Components of first-countability and various kinds of pseudoopen mappings

Alexander Arhangel'skii

h. 33, apt. 137 Kutuzovskij Prospect, Moscow, Russian Federation

A B S T R A C T

Some new classes of pseudoopen continuous mappings are introduced. Using these, we provide some sufficient conditions for an image of a space under a pseudoopen continuous mapping to be first-countable, or for the mapping to be biquotient. In particular, we show that if a regular pseudocompact space \(Y \) is an image of a metric space \(X \) under a pseudoopen continuous almost \(\Sigma \)-mapping, then \(Y \) is first-countable. Among our main results are Theorems 2.5, 2.11, 2.12, 2.13, 2.14. See also Example 2.15, Corollary 2.7, and Theorem 2.18.

© 2010 Elsevier B.V. All rights reserved.

1. General remarks, some concepts and techniques

In this article, a space is a topological \(T_1 \)-space. If \(X \) is a space, and \(A \) is a subset of \(X \), then \(\text{int}(A) \) is the interior of \(A \), that is, \(\text{int}(A) \) is the largest open set contained in \(A \). A base of a set \(A \subset X \) in a space \(X \) is a family of open neighbourhoods of \(A \) in \(X \) such that every open neighbourhood of \(A \) contains some element of this family. We say that the character of a set \(A \subset X \) in a space \(X \) is countable, if there exists a countable base of \(A \) in \(X \). Interchangeably, in most cases, we follow [8].

In many respects, this paper can be considered as a continuation of the paper [3] where, in particular, a new Tychonoff countable Fréchet–Urysohn space, which is not first-countable at any point, was constructed. Below, we introduce some special subclasses of the class of pseudoopen mappings. Recall that a mapping \(f \) of a space \(X \) onto a space \(Y \) is said to be pseudoopen if, for every \(y \in Y \) and every open neighbourhood \(U \) of \(f^{-1}(y) \) in \(X \), we have: \(y \in \text{int}(f(U)) \) [1,3].

To emphasize the importance of pseudoopen mappings, it is enough to mention the following facts. Every open mapping and every closed mapping is pseudoopen, and every pseudoopen continuous mapping is quotient. A Hausdorff space \(Y \) is Fréchet–Urysohn if and only if \(Y \) can be represented as an image of some metric space under a pseudoopen continuous mapping [1]. The \(\Sigma \)-product \(T \) of uncountably many closed intervals \([0,1] \) is a standard example of a Tychonoff Fréchet–Urysohn space which is not first-countable at any point [8]. Besides, \(T \) is countably compact and normal. Thus, pseudoopen continuous mappings preserve the Fréchet–Urysohn property, but do not preserve the first-countability even when the image space is countably compact (“countably” in this statement can be removed). In this paper, we identify some situations in...
which an image of a metric space under a continuous pseudoopen mapping has to be first-countable. To do that, we distinguish and study some important components of first-countability, like countable fan-tightness and countable κ-fan-tightness, countable sensor and countable κ-sensor. Our main results in this direction are Theorems 2.5, 2.11, 2.12, 2.13, 2.14, and Example 2.15. In particular, we establish that a pseudocompact regular space has a point-countable base if and only if it can be represented as an image of some metric space under a pseudoopen continuous S-mapping.

Suppose that A is a subset of a space X, and B is a subset of a space Y. A mapping $f : X \to Y$ of X onto Y will be called pseudoopen at the pair (A, B) if $f(A) = B$ and, for each open neighbourhood U of A, the set $f(U)$ contains an open neighbourhood of B.

If nothing is explicitly stated to the contrary, then, whenever we consider below a pair (A, B), we assume that A and B are subsets of the spaces X and Y, respectively.

The next statement is easily established:

Proposition 1.1. A mapping $f : X \to Y$ of a space X onto a space Y is pseudoopen at a pair (A, B) if and only if for each subset M of Y such that $B \cap M \neq \emptyset$, we have $A \cap f^{-1}(M) \neq \emptyset$.

We need a few more definitions. Given a subset H of a space X, we will say that the κ-fan-tightness of X at H is countable if the following condition is satisfied:

(aft) For every sequence $\{ U_n : n \in \omega \}$ of open sets U_n in X such that $H \cap \overline{U_n} \neq \emptyset$ and $H \cap U_n = \emptyset$, for every $n \in \omega$, there exists a sequence $\{ G_n : n \in \omega \}$ of open sets such that H does not intersect the closure of G_n, G_n is a subset of U_n, and the intersection of H with the closure of $\bigcup \{ G_n : n \in \omega \}$ is non-empty.

If this condition is satisfied for $H = \{ x \}$ whenever x is an arbitrary point of X, then we say that X is a space of countable κ-fan-tightness.

