem 3.1. Let {X i = (X i1, X
i
2, . . . , X

i
k)}
∞

1 be a sequence of i.i.d. random vectors with common joint cdf as F(·). Suppose
that N is a geometric random variable with pmf as P(N = i) = p(1 − p)i−1, i = 1, 2, . . . , and N is independent of X i,s. Let
M = (X (1), . . . , X (k)) be the componentwise k-variate geometric maxima with X (j) = max{X1j , X

2
j , . . . , X

N
j }, 1 6 j 6 k. Then

the following two statements are equivalent.

(1) M + σ ln p d
= X1. (3.1)

(2) X1 ∼ MSL(1)(p, σ ).
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Proof. (1)⇒(2):
Suppose G(·) is the joint cdf ofM + σ ln p, then

G(x) = P(M + σ ln p 6 x) = P(M 6 x− σ ln p)

=

∞∑
i=1

(F(x− σ ln p))ip(1− p)i−1 =
pF(x− σ ln p)

1− (1− p)F(x− σ ln p)
= F(x). (3.2)

Express ϕ (x) = (1− F (x))/F (x), then F (x) = 1/(1+ ϕ (x)), substitute in Eq. (3.2) then

p 1
1+ϕ(x−σ ln p)

1− (1− p) 1
1+ϕ(x−σ ln p)

=
1

1+ ϕ(x)
,

after simplification, we have

1
1+ 1

pϕ(x− σ ln p)
=

1
1+ ϕ(x)

,

thus ϕ(·) satisfies Eq. (2.2), i.e., ϕ(x) = (1/p) ϕ(x − σ ln p) for 0 < p < 1, and ∀ x ∈ Rk. This is just the definition of
MSL(1) (p, σ ) in Definition 2.1. Thus (2) follows.
(2)⇒(1):
Let G(·) be the joint cdf of M + σ ln p, then G(x) = P(M + σ ln p 6 x) =

∑
∞

i=1(F(x − σ ln p))
i−1p(1 − p)i−1 =

pF(x−σ ln p)
1−(1−p)F(x−σ ln p) , by the assumption of (2), then

p 1
1+ϕ(x−σ ln p)

1− (1− p) 1
1+ϕ(x−σ ln p)

=
1

1+ 1
pϕ(x− σ ln p)

=
1

1+ ϕ(x)
= F(x).

HenceM + σ ln p d
= X1 follows. �

Remark 1. Follow similar discussions as Arnold [2], if Eq. (3.1) holds for every p ∈ (0, 1), then the common joint distribution
of X1 must be Gumbel’s [1] ML as in Eq. (2.3), if Eq. (3.1) holds for two distinct values of p, say p1 and p2 such that
{pj1/p

k
2; j, k = 0, 1, 2, . . .} is dense in R

+ then the common distribution of X1 is Gumbel’s ML.

As for the geometric minima, there is an analogous characterization theorem developed as follows:

Theorem 3.2. Let {X i = (X i1, X
i
2, . . . , X

i
k)}
∞

1 be a sequence of i.i.d. random vectors with common joint survival function as F(·),
suppose N is a geometric random variable with pmf P(N = i) = p(1 − p)i−1, i = 1, 2, . . . , and N is independent of X i,s. Let
m = (X(1), X(2), . . . , X(k)) be the componentwise k-variate geometric minimawith X(j) = min{X1j , X

2
j , . . . , X

N
j }, j = 1, 2, . . . , k.

Then the following two statements are equivalent.

(1) m− σ ln p d
= X1. (3.3)

(2) X1 ∼ MSL(2)(p, σ ).

Note: The proof of Theorem 3.2 is similar to that of Theorem 3.1 by just considering the common survival function of X1 as
F (x) = 1/(1+ ψ(x)), where ψ(x) = (1/p) ψ(x+ σ ln p), and hence is omitted.

Remark 2. Similar comments in the Remark 1, if Eq. (3.3) holds for every p ∈ (0, 1), or for two distinct values of p, say p1, p2
such that {pj1/p

k
2; j, k = 0, 1, 2, . . .} is dense in R

+, then the common joint survival function of X1 must be Arnold’s [2] ML.

The explanations of Remarks 1 and 2 are given in Remark 5 of (iii) on p. 7 in Section 2.

