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a b s t r a c t

In this paper we introduce a simple bivariate integer-valued time series model with
positively correlated geometric marginals based on the negative binomial thinning
mechanism. Some properties of the model are considered. The unknown parameters of
the model are estimated using the modified conditional least squares method.
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1. Introduction

The integer-valued autoregressive processes play an important role in time series analysis. They are useful in many
areas, such as biology, medicine, business, etc. Detailed information about this kind of process can be found in [1,2]. In
particular, bivariate integer-valued time series models maintain the pairing between two count variables that occur over
specific times and play a major role in the analysis of the paired correlated count data. In the last two decades, special
attention has been devoted to the multivariate integer-valued time series processes. Franke and Subba Rao [3] introduced
the M-variate INAR(1) process given by Xt = A ◦ Xt−1 + Zt , where {Zt} is a sequence of independent and identically
distributed (i.i.d.) random vectors and for a given matrix A = [aij], aij ∈ [0, 1], the i-th component of the random
vector A ◦ X is defined as (A ◦ X)i =

∑M
j=1 aij ◦ Xj, i = 1, . . . ,M . Here a◦ represents the binomial thinning. Aly and

Bouzar [4] introduced a multivariate process Xt = A[a],θ • Xt−1 + Zt , where {Zt} is a sequence of i.i.d. random vectors,
a = [a1, . . . , ap], aj = (a1j, . . . , apj)′,A[a],θ • X =

∑p
i=1 Aai,θ • Xi, the operators Aai,θ are independent and given as

Aaj,θ • X =

∑N1(X)
i=1 W

(aj1)
i , . . . ,

∑Np(X)
i=1 W

(ajp)
i

′

, where

W
(ajk)
i


, k = 1, 2, . . . , p, are independent sequences of i.i.d.

random variables with zero truncated Geom((1 − ajk)θ) distributions, θ ∈ [0, 1], and (N1(X), . . . ,Np(X)) has multinomial
(x, aj) distribution for given X = x. Latour [5] introduced a multivariate GINAR(p) model as Xt =

∑p
i=1 Ai ⋆ Xt−1 + Zt ,

where Ai⋆ are generalized Steutel and van Harn operators. Based on generalized Steutel and van Harn thinning operators,
Aly and Bouzar [4] discussedmultiple INAR(1) processes via somemultiple discrete distributions. Recently, there have been
more attempts to derive BINAR typemodels. We refer the reader to Brännäs and Nordström [6], Quoreshi [7] and Pedeli and
Karlis [8] for more details.

The purpose of this paper is to introduce a simple bivariate INAR(1)modelwith positively correlated geometricmarginals.
The model is constructed using the method proposed by Dewald et al. [9] for constructing a simple bivariate autoregressive
model with exponential marginals and the negative binomial thinning introduced by Aly and Bouzar [4] and Ristić et al. [10].
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The paper is organized as follows. In Section 2 we introduce the model. In Section 3 we consider the matrix representation
of the model and derive some of its properties. In Section 4 we estimate the unknown parameters of the model using the
modified conditional least squares method. Finally, some concluding remarks are given in Section 5.

2. Construction of the model

Ristić et al. [10] introduced the negative binomial thinning operator α∗ as α∗Z =
∑Z

i=1 Gi, α ∈ (0, 1), with α∗Z = 0 for
Z = 0. All the counting series {Gi} are i.i.d. random variables with Geom(α/(1 + α)) distribution, i.e. with probability mass
function of the form P(Gi = k) =

αk

(1+α)k+1 , k ≥ 0. Let us also consider the operatorβ∗ given byβ∗Z =
∑Z

j=1 Wj, β ∈ (0, 1),
where {Wj} are i.i.d. random variables with Geom(β/(1 + β)) distribution. Based on these operators and the method
proposed by Dewald [9], we introduce a bivariate time series model {(Xt , Yt), t ≥ 0} given by

Xt =


α ∗ Xt−1 + εt , w.p. p,
α ∗ Yt−1 + εt , w.p. 1 − p, (1)

Yt =


β ∗ Xt−1 + ηt , w.p. q,
β ∗ Yt−1 + ηt , w.p. 1 − q, (2)

where p, q ∈ [0, 1], α, β ∈ (0, 1), {εt , t ≥ 1} and {ηt , t ≥ 1} are mutually independent sequences of i.i.d. random
variables independent of (Xs, Ys), for all s < t . We suppose that all thinnings α ∗ Xt−1, α ∗ Yt−1, β ∗ Xt−1 and β ∗ Yt−1 are
mutually independent.

In the following theorem, we give a necessary and sufficient condition for a bivariate time series model {(Xt , Yt)} to be
stationary.