In connection with the above definition, recall that a space X has countable fan-tightness at a point $x \in X$ if, for every sequence $\{ A_n : n \in \omega \}$ of subsets of X such that $x \in \overline{A_n}$, for each $n \in \omega$, one can select a finite subset B_n of A_n so that $x \in \bigcup \{ B_n : n \in \omega \}$. If this condition is satisfied for every $x \in X$, then we say that X is a space of countable fan-tightness.

A space X is normal at a subset H of X if for every open neighbourhood U of H there exists an open neighbourhood V of H such that $\overline{V} \subset U$.

Recall that the tightness of a space X at a point $x \in X$ is said to be countable if from $x \in \overline{A}$ it follows that there exists a countable subset B of A such that x is in the closure of B.

Theorem 1.2. Suppose that X is a pseudocompact regular space, and H is a subset of X such that X is normal at H, and the tightness of X at every point of H is countable.

Then the κ-fan-tightness of X at H is countable.

Proof. Fix a sequence $\{ U_n : n \in \omega \}$ of open sets U_n in X such that $H \cap \overline{U_n} \neq \emptyset$ and $H \cap U_n = \emptyset$, for every $n \in \omega$.

Since X is regular, and the tightness of X at each point of H is countable, and X is normal at H, one can easily select open subsets $W_{n,i}$ of U_n for $i \in \omega$ such that the closure of each $W_{n,i}$ does not intersect H, and the closure of $\bigcup \{ W_{n,i} : i \in \omega \}$ intersects H, for each $n \in \omega$.

Fix an arbitrary open neighbourhood $O(H)$ of H. For each $n \in \omega$ we can select $i(n) \in \omega$ so that $O(H) \cap W_{n,i(n)} \neq \emptyset$. Put $V_n = O(H) \cap W_{n,i(n)}$. Since X is pseudocompact, the sequence $\xi = \{ V_n : n \in \omega \}$ of non-empty open sets has an accumulation point x_ξ in X. Clearly, $x_\xi \in \overline{O(H)}$, since $V_n \subset O(H)$ for $n \in \omega$.

A point z of X will be called special if there exists a sequence η of open sets H_n in X such that H does not intersect the closure of H_n, $H_n \subset V_n$, for each $n \in \omega$, and z is an accumulation point for the sequence $\eta = \{ H_n : n \in \omega \}$.

Thus, the point x_ξ selected above is special. Since X is normal at H, and x_ξ is in the closure of $O(H)$, where $O(H)$ was fixed as an arbitrary open neighbourhood of H, the next claim holds:

Claim 1. Every open neighbourhood of H intersects the set S of all special points.

Claim 1 immediately implies the next statement:

Claim 2. $H \cap S \neq \emptyset$.

Fix a point $x \in H \cap S$. Since, by the assumption, the tightness of X at x is countable, we can find a sequence $\{ s_n : n \in \omega \}$ of points in S such that x is an accumulation point for this sequence. By the definition of a special point, we can also fix, for every $k \in \omega$, a sequence η_k of open sets $H_{k,n}$ in X such that H does not intersect the closure of $H_{k,n}$, $H_{k,n} \subset U_n$, for each $n \in \omega$, and s_k is an accumulation point for the sequence $\eta_k = \{ H_{k,n} : n \in \omega \}$.
Observe that, obviously, s_k is also an accumulation point for the sequence $\{H_{k,n}: n \in \omega, k \leq n\}$. It follows that x is in the closure of the set $E = \bigcup \{H_{k,n}: k, n \in \omega, k \leq n\}$.

Put $G_n = \bigcup \{H_{k,n}: k \in \omega, k \leq n\}$ for each $n \in \omega$. Clearly, H does not intersect the closure of G_n. G_n is a subset of U_n, and x is in the closure of $\bigcup \{G_n: n \in \omega\}$, since $\bigcup \{G_n: n \in \omega\} = E$.

Thus, the κ-fan-tightness of X at H is countable. \Box

In particular, the conditions in the above statement are satisfied when X is a pseudocompact Tychonoff space of countable tightness and H is an arbitrary compact subspace of X.

Proposition 1.3. Suppose that $\{P_n: n \in \omega\}$ is an increasing sequence of closed sets in a space X, and H is a subset of P_0 such that X is normal at H, the κ-fan-tightness of X at H is countable, and H is not contained in $\text{int}(P_n)$, for each $n \in \omega$.

Then there exists an open subset W of X such that H intersects the closure of W, and, for each $n \in \omega$, $H \cap W \cap P_n = \emptyset$.

Proof. Put $U_n = X \setminus P_n$, for $n \in \omega$. Then U_n is open, $H \cap U_n = \emptyset$, and $H \cap \overline{U_n}$ is non-empty, since H is not contained in $\text{int}(P_n)$, by the assumption. Since X is normal at H, and the κ-fan-tightness of X at H is countable, we can fix a countable family $\eta = \{V_n: n \in \omega\}$ of open sets such that $V_n \subset U_n$, H does not intersect V_n, for each $n \in \omega$, and $H \cap \bigcup \{V_n: n \in \omega\} \neq \emptyset$.