Remark 3. (i) If compare Eq. (3.2) with the equation in Section 1 of Marshall and Olkin [24] (denoted by M–O). the one
parameter α in M–O is restricted to α > 0 which is different from the parameter p with 0 < p < 1 in this paper.

(ii) A more close relationship between Eqs. (3.1)–(3.3) of this paper is in Eq. (3.2) of Rachev and Resnick [25] (denoted by
R–R) where the geometric maxima stability is defined. Yeh [17] extends their result to geometric minima stability.

(iii) From Eq. (3.1) of R–R and Eq. (3.1) of this paper, it is discerned that MSL(1)(p, σ ) possesses the geometric maxima
stability. From Eq. (5.1) of Yeh [17] and Eq. (3.3) of this paper, it is found that MSL(2)(p, σ ) possesses the geometric
minima stable property. Marshall and Olkin [24] also briefly studied the geometric extreme stability for univariable
and bivariate variables in Sections 5 and 6 of their paper.
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Theorem3.1 can be extended to any finite steps of repeated geometricmaximization procedure. It is described as follows:

Suppose we have a sequence of i.i.d. k-variate random vectors with common joint cdf F1(·), i.e., assuming {X
(1)
i }
∞

1
i.i.d.
∼

F1(·), letN1 ∼ geometric (p1), defineX
(1)
N1
= max16j6N1{X

(1)
j } as the k-dim. geometricmaximaof {X

(1)
i }, assume the joint cdf of

X (1)N1 is F2(·). Also let {X
(2)
i }
∞

1
i.i.d.
∼ F2(·), N2 ∼ geometric (p2), define X

(2)
N2
= max16j6N2{X

(2)
j }, suppose X

(2)
N2
∼ F3(·). In general,

for any fixed ` = 2, 3, . . . , after (` − 1) steps of repeated geometric maximization procedures, let {X (`−1)i }
∞

1
i.i.d.
∼ F`−1(·),

let N`−1 ∼ geometric (p`−1), define X
(`−1)
N`−1

= max16j6N`−1{X
(`−1)
j }. Suppose X (`−1)N`−1

∼ F`(·), then the following theorem
characterizes the MSL(1) distribution via any finite steps of repeated geometric maximization.

Theorem 3.3. Let {X (1)i }
∞

1 be a sequence of i.i.d. k-variate random vectors with common joint cdf F1(·). For each ` = 2, 3, . . . ,
define F`(·) sequentially in such manner that F`(·) is the joint cdf of a geometric (p`−1) maxima (0 < p`−1 < 1) of a random

sample of {X (`−1)i }
∞

1
i.i.d.
∼ F`−1(·), if there exists a parameter vector σ = (σ1, σ2, . . . , σk) > 0 as the scale parameter of F1(·),

then the following two statements are equivalent:

(1) For each finite ` = 2, 3, . . . , we have

F`

(
x−

(
`−1∑
j=1

ln pj

)
σ

)
= F1(x) (3.4)

for any x ∈ Rk, where (x− (
∑`−1
j=1 ln pj)σ )

∆
= (x1 − (

∑`−1
j=1 ln pj)σ1, . . . , xk − (

∑`−1
j=1 ln pj)σk), or equivalently,

X (`−1)N`−1
+

(
`−1∑
j=1

ln pj

)
σ
d
= X (1) ∼ F1(·). (3.5)

(2) The common joint cdf of {X (1)i }, F1(·) is a multivariate semi-logistic distribution of the first type, i.e., X
(1)
∼ MSL(1) (p, σ )

with p =
∏`−1
j=1 pj.

Proof. (1)⇒(2):
If Eqs. (3.4) and (3.5) hold, then the joint cdf of the geometric (p`−1)maxima X

(`−1)
N`−1

, F`(·) is derived as

F`(x) = P(X
(`−1)
N`−1

6 x) =
∞∑
n=1

P(max16i6n X
(`−1)
i 6 x)P(N`−1 = n)

=
p`−1F`−1(x)

1− (1− p`−1)F`−1(x)
. (3.6)

From Eq. (3.4)

F`(x) = F1

(
x+

(
`−1∑
j=1

ln pj

)
σ

)
, (3.7)

let ϕ`(x) =
1−F`(x)
F`(x)

, then F`(x) = 1
1+ϕ`(x)

for each ` > 1, substitute back to Eq. (3.6), we have

1
1+ ϕ`(x)