Theorem 1. Let µ > 0, α, β ∈ (0, µ/(1 + µ)] and X0
d
= Y0

d
= Geom(µ/(1 + µ)). The bivariate time series {(Xt , Yt), t ≥ 0}

given by (1) and (2) is stationary with Geom(µ/(1 + µ)) marginals if and only if the mutually independent sequences of i.i.d.
random variables {εt , t ≥ 1} and {ηt , t ≥ 1} are distributed as

εt
d
=


Geom(α/(1 + α)), w.p. αµ/(µ− α),
Geom(µ/(1 + µ)), w.p. (µ− α − αµ)/(µ− α),

(3)

ηt
d
=


Geom(β/(1 + β)), w.p. βµ/(µ− β),
Geom(µ/(1 + µ)), w.p. (µ− β − βµ)/(µ− β).

(4)

Proof. Let us suppose that the random variables εt and ηt are distributed as (3) and (4). Ristić et al. [10] showed that these
random variables have the probability generating functions (p.g.f.) given byΦε(s) = (1+α(1+µ)(1− s))/((1+α(1− s))
(1 + µ(1 − s))) and Φη(s) = (1 + β(1 + µ)(1 − s))/((1 + β(1 − s))(1 + µ(1 − s))), respectively. Let ΦXt (s) and
ΦYt (s) be the p.g.f. of the random variables Xt and Yt , respectively. Since the p.g.f. of the random variables X0 and Y0 are
ΦX0(s) = ΦY0(s) = 1/(1 + µ(1 − s)), we obtain from (1) and (2) that

ΦX1(s) = ΦX0


1

1 + α(1 − s)


·

1 + α(1 + µ)(1 − s)
(1 + α(1 − s))(1 + µ(1 − s))

=
1

1 + µ(1 − s)
,

ΦY1(s) = ΦY0


1

1 + β(1 − s)


·

1 + β(1 + µ)(1 − s)
(1 + β(1 − s))(1 + µ(1 − s))

=
1

1 + µ(1 − s)
,

which implies that X1 and Y1 are distributed as Geom(µ/(1 +µ)). Finally, by induction we can show that Xt and Yt , t ≥ 0,
are distributed as Geom(µ/(1 + µ)).

Conversely, let us suppose that the bivariate time series {(Xt , Yt), t ≥ 0} is stationary with Geom(µ/(1+µ))marginals.
Then from the facts that Φε(s) = ΦX (s)/ΦX (1/(1 + α(1 − s))) and Φη(s) = ΦX (s)/ΦX (1/(1 + β(1 − s))), it is obtained
that {εt , t ≥ 1} and {ηt , t ≥ 1} are distributed as (3) and (4), respectively. �

Let us consider the case when X0 and Y0 have the same arbitrary distribution. From (1) it follows that

ΦXt (s) = ΦXt−1


1

1 + α − αs


Φε(s)

= ΦX0


1 − αt

− α(1 − αt−1)s
1 − αt+1 − α(1 − αt)s

 t−1∏
j=0

Φε


1 − αj

− α(1 − αj−1)s
1 − αj+1 − α(1 − αj)s



= ΦX0


1 − αt

− α(1 − αt−1)s
1 − αt+1 − α(1 − αt)s


1 − αt+1

+ (1 − α)αtµ− α(1 − αt
+ (1 − α)αt−1µ)s

(1 − αt+1 − α(1 − αt)s)(1 + µ− µs)
.

Taking the limit as t → ∞, we obtain that Xt converges to Geom(µ/(1 + µ)) distribution.
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Now, we will derive the joint conditional distribution of Xt and Yt for given Xt−1 and Yt−1. This property can be used for
conditional maximum likelihood estimation and prediction, for example. Let p(x, y|u, v) = P(Xt = x, Yt = y|Xt−1 = u,
Yt−1 = v). To simplify the derivation, we define the functions ψε(x, u, α) and pAt−1,Bt−1(x, y|u, v) as

ψε(x, u, α) = (1 + α)−u


πε(x)+ I(u ≥ 1)

x−
g=1

πε(x − g)

u + g − 1

g


αg(1 + α)−g


,

pAt−1,Bt−1(x, y|u, v) = P(α ∗ At−1 + εt = x, β ∗ Bt−1 + ηt = y|Xt−1 = u, Yt−1 = v),

where πε(x) = P(εt = x), I denotes the indicator function and (At−1, Bt−1) ∈ {(Xt−1, Xt−1), (Xt−1, Yt−1), (Yt−1, Xt−1),
(Yt−1, Yt−1)}. Using the independency of the thinnings and the random variables εt and ηt , and the fact that α ∗ Xt−1
and β ∗ Xt−1 for given Xt−1 = 0 have zero values, we obtain for v ≥ 0 that pXt−1,Xt−1(x, y|0, v) = πε(x)πη(y) =

ψε(x, 0, α)ψη(y, 0, β). Similarly, using the independency of the thinnings and the random variables εt and ηt , and the fact
that random variablesα∗Xt−1 and β∗Xt−1 for given Xt−1 = u, u ≥ 1, have negative binomial distributionswith parameters
u and α/(1 + α), and u and β/(1 + β), respectively, we obtain that

pXt−1,Xt−1(x, y|u, v) = P


u−

i=1

Gi + εt = x


P


u−

j=1

Wj + ηt = y


= ψε(x, u, α)ψη(y, u, β).