Put $W = \bigcup \{V_n: n \in \omega\}$. Then W is open, and H intersects the closure of W. Now take an arbitrary $k \in \omega$, and consider $P_k \cap W$.

Claim. $P_k \cap W \subset \bigcup \{P_k \cap V_i: i \leq k, i \in \omega\}$.

Indeed, if $i \geq k$, then $V_i \subset U_i \subset U_k = X \setminus P_k$, since the sets P_n are increasing and, therefore, the sets U_n are decreasing. Hence, $V_i \cap P_k = \emptyset$ whenever $i \geq k$. Now the claim follows from the definition of W.

Since $H \cap \overline{V_i} = \emptyset$, for every $i \in \omega$, it follows from the claim that H does not intersect the closure of $P_k \cap W$. \Box

A family S of subsets of a space X is said to be a sensor (a κ-sensor) at a set $H \subset X$ if, for each open neighbourhood $O(H)$ of H and each (open) set U such that $H \cup U \neq \emptyset$, there exists $P \subset S$ satisfying the following conditions: $P \subset O(H)$ and $H \cup \overline{\bigcup P} \neq \emptyset$.

If there exists a countable κ-sensor at H, the space X is said to be countably κ-sensitive at H.

Slightly different notions of a closure-sensor and of an FU-sensor of a space at a point in this space were introduced in [3]. We also used there the expression “X is countably sensitive at $x \in X$” to mean that there exists a countable closure-sensor of X at the set $H = \{x\}$. However, everywhere below this expression has a different meaning: it signifies that there exists a countable sensor of X at $H = \{x\}$ in the sense of the definition of the notion of a sensor given in this article.

Clearly, every base of neighbourhoods of H in X is a sensor of X at H. Observe also that if S is a sensor (a κ-sensor) of X at H, then the family $S_H = \{P \cup H: P \subset S\}$ is also a sensor (a κ-sensor) of X at H.

The next result is a key piece of technique in our study of pseudoopen mappings.

Theorem 1.4. Suppose that X is a space, and H is a subset of X such that the κ-fan-tightness of X at H is countable, and X is normal at H. Suppose further that X is countably κ-sensitive at H, and the character of H in X is countable.

Proof. Since X is countably κ-sensitive at H, and X is normal at H, we can fix a countable κ-sensor S at H all elements of which are closed sets. We may also assume that H is contained in every element of S. Indeed, we can replace the family S by the family S_H which is also a countable κ-sensor of X at H. Note that H is closed in X, since X is normal at H.

Let $O(H)$ be any open neighbourhood of H in X, and $\gamma = \{P \subset S: P \subset O(H)\}$. Then γ is countable, since S is countable. Let $\gamma = \{B_n: n \in \omega\}$, and $P_n = \bigcup \{B_i: i \leq n\}$, for $n \in \omega$. Clearly, $\{P_n: n \in \omega\}$ is also a κ-sensor at H.

Claim 1. $H \subset \text{int}(P_n)$, for some $n \in \omega$.

Assume the contrary. Then all conditions in Proposition 1.3 are satisfied. Therefore, there exists an open set W such that H intersects the closure of W, and, for each $n \in \omega$, $H \cap \overline{W \cap P_n} = \emptyset$. However, this is impossible, since $\{P_n: n \in \omega\}$ is a κ-sensor at H. Claim 1 is established.

The next Claim 2 immediately follows from Claim 1.

Claim 2. Let E be the family of all sets G such that $H \subset G$ and $G = \text{int}(\bigcup \lambda)$, for some finite subfamily λ of S. Then E is countable, and E is a base of the set H in X. \Box

Theorem 1.5. Suppose that X is a pseudocompact regular space of countable tightness, and that H is a subset of X such that X is normal at H, and X is countably κ-sensitive at H. Then the character of the set H in the space X is countable.
Proof. By Theorem 1.2, the κ-fan-tightness of X is countable. Now it follows from Theorem 1.4 that the character of H in X is countable. □

It is well known, and very easy to verify, that a mapping f of a space X onto a space Y is pseudoopen, if for every subset V of Y and every y in the closure of V there exists x in the closure of $f^{-1}(V)$ such that $f(x) = y$.

Let A be a subset of a space X. A mixed base of X at A is a family \mathcal{M} of open subsets of X such that, for each $x \in A$ and each open neighbourhood $O(A)$ of A in X, there exists $V \in \mathcal{M}$ such that $x \in V \subset O(A)$. We denote by $mw(A, X)$ the smallest infinite cardinal number τ such that there exists a mixed base of X at A of cardinality $\leq \tau$.

Recall that a point-wise base of X at A (called also an external base of A in X) is a family \mathcal{B} of open subsets of X such that, for each $x \in A$ and each open neighbourhood $O(x)$ of x in X, there exists $V \in \mathcal{B}$ such that $x \in V \subset O(x)$.