=

p`−1 · 1
1+ϕ`−1(x)

1− (1− p`−1) · 1
1+ϕ`−1(x)

, (3.8)

after straightforward simplification and iteration, we conclude that for all x ∈ Rk,

ϕ`(x) =

(
`−1∏
j=1

pj

)−1
ϕ1(x). (3.9)

Refer to Eq. (3.5), we have

1
1+ ϕ`(x)

=
1

1+ ϕ1

(
x+

(
`−1∑
j=1
ln pj

)
σ

) , by Eq. (3.9),
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=
1

1+

(
`−1∏
j=1
pj

)−1
ϕ1(x)

. (3.10)

Thus the function ϕ1(·) satisfies

ϕ1(x+ (ln p)σ ) =
1
p
ϕ1(x), or ϕ1(x) =

1
p
ϕ1(x− (ln p)σ ), (3.11)

where p ∆
=
∏`−1
j=1 pj, and the joint cdf ofX

(1) is F1(x) = 1
1+ϕ1(x)

, whereϕ1(·) satisfies Eq. (3.11). Therefore,X (1) ∼ MSL(1) (p, σ )
follows.
(2)⇒(1):
If X (1) ∼ MSL(1) (p, σ ), then the joint cdf of X (1) is

F1(x) =
1

1+ ϕ(x)
, where ϕ(x) =

1
p
ϕ(x− ln pσ) (3.12)

for all x ∈ Rk with p =
∏`−1
j=1 pj. The joint cdf of the shifted geometric maxima X

(`−1)
N`−1
+ (
∑`−1
j=1 ln pj) σ is for any x ∈ R

k,

P(X (`−1)N`−1
)+

(
`−1∑
j=1

ln pj

)
σ 6 (x) = P

(
X (`−1)N`−1

6 x−

(
`−1∑
j=1

ln pj

)
σ

)

= F`

(
x−

(
`−1∑
j=1

ln pj

)
σ

)
. (3.13)

By Eq. (3.13), we have

F`

(
x−

(
`−1∑
j=1

ln pj

)
σ

)
=

p`−1F`−1

(
x−

(
`−1∑
j=1
ln pj

)
σ

)

1− (1− p`−1)F`−1

(
x−

(
`−1∑
j=1
ln pj

)
σ

) . (3.14)

For any ` > 1, let ϕ`(x) =
1−F`(x)
F`(x)

, then F`(x) = 1
1+ϕ`(x)

, substitute in Eq. (3.14), we have

ϕ`

(
x−

(
`−1∑
j=1

ln pj

)
σ

)
=

1
p`−1

ϕ`−1

(
x−

(
`−1∑
j=1

ln pj

)
σ

)
.

It follows by iteration that

ϕ`(x− (ln p)σ ) =
1
p
ϕ1(x− (ln p)σ ) (3.15)

with ln p =
∑`−1
j=1 ln pj. From Eq. (3.13), the joint cdf of X

(`−1)
N`−1
+ (ln p) σ is

F`(x− (ln p)σ ) =
1

1+ ϕ`(x− (ln p)σ )
=

1
1+ 1

pϕ1(x− (ln p)σ )
, (3.16)

while the joint cdf of X (1) is F1(x) = 1
1+ϕ1(x)

=
1

1+ϕ(x) , hence ϕ1(x) ≡ ϕ(x) for all x ∈ R
k, so the function ϕ1(·)will also satisfy

1
p ϕ1(x− (ln p) σ ) = ϕ1(x).
Hence Eq. (3.16) becomes

F`(x− (ln p) σ ) =
1

1+ ϕ1(x)
=

1
1+ ϕ(x)

= F1(x).