Thus, we obtain for u ≥ 0 and v ≥ 0 that pXt−1,Xt−1(x, y|u, v) = ψε(x, u, α)ψη(y, u, β). The same derivation can be ap-
plied for pXt−1,Yt−1(x, y|u, v), pYt−1,Xt−1(x, y|u, v) and pYt−1,Yt−1(x, y|u, v), which implies after some calculations that the
joint conditional distribution of Xt and Yt for given Xt−1 and Yt−1 is given by p(x, y|u, v) = [pψε(x, u, α) + (1 − p)
ψε(x, v, α)]


qψη(y, u, β)+ (1 − q)ψη(y, v, β)


.

3. Matrix representation and properties

The bivariate time series model {(Xt , Yt), t ≥ 0} given by (1) and (2) can be represented as

Xt = Ut1 ∗ Xt−1 + Ut2 ∗ Yt−1 + εt , (5)
Yt = Vt1 ∗ Xt−1 + Vt2 ∗ Yt−1 + ηt , (6)

where the random vectors {(Ut1,Ut2)} and {(Vt1, Vt2)} are mutually independent and identically distributed as P(Ut1 =

α,Ut2 = 0) = 1− P(Ut1 = 0,Ut2 = α) = p and P(Vt1 = β, Vt2 = 0) = 1− P(Vt1 = 0, Vt2 = β) = q. If we define At ∗X as

At ∗ X =

[
Ut1 ∗ X + Ut2 ∗ Y
Vt1 ∗ X + Vt2 ∗ Y

]
, where At =

[
Ut1 Ut2
Vt1 Vt2

]
,

and X = (X, Y )′, then (5) and (6) can be represented in matrix form Xt = At ∗ Xt−1 + Zt , where Xt = (Xt , Yt)
′ and

Zt = (εt , ηt)
′. Using this representation, we can easily derive the autocovariancematrix. The autocovariancematrix is given

by

Cov(Xh,X0) =

[
Cov(Xh, X0) Cov(Xh, Y0)
Cov(Yh, X0) Cov(Yh, Y0)

]
.

Since E(Ah ∗ Xh−1) = AE(Xh−1) and E

(Ah ∗ Xh−1)X′

0


= AE


Xh−1X′

0


, where A = E(Ah), we obtain for h ≥ 0 that the

autocovariance matrix is Cov(Xh,X0) = AhVar(X0). Let us consider the matrix Var(X0). First, since the random variables
X0 and Y0 have Geom(µ/(1 + µ)) distribution, it follows that Var(X0) = Var(Y0) = µ(1 + µ). Second, the covariance
Cov(X0, Y0) can be easily derived from (1) and (2) and the fact that the bivariate time series model {(Xt , Yt)} is stationary.
Thus we obtain that

Cov(X0, Y0) =
αβ(pq + (1 − p)(1 − q))

1 − αβ(p(1 − q)+ (1 − p)q)
· µ(1 + µ) ≡ ρ · µ(1 + µ).

Obviously, ρ is positive. On the other hand, since ρ − 1 = (αβ − 1)/(1 − αβ(p(1 − q) + (1 − p)q)) < 0, we obtain that
ρ < 1. Using the obtained results, we derive the matrix Var(X0) as

Var(X0) = µ(1 + µ)

[
1 ρ
ρ 1

]
.

Since the matrix A is

A =

[
αp α(1 − p)
βq β(1 − q)

]
,
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wecan conclude that all the elements of Cov(Xh,X0) are positive. Thus,wehave shown that the two time series are positively
correlated. Now, we will determine how much they are positively correlated. First, we can conclude that ρ = αβ for
p = q = 0 or p = q = 1. Second, we have for any p, q ∈ [0, 1] that

ρ − αβ =
−αβ(1 − αβ)(p(1 − q)+ q(1 − p))

1 − αβ(p(1 − q)+ q(1 − p))
≤ 0,

which implies that ρ ≤ αβ . Since 0 < α, β ≤ µ/(1 +µ), we finally obtain that 0 ≤ ρ ≤ µ2(1 +µ)−2. Therefore, for large
values of µ the two time series can be highly positively correlated, while for a small µ the two series are weakly positively
correlated.