The point-wise weight $\omega(A, X)$, is defined as the smallest infinite cardinal number τ such that there exists a point-wise base of X at A of cardinality $\leq \tau$.

Obviously, every base of open neighbourhoods of a set $A \subset X$ in a space X is a mixed base of A in X, and therefore, $mw(A, X)$ does not exceed the character of A in X. On the other hand, every point-wise base of X at A is a mixed base of X at A. Hence, $mw(A, X) \leq \omega(A, X)$. Observe that if A is an open subset of a space X, then the mixed weight of A in X is countable.

2. Results on pseudoopen mappings satisfying some additional restrictions

First, we introduce some new classes of pseudoopen continuous mappings.

A mapping $f : X \to Y$ of a space X onto a space Y is called ω-pseudoopen (strictly ω-pseudoopen) at a point $y \in Y$ if there exists a subset P of X such that f is pseudoopen at the pair $(P, \{y\})$, and the mixed weight (the point-wise weight, respectively) of P in X is countable.

Notice that f is ω-pseudoopen at every isolated point of Y.

If f is ω-pseudoopen (strictly ω-pseudoopen) at each $y \in Y$, then we say that f is ω-pseudoopen (strictly ω-pseudoopen, respectively).

Now we are going to define a slightly different version of this concept. A mapping $f : X \to Y$ of a space X onto a space Y is almost ω-pseudoopen at a point $y \in Y$ if either y is isolated in Y, or there exist a subset P of X and a subset H of Y such that $y \in H$, Y is normal at H, the mapping f is pseudoopen at the pair (P, H), and the point-wise weight of P in X is countable. Again, we say that f is almost ω-pseudoopen if f is almost ω-pseudoopen at every $y \in Y$.

Obviously, every ω-pseudoopen mapping is almost ω-pseudoopen.

We will need below the next statement:

Lemma 2.1. Suppose that f is a continuous mapping of a space X onto a space Y, and that P is a subset of X and y is a point of Y satisfying the following conditions:

1. f is pseudoopen at the pair $(P, \{y\})$; and
2. the set P has a countable mixed base \mathcal{B} in X.

Then Y is a Fréchet–Urysohn space at y, and hence, the tightness of Y at y is countable.

Proof. Take any subset M of Y such that $y \notin M$, and put $A = f^{-1}(M)$. Then $x \in A$ for some $x \in P$, since f is pseudoopen at the pair $(P, \{y\})$ (see Proposition 1.1). Put $\eta = \{W \in \mathcal{B} : x \in W\}$. The family η is countable, since \mathcal{B} is countable. Hence, we can write η as a sequence: $\eta = \{W_n : n \in \omega\}$. Let $\mathcal{V}_k = \bigcap\{W_n : n \leq k\}$ for $k \in \omega$, and let $y = \{V_n : n \in \omega\}$.

For each $n \in \omega$ the set $V_n \cap A$ is non-empty, and we fix a point $x_n \in V_n \cap A$. The sequence $\xi = \{f(x_n) : n \in \omega\}$, clearly, is contained in M.

Let us show that ξ converges to y. Take any open neighbourhood $O(y)$ of y. Since f is continuous and $f(P) = y$, there exists an open neighbourhood $O(P)$ of P such that $f(O(P)) \subset O(y)$. Since $x \in P$ and \mathcal{B} is a mixed base of X at P, there exists $W \in \mathcal{B}$ such that $x \in W \subset O(P)$. Then $\mathcal{W}_k = \{W_n : n \in \omega\}$ for some $k \in \omega$, and therefore, $x_n \in W_n$ for every $n \geq k$. It follows that $f(x_n) \in f(O(P)) \subset O(y)$ for $n \geq k$. Hence, the sequence ξ converges to y. □

The next statement immediately follows from Lemma 2.1.

Proposition 2.2. If f is a continuous ω-pseudoopen mapping of a space X onto a space Y, then Y is a Fréchet–Urysohn space.

Recall that a mapping $f : X \to Y$ is an S-mapping, if the subspace $f^{-1}(y)$ is separable for every $y \in Y$. We will say that $f : X \to Y$ is an almost S-mapping, if for every non-isolated point $y \in Y$, the subspace $f^{-1}(y)$ is separable. We have:

Proposition 2.3. Every pseudoopen almost S-mapping of a metric space X onto a space Y is strictly ω-pseudoopen.
Proof. The condition to verify is obviously satisfied at any isolated point of \(Y \). Every metric space has a point-countable base [8]. It remains to refer to the following obvious statement: every separable subset of a space with a point-countable base has a countable point-wise base in this space. Therefore, \(f \) is pseudoopen at any pair \((f^{-1}(y), y)\) where \(y \) is an arbitrary non-isolated point of \(Y \). \(\square \)

Below we will establish a theorem on \(\omega \)-pseudoopen continuous mappings with a pseudocompact range (Theorem 2.5). This is one of the main results of this article. Its proof is based on some results obtained above and on the next general statement:

Proposition 2.4. Suppose that \(f : X \to Y \) is a continuous mapping of a space \(X \) onto a regular space \(Y \), and that \(f \) is pseudoopen at a pair \((A, B)\), where the mixed weight of \(A \) in \(X \) is countable. Then \(Y \) has a countable sensor at \(B \).