Thus, X (`−1)N`−1
+ (ln p) σ d

=; X (1), and hence (1) follows. �

Analogously, Theorem 3.2 can also be extended to any finite steps of repeated geometric minimization procedure. It is
stated as follows:
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Theorem 3.4. Let {Y (1)i }
∞

1 be a sequence of i.i.d. k-variate random vectors with common joint survival function F 1(·). For each
` = 2, 3, . . . , define F `(·) sequentially in such manner that F `(·) is the joint survival function of a geometric (p`−1) minima

(0 < p`−1 < 1), denoted by Y
(`−1)
N`−1
= min16j6N`−1{Y

(`−1)
j } from a random sample of {Y (`−1)i }

∞

1
i.i.d.
∼ F `−1(·), if there exists a

parameter vector σ = (σ1, σ2, . . . , σk) > 0 as the scale parameter of F 1(·), then the following two statements are equivalent:

(1) For each finite ` = 2, 3, . . . , we have

F `

(
x+

(
`−1∑
j=1

ln pj

)
σ

)
= F 1(x) (3.17)

for any x ∈ Rk, where (x+ (
∑`−1
j=1 ln pj)σ )

∆
= (x1 + (

∑`−1
j=1 ln pj)σ1, . . . , xk + (

∑`−1
j=1 ln pj)σk), or equivalently,

Y (`−1)N`−1
−

(
`−1∑
j=1

ln pj

)
σ
d
= Y (1) ∼ F 1(·). (3.18)

(2) The common joint survival function of {Y (1)i }, F 1(·) is a multivariate semi-logistic distribution of the second type, i.e., Y
(1)
∼

MSL(2) (p, σ ) with p =
∏`−1
j=1 pj.

Note: The proof of Theorem 3.4 is analogous to Theorem 3.3, and hence is omitted.

Remark. The analogous results of Theorems 3.3 and 3.4 can be found in [16] Theorem 4.2.

4. Characterization of the GMSL distribution

The GMSL defined in Definition 2.3 has the SL(1) and SL(2) asmarginal distributions. The characterization of GMSL is based
on both random geometric maximization and geometric minimization procedures which is the extension work of Arnold
et al. [18].
Let {X ij} be a double array of i.i.d. k-variate random vectors with common joint cdf F(·), and let N1 ∼ geometric (p1) and

N (i)2 (i = 1, 2, . . .) be i.i.d. geometric (p2) random variables independent of the X ij’s.
Define two k-variate random vectors as

W = min
i6N1
max
j6N(i)2

X ij = (W1, . . . ,Wk), (4.1)

and

W̃ = max
i6N1

min
j6N(i)2

X ij = (W̃1, . . . , W̃k). (4.2)

Such two random vectors might arise in competition for employment models, and W` and W̃` are the `th (1 6 ` 6 k)
marginal of the k-variate random vectorsW and W̃ respectively.
For j = 1, 2, . . . , k, let F j(·) be the jth marginal survival function of F(·), and the jth marginal survival function ofW , W̃

are calculated straightforward as

FWj(x) =
p1F j(x)

p2 + (p1 − p2)F j(x)
, (4.3)

and

F W̃j(x) =
p2F j(x)

p1 + (p2 − p1)F j(x)
. (4.4)

The following theorem is the characterization of the GMSL distribution.

Theorem 4.1. Suppose {X ij} is a sequence double array of i.i.d. k-variate randomvectors and {X ij}
∼

i.i.d. F(x), and the two random
vectors W and W̃ are defined as in Eqs. (4.1) and (4.2), then the following two statements are equivalent.

(1) The equality in marginal distributions of any two of the three random vectors {X11,W +σ ln (
p2
p1
), W̃ +σ ln ( p1p2 )} for some

p1, p2 with p1 6= p2, 0 < p1, p2 < 1.
(2) The common joint cdf F(·) is GMSL.

Proof. (1)⇒(2):
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(i) If {X11 andW + σ ln (p2/p1)} are identical in marginal distributions, i.e.,

X11j
d
= Wj + σj ln

(
p2
p1

)
, j = 1, 2, . . . , k, (4.5)

where X11j, Wj, σj are the jth component in X11,W , and σ separately. Let F j(·), Fj(·) be the survival function and cdf of
X11j respectively. If by usual notation, express ψj(x) =

Fj(x)
F j(x)
, then F j(x) = 1

1+ψj(x)
and denote ϕj(x) =

1−Fj(x)
Fj(x)

, then

Fj(x) = 1
1+ϕj(x)

= 1− F j(x) = 1
1+ 1

ψj(x)
. Hence the relation between ψj(·) and ϕj(·) is

ψj(x) =
1

ϕj(x)
, x ∈ R. (4.6)

By the assumption (4.5) and Eq. (4.3), we have

P(Wj + σj ln (p2/p1) > x) =
1

1+ ψj(x)
for x ∈ R. (4.7)