Now, we will show that Cov(Xh,X0) → 0, as h → ∞. The eigenvalues λ1 < λ2 of the matrix A satisfy: (i)
λ1 + λ2 = αp + β(1 − q) > 0, which implies that λ2 > 0, and (ii) λ1λ2 = αβ(p − q). Using these results, we have that
(1−λ1)(1−λ2) = (1−α)(1−β(1−q))+α(1−p)(1−β) > 0 and (1+λ1)(1+λ2) = 1−αβ(1−p)+αp+β(1+α)(1−q) > 0.
Since λ2 > 0 and λ1 + λ2 < α + β < 2, we obtain that |λ1| < 1 and 0 < λ2 < 1. This implies that Ah

→ 0 and
Cov(Xh,X0) → 0, as h → ∞. Thus, this well known property of autoregressive processes is confirmed for our bivariate
process. While the model is autoregressive with respect to the vector, this is not the case for the marginals. Namely, it is
clear from the definition of the process (1) and (2) that these series {Xt} and {Yt} are not autoregressive, which may also be
verified from the diagonal elements of the matrix AhVar(X0).

4. Modified conditional least squares estimation

In this section we briefly consider the estimation of the unknown parameters of the model by the modified conditional
least squares method.Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a bivariate sample from the bivariate INAR(1) model with
geometric marginals. First we consider the estimation of the parameter µ. Using the fact that µ = E(Xt) = E(Yt),
an estimator obtained by the Yule–Walker method has the following form: µ̂ = (2N)−1∑N

t=1 (Xt + Yt). In order to
obtain the conditional least squares estimators of the parameters α, β, p and q, we introduce the new parametrization
θ1 = αp, θ2 = α(1 − p), θ3 = βq and θ4 = β(1 − q). Using the matrix representation of the model, we obtain that the
conditional expectation is

E(Xt |Xt−1) = E(At ∗ Xt−1 + Zt |Xt−1) =

[
αpXt−1 + α(1 − p)Yt−1
βqXt−1 + β(1 − q)Yt−1

]
+

[
E(εt)
E(ηt)

]
=

[
αp α(1 − p)
βq β(1 − q)

]
·

[
Xt−1
Yt−1

]
+ µ

[
1 − α
1 − β

]
=

[
θ1 θ2
θ3 θ4

]
·

[
Xt−1
Yt−1

]
+ µ

[
1 − θ1 − θ2
1 − θ3 − θ4

]
.

Let Θ = (θ1, θ2, θ3, θ4). Then the conditional least squares estimators of the parameter vector Θ are obtained by
minimizing the sum of squares:

QN(Θ) =

N−
t=2

(Xt − AXt−1 − E(Zt))
′(Xt − AXt−1 − E(Zt))

=

N−
t=2

(Xt − θ1Xt−1 − θ2Yt−1 − (1 − θ1 − θ2)µ)
2
+

N−
t=2

(Yt − θ3Xt−1 − θ4Yt−1 − (1 − θ3 − θ4)µ)
2.

Thus the estimators are the solutions of the following system:
N−

t=2

(Xt−1 − µ̂)(Xt−1 − µ̂)′
[
θ̂1

θ̂2

]
=

N−
t=2

(Xt − µ̂)(Xt−1 − µ̂)′,

N−
t=2

(Xt−1 − µ̂)(Xt−1 − µ̂)′
[
θ̂3

θ̂4

]
=

N−
t=2

(Yt − µ̂)(Xt−1 − µ̂)′,

where µ̂ = (µ̂, µ̂)′. Following the definition of the new introduced parametrization, the conditional least squares estimators
of the parameters α, β, p and q are derived as α̂ = θ̂1 + θ̂2, β̂ = θ̂3 + θ̂4, p̂ = θ̂1/(θ̂1 + θ̂2), and q̂ = θ̂3/(θ̂3 + θ̂4). It is
interesting to derive the properties of these estimators, which we leave for future work.

5. Concluding remarks

In this paper we introduced a new approach to a bivariate INAR(1) time series analysis. For this purpose, we based our
investigation on a time series of geometrically distributedmarginals, generated by negative binomial thinning. Nevertheless,
further research in this fieldmight be performed in somenewdirections. First, themarginal distribution could be generalized
by using a negative binomial distribution, which is more applicable and thus can be used in far more situations. Hence, this
assumption would make the model much more realistic. Second, a binomial thinning operator might be applied together
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with the Poisson or negative binomial marginal distribution which might produce more model real-life applications. Third,
one may consider a bivariate distribution for the innovations so that the correlation comes from two sources. Finally, a very
important subject of our interest is to define and analyze anm-variate case of the INAR process, form > 2.
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