Proof. Fix a countable mixed base \(B \) of \(X \) at \(A \), and put \(S = \{ f(U) : U \in B \} \). Clearly, \(S \) is countable.

Claim. \(S \) is a sensor of \(Y \) at \(B \).

Indeed, take any open neighbourhood \(O(B) \) of \(B \) and any \(M \subseteq Y \) such that \(B \cap M \neq \emptyset \). Then, by Proposition 1.1, \(A \cap f^{-1}(M) \neq \emptyset \), so that we can fix \(x \in A \cap f^{-1}(M) \). Put \(O(A) = f^{-1}(O(B)) \). Since \(f \) is continuous and \(f(A) = B \), it follows that \(O(A) \) is an open neighbourhood of \(A \) in \(X \).

Since \(B \) is a mixed base of \(X \) at \(A \), we can find \(U \in B \) such that \(x \in U \subseteq O(A) \). Put \(y = f(x) \). Then \(y \in B \), and \(y \in f(U) \subseteq O(B) \). Since \(x \in f^{-1}(M) \) and \(U \) is an open neighbourhood of \(x \), it follows that \(x \in f^{-1}(M) \cap U \). Therefore, by continuity of \(f \), \(y = f(x) \) belongs to the interior of the set \(f(U) \subseteq \bigcup \{ f(U) : U \in \gamma \} \).

Theorem 2.5. If \(f \) is a continuous \(\omega \)-pseudoopen mapping of a space \(X \) onto a pseudocompact regular space \(Y \), then the space \(Y \) is first-countable.

Proof. Take any point \(y \in Y \). Since \(f \) is \(\omega \)-pseudoopen, Proposition 2.4 implies that \(Y \) has a countable sensor at \(y \).

It follows from Lemma 2.1 that the tightness of \(Y \) at the point \(y \) is countable. Now Theorem 1.5 is applicable, and we conclude that \(Y \) is first-countable at \(y \). \(\square \)

The proof of the next statement is quite similar to the proof of an analogous statement in [10] about pseudoopen mappings onto strongly Fréchet–Urysohn spaces, but for the sake of completeness we present its proof here. For a discussion of biquotient mappings, see [9,10]. Here we just recall the definition of this important notion.

A continuous mapping \(f \) of a space \(X \) onto a space \(Y \) is called **biquotient** if, for every \(y \in Y \) and every family \(\eta \) of open subsets of \(X \) such that \(f^{-1}(y) \subseteq \bigcup \eta \), there exists a finite subfamily \(\gamma \) of \(\eta \) such that \(y \) belongs to the interior of the set \(\bigcup \{ f(U) : U \in \gamma \} \).

Proposition 2.6. Every continuous strictly \(\omega \)-pseudoopen mapping \(f \) of a space \(X \) onto a space \(Y \) of countable fan-tightness is biquotient.

Proof. Fix a point \(y \in Y \) and a subset \(P \) of \(X \) such that the point-wise weight of \(X \) at \(P \) is countable, and \(f \) is pseudoopen at the pair \((P, \{y\})\). Fix also a countable point-wise base \(B \) of \(X \) at \(P \). Take any family \(\gamma \) of open subsets of \(X \) such that the set \(F = f^{-1}(y) \) is covered by \(\gamma \). Clearly, \(P \subseteq F \), and \(P \) is Lindelöf. Therefore, we can find a countable subfamily \(\eta \) of \(\gamma \) such that \(P \subseteq \bigcup \eta \) and every element of \(\eta \) intersects \(P \). Obviously, there exists an increasing sequence \(\{W_n : n \in \omega \} \) of open sets in \(X \) such that every \(W_n \) is the union of some finite subcollection of \(\eta \), and \(\bigcup \{ W_n : n \in \omega \} = \bigcup \eta \). Clearly, \(y \in f(W_n) \) for every \(n \in \omega \). It is enough to show that \(y \in \text{int}(f(W_n)) \), for some \(n \in \omega \).