On the other hand, the LHS of Eq. (4.7) is

p (Wj > x− σj ln (p2/p1)) =
p1{ 1

1+ψj(x−σj ln (p2/p1))
}

p2 + (p1 − p2){ 1
1+ψj(x−σj ln (p2/p1))

}

=
1

1+ p2/p1ψj(x− σj ln (p2/p1))
. (4.8)

Comparing Eqs. (4.7) and (4.8), we have ψj(x) =
p2
p1
ψj(x− σj ln (p2/p1)), or equivalently,

ψj(x) =
p1
p2
ψj(x+ σj ln (p2/p1)). (4.9)

Without loss of generality, assuming p1 < p2 and let p = p1/p2(< 1), Eq. (4.9) is equivalent to that there exists 0 < p < 1,
such that ψj(·) satisfies

ψj(x) =
1
p
ψj(x+ σj ln p) (4.10)

which is Eq. (2.10). Also, because ϕj(x) = 1/ψj(x), so the reciprocal of Eq. (4.10) is

ϕj(x) = pϕj(x+ σj ln p). (4.11)

Eq. (4.11) is equivalent to

ϕj(x) =
1
p
ϕj(x− σj ln p), (4.12)

which is Eq. (2.8). Thus X ∼ GMSL follows.

(ii) Analogously, if {X11 and W̃ + σ ln (p1/p2)} are marginal identical distributed, then follow the similar discussions as in
(i) and by Eq. (4.4), we obtain

ψj(x) =
p2
p1
ψj(x+ σj ln (p1/p2)). (4.13)

Eq. (4.13) is also equivalent to Eq. (4.10), hence X ∼ GMSL holds.
(iii) If {W + σ ln (p2/p1) and W̃ + σ ln (p1/p2)} are identical in marginal distributions, i.e., for j = 1, 2, . . . , k, Wj +

σj ln (p2/p1)=d W̃j + σj ln (p1/p2).
To apply Eqs. (4.3) and (4.4) and after some algebraic calculations, we have
p2
p1
ψj(x− σj ln (p2/p1)) =

p1
p2
ψj(x− σj ln (p1/p2)). (4.14)

Eq. (4.14) is equivalent to

ψj(x) =
(
p1
p2

)2
ψj

(
x+ σj ln

(
p2
p1

)2)
. (4.15)
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Without loss of generality, assuming p1 > p2 and let p = (p2/p1)2, then Eq. (4.15) is

ψj(x) =
1
p
ψj(x+ σj ln p) (4.16)

which is Eq. (2.10). Thus X ∼ GMSL, therefore, (1) implies (2) follows.
To prove (2)⇒(1):
If X11 ∼ GMSL, then according to the Definition 2.3, the marginal distribution of X11 is both SL

(1)(p, σi) and SL(2)(p, σi)
distributed. We have to check that

X11j
d
= Wj + σj ln (p2/p1)

d
= W̃j + σj ln (p1/p2) (4.17)

for j = 1, 2, . . . , k.

(i) To check

X11j
d
= Wj + σj ln (p2/p1). (4.18)

From Eqs. (4.3) and (4.8), and by the assumption that the survival function of X11j is F j(x) = 1
1+ψj(x)

, and ψj(x) satisfies
Eq. (4.10), thus Eq. (4.18) holds.

(ii) The derivations of X11j
d
= W̃j + σj ln (p1/p2) andWj + σj ln (p2/p1)

d
= W̃j + σj ln (p2/p1) are analogous to the procedure

in (i). Thus (2) implies (1) follows. �

Remarks. Some interesting and remarkable observations inherent in the expressions of Eqs. (4.3) and (4.4) and the content
in Theorem 4.1 include:

(i) According to Eqs. (4.3) and (4.4), it is discerned that the marginal distributions ofW and W̃ are of the same form.
(ii) If W̃ were defined in Eq. (4.2) with parameters p2 and p1, instead of p1 and p2, it would have exactly the same marginal
distributions asW (defined by parameters p1 and p2).