Assume the contrary, and put \(A_n = Y \setminus f(W_n) \), for \(n \in \omega \). Then \(y = \bigcap A_n \). Since the fan-tightness of \(Y \) is countable, we can select finite subsets \(B_n \) of \(A_n \) such that \(y \in B_n \), where \(B = \bigcup \{ B_n : n \in \omega \} \). Since \(f \) is pseudoopen at the pair \((P, \{y\})\), it follows that \(x \in f^{-1}(B) \), for some \(x \in P \). There exists \(k \in \omega \) such that \(x \in W_k \). Then, obviously, \(W_k \cap B \) is infinite. However, \(A_n \cap f(W_k) \) is empty for \(n \geq k \), since \(A_k \cap f(W_k) = \emptyset \), and the family \(\{ A_n : n \in \omega \} \) is decreasing. Therefore, \(f(W_k) \cap B \) is contained in the finite set \(\bigcup \{ B_i : i < k \} \). We have arrived at a contradiction. \(\square \)

We obtain from Theorem 2.5 the following conclusion:

Corollary 2.7. Every continuous strictly \(\omega \)-pseudoopen mapping of a space \(X \) onto a pseudocompact regular space \(Y \) is biquotient.

Proof. By Theorem 2.5, the space \(Y \) is first-countable. Since, obviously, every first-countable space has countable fan-tightness, it follows from Proposition 2.6 that the mapping \(f \) is biquotient. \(\square \)
Obviously, the last statement implies the next two results:

Corollary 2.8. If \(f \) is a continuous strictly \(\omega \)-pseudoopen mapping of a locally compact space \(X \) onto a pseudocompact regular space \(Y \), then \(Y \) is locally compact and \(\omega \)-first-countable.

Corollary 2.9. If \(f \) is a continuous strictly \(\omega \)-pseudoopen mapping of a locally metrizable and locally separable space \(X \) onto a pseudocompact regular space \(Y \), then \(Y \) is locally compact and \(\omega \)-metrizable.

To derive Corollary 2.9 from Corollary 2.7, observe that the closure of an open subset of a pseudocompact space is pseudocompact, and that every pseudocompact regular space with a countable network is compact and metrizable (see [8]).

Theorem 2.5 can be expanded in a non-trivial way to continuous almost \(\omega \)-pseudoopen mappings. To do this, we need the next technical result:

Proposition 2.10. Suppose that \(f : X \to Y \) is a continuous almost \(\omega \)-pseudoopen mapping of a space \(X \) of countable tightness onto a regular space \(Y \). Then:

1. The tightness of \(Y \) is countable; and
2. for each \(y \in Y \), there exists a closed subspace \(H \) of \(Y \) such that \(y \in H \), the subspace \(H \) has a countable network, \(Y \) is normal at \(H \), and \(Y \) is countably sensitive at \(H \).

Proof. Take any non-isolated point \(y \in Y \). Since \(f \) is almost \(\omega \)-pseudoopen, we can select a subset \(P \) of \(X \) and a subset \(H \) of \(Y \) such that \(y \in H \), \(Y \) is normal at \(H \), the mapping \(f \) is pseudoopen at the pair \((P, H)\), and the point-wise weight of \(P \) in \(X \) is countable. Clearly, \(P \) is a space with a countable base. Since \(f \) is continuous and \(f(P) = H \), it follows that the space \(H \) has a countable network.

Take any non-closed subset \(B \) of \(Y \). We have to find a point in \(Y \setminus B \) which belongs to the closure of some countable subset of \(B \). Since \(y \) is an arbitrary non-isolated point of \(Y \), we may assume that \(y \in \overline{B} \setminus B \).

If \(y \) also belongs to the closure of \(B \cap H \) then, using the fact that \(H \) has a countable network, we can take \(C \) to be a countable dense subset of \(B \cap H \). Then \(C \) is a countable dense subset of \(B \), \(y \) is in the closure of \(C \), and \(y \) is not in \(B \).

It remains to consider the case when \(y \) is not in the closure of \(B \cap H \). Since \(Y \) is regular, we can fix an open neighbourhood \(O(y) \) of \(y \) such that the closure of \(O(y) \) does not intersect the closure of the set \(B \cap H \). Put \(B_1 = O(y) \cap B \).

Clearly, \(y \) is in the closure of \(B_1 \). Since \(f \) is pseudoopen at the pair \((P, H)\), it follows that \(P \cap f^{-1}(B_1) \) is not empty. Fix \(x \in P \cap f^{-1}(B_1) \), and put \(z = f(x) \). Then \(z \in H \), and, by continuity of \(f \), \(z \in \overline{B} \). Therefore, \(z \) belongs to the closure of \(O(y) \) and hence, \(z \) is not in \(B \cap H \). Since \(z \in H \), it follows that \(z \notin B \). Since the tightness of \(X \) is countable, and \(x \) is in the closure of \(f^{-1}(B_1) \), we can find a countable subset \(M \) of \(f^{-1}(B_1) \) such that \(x \) is in the closure of \(M \). Then \(C = f(M) \) is a countable subset of \(B_1 \cap B \) such that \(z \in C \). Since \(z \) is not in \(B \), we can conclude that the tightness of \(Y \) is countable. Thus, we have established (1).

We also know that \(y \in H \), \(H \) has a countable network, and \(Y \) is normal at \(H \). The last fact implies that \(H \) is closed in \(Y \). Therefore, to establish (2), it is enough to show that \(Y \) is countably sensitive at \(H \). This follows directly from Proposition 2.4.

Theorem 2.11. If \(f \) is a continuous almost \(\omega \)-pseudoopen mapping of a space \(X \) onto a pseudocompact regular space \(Y \), then \(Y \) is \(\omega \)-first-countable.

Proof. Take any \(y \in Y \). By Proposition 2.10, there exists a subspace \(H \) of \(Y \) such that \(H \) has a countable network, \(Y \) is normal at \(H \), \(Y \) has a countable sensor at \(H \), and \(y \in H \). Proposition 2.10 also implies that the tightness of \(Y \) is countable.

Thus, we can apply Theorem 1.5. It follows that \(H \) is a \(G_\delta \)-subset of \(Y \). However, \(y \) is a \(G_\delta \)-point in \(H \), since \(H \) is regular and has a countable network. Therefore, \(y \) is a \(G_\delta \)-point in \(Y \). Since \(Y \) is pseudocompact and regular, it follows that \(Y \) is \(\omega \)-first-countable at \(y \).

The following two theorems are among main results on pseudoopen \(S \)-mappings of metric spaces in this article.

Theorem 2.12. Suppose that \(f \) is a continuous pseudoopen almost \(S \)-mapping of a metric space \(X \) onto a pseudocompact regular space \(Y \). Then \(Y \) is \(\omega \)-first-countable.

Proof. The space \(X \) has a point-countable base. Therefore, the mapping \(f \) is almost \(\omega \)-pseudoopen (and \(\omega \)-pseudoopen).

Now it follows from Theorem 2.11 (or from Theorem 2.5) that the space \(Y \) is \(\omega \)-first-countable.

Theorem 2.13. If \(f \) is a continuous pseudoopen \(S \)-mapping of a metric space \(X \) onto a pseudocompact regular space \(Y \), then \(Y \) has a point-countable base.
Proof. By Theorem 2.12, Y is first-countable. Since f is a pseudoopen S-mapping, it follows that f is biquotient (see Problem 21 in Chapter 6, Section 1 in [5], or apply Proposition 2.6). Observe that X has a point-countable base, since X is a metric space. Now we can apply a remarkable theorem of V.V. Filippov saying that if Y is an image of a metric space under a biquotient S-mapping, then Y also has a point-countable base [9].

It is clear from the above argument that the last theorem also holds for any space X with a point-countable base. The conclusion in Theorem 2.13 cannot be strengthened to the statement that Y is metrizable, since every space with a point-countable base can be represented as an image of a metric space under an open continuous S-mapping (see [5]). Observe also that Theorem 2.13 cannot be extended to pseudoopen almost S-mappings. We will see it below, Example 2.15.

Theorem 2.14. If f is a continuous ω-pseudoopen mapping of a space X onto a topological group G, then G is metrizable.

Proof. It follows from Proposition 2.2 that the space G is Fréchet–Urysohn. Since G is a topological group, a theorem of P. Nyikos from [11] implies that the space G is strongly Fréchet–Urysohn. Hence, the fan-tightness of G is countable. Note also that G is regular, since G is a topological group (see [6]). Applying Proposition 2.4, we conclude that the space G has a countable sensor at every point. Fix $e \in G$ and $H = \{e\}$. Theorem 1.4 implies that the space G has a countable base at e. It follows that G is metrizable, since G is a topological group (see [6]).

In connection with Theorem 2.12 we should mention that if a compact Hausdorff space Y is an image of a metric space under a pseudoopen continuous S-mapping, then Y is metrizable. This is a special case of a remarkable result of V.V. Filippov [9] on quotient S-images of metric spaces.

Example 2.15. There exists a pseudocompact Tychonoff separable non-metrizable space M with an open covering γ such that the following conditions are satisfied:

(a) Every element of γ is a metrizable subspace of M;
(b) Each non-isolated in M point belongs to at most one element of γ.

For example, the famous Mrowka space (often denoted by Ψ) satisfies the above restrictions on M.

Let X be the free topological sum of the spaces in the family γ, and f be the natural mapping of X onto M (thus, the restrictions of f to elements of γ are the identity mappings). Obviously, X is a metric space, and f is a continuous mapping of X onto M. It is also well known, and easily seen, that f is an open mapping. Hence, f is pseudoopen as well. It follows from condition (b) that the inverse image under f of any non-isolated point of M consists of exactly one point. Therefore, f is an almost S-mapping. Thus, we have constructed an open (hence, pseudoopen) continuous almost S-mapping of a metric space X onto a Tychonoff pseudocompact separable non-metrizable space M. Notice, that the space M cannot have a point-countable base but is locally metrizable and hence, is first-countable. Observe also that both X and M can be selected to be, in addition, locally compact and locally countable. However, M cannot be made, in this situation, countably compact. This follows from the next statement.