(iii) The most remarkably, if p1 = p2, then the three random vectors X11,W , and W̃ have identical marginal distributions.
(iv) The statement (1) in Theorem 4.1 with p1 6= p2 can be used to characterize GMSL distribution. However if p1 = p2, we

do not have a characterization i.e., any distribution will provide a solution.
(v) Alternatively, if we have equality in distribution of any two of {X11j,Wj + σj ln (p2/p1), W̃j + σj ln (p1/p2)} for every
p1 6= p2 or for two suitably chosen pairs (p1, p2) and (p̃1, p̃2), we may conclude that the common distribution of X11
is the general multivariate logistic distribution with the usual traditional univariate logistic distribution as marginal
distribution.

5. The multivariate logistic distribution in multiple logistic regression

Themostwell-knownapplication ofmultivariate logistic distribution is themultiple logistic regressionmodel [26],which
is defined as follows:

Definition 5.1. Suppose {Yi} are independent Bernoulli random variables with expected values E(Yi) = πi, the multiple
logistic response function is E(Y ) = 1

1+e−
∑k
i=1 βixi

, the logit transformation π ′i = ln(
πi
1−πi

) =
∑k
i=1 βixi, is a multiple linear

regression model with no intercept where Xi, (1 6 i 6 k) observations are considered to be known constants. Alternatively,
if the X variables are random, then E(Y) is viewed as a conditional mean E(Y

∣∣ X = x).
Let X = (X1, X2, . . . , Xk), if the cdf of X is of the form

F(x) =
1

1+ e
−

k∑
i=1

βixi

, x ∈ Rk, (5.1)

then F(·) is referred to as the logit multivariate logistic distribution (denoted by LML). It is clear to see that LML is radial
symmetric about 0, i.e., F(·) satisfies F(−x) = 1− F(x) for all x > 0.

Galambos and Kotz [22] provided an interesting joint characterization of the univariate logistic and exponential
distribution. A parallel joint characterization for multivariate logistic distribution of Eq. (5.1) and independence of k
univariate exponential distributions is as follows:

Theorem 5.1. Suppose that X is a continuous k-variate random vector and radial symmetric about the origin 0. Then X is a
k-variate logistic distribution LML with cdf as Eq. (5.1) if and only if

P(X < −x|X < x) =
k∏
i=1

e−βixi for all x > 0, (5.2)
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or, if and only if

1− F(x+ y)

(1− F(x)) (1− F(y))
=
F(x+ y)

F(x)F(y)
for all x, y > 0. (5.3)

Proof. The multivariate logistic distribution Eq. (5.1) is evidently continuous, and radial symmetric about the origin. It
satisfies both assumptions Eqs. (5.2) and (5.3) of the theorem, and hence we need only prove the converse of this theorem.
To prove Eq. (5.2) implies Eq. (5.1):
Since the cdf of X is radial symmetric about the origin 0, and the conditional cdf is assumed to be the product of k

independent univariate exponential variables, hence Eq. (5.2) is reduced to

F(−x)
F(x)

=
1− F(x)
F(x)

= e
−

k∑
i=1

βixi
for all x > 0. (5.4)

The solution of Eq. (5.4) is the multivariate logistic distribution with cdf as Eq. (5.1), hence Eq. (5.2) implies Eq. (5.1) follows.
Now, to prove Eq. (5.3) implies Eq. (5.1):
Let G(x) be the conditional cdf of (X < −x) given X < x for all x > 0, and by the radial symmetric about 0, then

G(x) = P(X < −x|X < x) =
1− F(x)
F(x)

,

and the assumption of Eq. (5.3) reduces to

G(x+ y) = G(x)G(y) for all x, y > 0. (5.5)

In view of Theorem 5.2.1 on Galambos and Kotz [22] p. 105, the only continuous solution of Eq. (5.5) is G(x) = e−
∑k
i=1 βixi

with some βi > 0, 1 6 i 6 k, for all x > 0. Hence F(x) is a multivariate logistic distribution with cdf as Eq. (5.1) and thus the
proof of this theorem is complete. �

Themore general logitmultivariate logistic distribution (denoted byGLML) than the LML in Eq. (5.1) is defined as follows:

Definition 5.2. A k-variate random vector X is said to have a GLML with location vector parameter µ = (µ1, . . . , µk) ∈ Rk

and scale parameter σ = (σ1, . . . , σk) ∈ Rk+, if its joint cdf is of the form

F(x) =
1

1+ e
−

k∑
i=1
(
xi−µi
σi

)

, x ∈ Rk (5.6)

and X is denoted by X ∼ GLML(µ, σ ).
Arnold et al. [18] and Yeh [15] respectively study the characterizations of the univariate and multivariate Pareto (III)

distribution via the scale transformation of the geometric minima. The related characterizations have extensions to the
univariate logistic distribution which is discussed by Arnold and Laguna [27], as for the characterizations of the GLML is
parallelly studied in the following.