Proposition 2.16. If f is a continuous open almost S-mapping of a metric space X onto a regular countably compact space Y, then Y is separable, metrizable, and compact.

Proof. Let Z be the subspace of Y consisting of all non-isolated points of Y. Clearly, Z is closed in Y. Therefore, Z is countably compact. Let g be the restriction of f to the subspace $P = f^{-1}(Z)$. Then $g : P \to Z$ is an open continuous S-mapping of the metric space P onto the regular countably compact space Z. It follows that the space Z has a point-countable base, since P has a point-countable base [8]. Therefore, by A.S. Mischenko’s Theorem [8], the space Z has a countable base. Hence, Z is separable, metrizable, and compact.

Claim 1. Z is a G_δ-subset of Y.

Since Z is compact, Claim 1 obviously follows from the next statement:

Claim 2. The space X has a countable point-wise base at the set Z.

Indeed, there exists a point-countable base B for X. Put $\eta = \{U \in B: U \cap P \neq \emptyset\}$ and $C = \{f(U): U \in \eta\}$. Then, clearly, C is a point-wise base of Y at Z, every element of Z is contained in at most countably many elements of C, and $V \cap Z \neq \emptyset$, for every $V \in C$. Since Z is separable, it follows that the family C is countable. Thus, C is a countable point-wise base of Y at Z. Claims 2 and 1 are established.

It follows easily from Claim 1 that $Y \setminus Z$ is the union of a countable family ξ of closed subsets of Y.

Claim 3. Each \(F \in \xi \) is finite.

Indeed, every point of \(Y \setminus Z \) is isolated in \(Y \). Thus, each \(F \in \xi \) is a countably compact discrete subspace of \(Y \). It follows that \(F \) is finite.

Using Claim 3, we conclude that \(Y \setminus Z \) is a countable discrete subspace of \(Y \). Thus, \(Y \) is the union of two separable metrizable subspaces. Since \(Y \) is also countably compact and regular, it follows from the Addition Theorem for the weight that \(Y \) is a separable metrizable compact space [8]. □

The next example of a mapping, considered on many other occasions, shows that the class of pseudoopen continuous mappings is much wider than the class of \(\omega \)-pseudoopen continuous mappings.

Example 2.17. Let \(G \) be the \(\Sigma \)-product of uncountably many copies of the discrete space \(D = \{0, 1\} \). It is well known that \(G \) is a countably compact Fréchet–Urysohn Tychonoff space [8]. The space \(G \) has many other nice properties as well. In particular, \(G \) is a topological group, and therefore, \(G \) is homogeneous. It is also clear that at no point \(G \) is first-countable. Hence, \(G \) is not metrizable.

Since the space \(G \) is Fréchet–Urysohn and Hausdorff, one can represent \(G \), in a standard way, as an image of a locally compact locally countable metric space \(X \) under a (natural) pseudoopen continuous mapping \(f \) [1]. This mapping \(f \) is not \(\omega \)-pseudoopen, since the space \(G \) is pseudocompact (even countably compact) and is not first-countable. Observe also that the mapping \(f \) is not biquotient.

We should also refer the reader to an example of a Tychonoff countable Fréchet–Urysohn space described in [3]. This space is not first-countable at any point. However, it is shown in [3] that the space can be represented as an image of a countable metrizable space under a continuous pseudoopen mapping (which is, clearly, an \(S \)-mapping). On the other hand, it was shown in [3] that if a topological group \(G \) is an image of a separable metrizable space under a pseudoopen continuous mapping, then \(G \) is metrizable.

Finally, we give an application of our results on pseudoopen \(S \)-mappings to closed \(S \)-mappings. Recall that a pseudo-compact regular space with a uniform base is compact and metrizable [12]. We generalize this result as follows:

Theorem 2.18. Suppose that \(f \) is a continuous closed almost \(S \)-mapping of a regular space \(X \) with a uniform base onto a pseudocompact regular space \(Y \). Then \(Y \) is compact and metrizable.

Proof. Every uniform base, called also a point-regular base in [8], is point-countable (see [8]). Obviously, Theorem 2.12 extends from metrizable spaces to spaces with a point-countable base. Since every closed mapping is pseudoopen, it follows from the extended version of Theorem 2.12 that \(Y \) is first-countable. Now, applying the well-known Vainshtein–Morita–Stone Theorem [8,5], we conclude that the boundary of \(f^{-1}(y) \) is compact, for each \(y \in Y \). Hence, the restriction of \(f \) to some closed subspace \(Z \) of \(X \) is a perfect mapping of \(Z \) onto \(Y \) [8,5]. Since \(Z \) also has a uniform base, it follows that \(Y \) has a uniform base as well (see [7]). It remains to refer to the fact that every pseudocompact regular space with a uniform base is metrizable and compact (see [12]). □

References