Theorem 5.2. Suppose {X i = (X i1, X
i
2, . . . , X

i
k)} are i.i.d. k-variate random vectors with common joint cdf F(·) satisfying

lim
min xi→−∞
16i6k

F(x)e
−

k∑
i=1
(xi /σ i)

= δ (5.7)

for some σ = (σ1, . . . , σk) > 0 and δ > 0. Let N ∼ geometric (p) be independent of all the X i’s and define the k-variate geometric

maxima M as in Section 3. If M + s d= X1, then we must have X1 ∼ GLML(µ, σ ) (note that s < 0), where µ = −(ln δ) σ and
s = (ln p) σ .
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Fig. 2.1. PDF and contours of the BSL(1)(p = e−2π , σ )where σ = (σ1, σ2).

Proof. Let ϕ(x) = 1−F(x)
F(x) , and the joint cdf ofM is P(M 6 x) = P(X

1
− s 6 x) = F(x+ s) and by conditioning on N , we have

P(M 6 x) =
∞∑
n=1

(F(x))np (1− p)n−1 =
pF(x)

1− (1− p)F(x)
. (5.8)

Alternatively Eq. (5.8) can be expressed as

ϕ (x) = pϕ (x+ s). (5.9)

To iterate Eq. (5.9) and use Eq. (5.7), we obtain

ϕ(x) = lim
`→∞

p`ϕ(x+ `s) = lim
`→∞

p`e
−

k∑
i=1
(
xi+`si
σi

)

e

k∑
i=1
(
xi+`si
σi

)

ϕ(x+ `s). (5.10)

Note s = (s1, . . . , sk) < 0 and `→+∞, so Eq. (5.10) reduces to

ϕ(x) = δ−1e
−

k∑
i=1
(xi/σi)

lim
`→∞

p`e
−`

k∑
i=1
(si/σi)

. (5.11)
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Fig. 2.2. PDF and contours of Gumbel’s BL(σ )where σ = (σ1, σ2).

The only choice that Eq. (5.11) will yield a value of ϕ(x) in (0,∞) as it must for Eq. (5.11) hold is when taking si = (ln p)σi
and in such case ϕ(x) = δ−1e−

∑k
i=1(xi /σ i). It follows that the cdf of X1 is

F(x) =
1

1+ δ−1e
−

k∑
i=1
(xi/σi)

=
1

1+ e
−

k∑
i=1
(
xi+σi ln δ

σi
)

. (5.12)

Thus X1 is distributed as a k-variate GLML(µ, σ ) distribution with location parameter µ = (− ln δ)σ , scale parameter
σ = (σ1, . . . , σk) and the translation parameter s = (ln p)σ , therefore the proof is complete. �

As a parallel to Theorem 5.2, we have the following characterization theorem for a particular Arnold’s [2] multivariate
logistic distribution via the translation transformation of the k-variate geometric minimam in Section 3.

Theorem 5.3. Let {X i} be i.i.d. k-variate random vector with common joint survival function F(·) satisfying

lim
max xi→∞
16i6k

F(x)e

k∑
i=1
(xi/σi)

= θ (5.13)

for some σ = (σ1, σ2, . . . , σk) > 0 and θ > 0. Let N ∼ geometric(p) be independent of all the X i’s. If m− τ
d
= X1, then X1 is

distributed as Arnold [2] ML(µ, σ ) with survival function

F(x) =
1

1+ e

k∑
i=1
(
xi −µi
σi

)

, x ∈ Rk, (5.14)
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Fig. 2.3. PDF and contours of BSL(2)(p = e−2π , σ )where σ = (σ1, σ2).

where the location parameter µ = (− ln θ)σ , scale parameter σ , and the translation parameter τ = (ln p)σ .

Note: The proof of Theorem 5.3 is analogous to Theorem 5.2, and thus is omitted.
Application:Many practical and recent categorical data analysis by logistic regression are given in Agresti [5]. The usefulness
of Theorems 5.1–5.3 is the characterization of the multivariate logistic distributions in multiple logit regression.

Note: Both Gumbel’s ML and Arnold’s ML do not satisfy the logit transformations π ′i = ln(
πi
1−πi

) =
∑k
i=1 βixi, where βi

plays the role of 1/σi in Eqs. (2.3) and (2.6); so their multivariate logistic distributions cannot be used in multiple logistic
regression.

6. Conclusion and discussion

Three general multivariate semi-logistic distributions, MSL(1), MSL(2), and GMSL are introduced in this paper. They may
serve as competitors to Gumbel’s [1] and Arnold’s [2] multivariate logistic distributions. Two more particular multivariate
logistic distributions of (5.6) and (5.14) used in the multiple logistic regression model are introduced in Section 5. Some
characterization properties of the variousmultivariate semi-logistic distributions are studied in Sections 3–5 respectively. As
for the moment problems such as the moment generating functions, moments, the covariance structures and the statistical
inferences of the various multivariate semi-logistic distributions constitute the ongoing research work. Another interesting
topic for further research is the application of the proportional hazard models by using the multivariate semi-logistic
distributions MSL(1), MSL(2), and GMSL to the multivariate survival data, and the comparison of the powers of the goodness
of fit test for these three multivariate semi-logistic distributions with Gumbel’s [1] and Arnold’s [2] multivariate logistic
distributions.
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Fig. 2.4. PDF and contours of Arnold’s BL(σ )where σ = (σ1, σ2).
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Appendix

See Figs. 2.1–2.4.

References

[1] E.J. Gumbel, Bivariate logistic distributions, Journal of the American Statistical Association 56 (1961) 335–349.
[2] B.C. Arnold, in: N. Balakrishnan (Ed.), Handbook of the Logistic Distribution, Marcel Dekker, New York, 1992, pp. 237–261.
[3] N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, 2nd ed., vol. 2, Johnson Wiley & Sons, Inc, 1995, pp. 113–163.
[4] S. Kotz, N. Balakrishnan, N.L. Johnson, Continuous Multivariate Distributions, vol. 1, John Wiley & Sons, Inc., 2000, pp. 577–619.
[5] A. Agresti, Categorical Data Analysis, John Wiley & Sons, Inc, 2002.
[6] A.J. Gross, V.A. Clark, Survival Distributions: Reliability Applications in the Biomedical Sciences, Wiley, New York, 1975.
[7] D.R. Cox, D. Oakes, Analysis of Survial Data, Chapman and Hall, 1984.
[8] D.R. Cox, Some procedures connected with the logistic qualitative response curve, in: F.N. David (Ed.), Research Papers in Statistics, Wiley, New York,
1966, pp. 55–71.

[9] L.J. Reed, J. Berkson, The application of the logistic function to experimented data, Journal of Physical Chemistry 33 (1929) 760–779.
[10] S. Kotz, S. Nadarajah, Extreme Value Distributions Theory and Applications, Imperial College Press, 2000.



908 H.-C. Yeh / Journal of Multivariate Analysis 101 (2010) 893–908

[11] N. Balakrishnan (Ed.), Handbook of the Logistic Distribution, Dekker, New York, 1992.
[12] R.N. Pillai, Semi-Pareto processes, Journal of Applied Probability 28 (1991) 461–465.
[13] N. Balakrishna, K. Jayakumar, Bivariate semi-Pareto distributions and processes, Statistical Papers. 38 (1997) 149–165.
[14] A. Thomas, K.K. Jose, Bivariate semi-Pareto minification processes, Metrika 59 (2004) 305–313.
[15] H.C. Yeh, Some properties and characterizations for generalized multivariate Pareto distributions, Journal of Multivariate Analysis 88 (2004) 47–60.
[16] H.C. Yeh, Three general multivariate semi-Pareto distributions and their characterizations, Journal of Multivariate Analysis 98 (2007) 1305–1319.
[17] H.C. Yeh, Some related minima stability and minima infinite divisibility of the general multivariate Pareto distributions, Communication in Statistics-

Theory and Methods 38 (4) (2009) 497–510.
[18] B.C. Arnold, C. Robertson, H.C. Yeh, Some properties of a Pareto-type distribution. Sankhyā, The Indian Journal of Statistics Series A. Pt. 3 48 (1986)
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