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Myocardial No-Reflow in Humans
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Filippo Crea, MD, PHD

Rome, Italy

In a variable proportion of patients presenting with ST-segment elevation myocardial infarction, ranging from 5% to
50%, primary percutaneous coronary intervention achieves epicardial coronary artery reperfusion but not myocardial
reperfusion, a condition known as no-reflow. Of note, no-reflow is associated with a worse prognosis at follow-up. The
phenomenon has a multifactorial pathogenesis including: distal embolization, ischemia-reperfusion injury, and indi-
vidual predisposition of coronary microcirculation to injury. Moreover, it is spontaneously reversible in some pa-
tients, thus suggesting that it might be amenable to treatment also when we fail to prevent it. Several recent
studies have shown that biomarkers and other easily available clinical parameters can predict the risk of no-
reflow and can help in the assessment of the multiple mechanisms of the phenomenon. Several therapeutic
strategies have been tested for the prevention and treatment of no-reflow. In particular, thrombus aspiration be-
fore stent implantation prevents distal embolization and has been recently shown to improve myocardial perfu-
sion and clinical outcome as compared with the standard procedure. However, it is conceivable that the rele-
vance of each pathogenetic component of no-reflow is different in different patients, thus explaining the
occurrence of no-reflow despite the use of mechanical thrombus aspiration. Thus, in this review article, for the
first time, we propose a personalized management of no-reflow on the basis of the assessment of the prevailing
mechanisms of no-reflow operating in each patient. (J Am Coll Cardiol 2009;54:281–92) © 2009 by the
American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.03.054
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efinition and Clinical Relevance of No-Reflow

rompt referral for mechanical reperfusion by urgent pri-
ary percutaneous coronary intervention (PPCI) represents

he pivotal step in the current management of ST-segment
levation myocardial infarction (STEMI) (1). Yet, in a
izable proportion of patients PPCI achieves epicardial
oronary artery reperfusion but not myocardial reperfusion,
condition known as no-reflow (2). In particular, the term

no-reflow” has been increasingly used in published medical
eports to describe microvascular obstruction and reduced
yocardial flow after opening an occluded artery.
The existence of no-reflow phenomenon was initially

ebated; however, a large amount of experimental and
linical data have clearly shown that it occurs after reperfu-
ion with a variable prevalence, ranging from 5% up to 50%,
ccording to the methods used to assess the phenomenon
nd to the population under study (2,3).

In 1993, at the climax of the thrombolytic era, Lincoff
nd Topol (4) wrote a provocative editorial wondering
hether reperfusion was just an illusion. At that time, they

stimated that only “25% or less” of patients treated by
hrombolysis had an optimal reperfusion, defined as a rapid,

rom the Institute of Cardiology, Catholic University of the Sacred Heart, Rome,
taly.
(
Manuscript received July 24, 2008; manuscript revised March 17, 2009, accepted
arch 17, 2009.
omplete, and sustained coronary recanalization with adequate
yocardial tissue perfusion. What is this figure after 15 years at

he climax of the PPCI era? As shown in Figure 1, a reasonable
stimate of the proportion of patients who get optimal
yocardial reperfusion, among those without cardiogenic

hock undergoing PPCI, is approximately 35%.
A series of consistent data has clearly shown that no-

eflow has a strong negative impact on outcome, negating
he potential benefit of PPCI (5–11). Indeed, patients with
o-reflow exhibit a higher prevalence of: 1) early post-

nfarction complications (arrhythmias, pericardial effusion,
ardiac tamponade, early congestive heart failure); 2) left
dverse ventricular remodeling; 3) late repeat hospital stays
or heart failure; and 4) mortality (Fig. 2).

Therefore, detection, prevention, and treatment of no-
eflow are likely to have an important impact on the
utcome of PPCI. Here we propose possible personalized
orms of prevention and treatment, on the basis of the
otion that no-reflow is a dynamic process characterized by
ultiple pathogenetic components.

ime-Course and
athogenetic Components of No-Reflow

loner et al. (12) described no-reflow for the first time in a
anine model, demonstrating that it occurs after prolonged

90 min) coronary occlusion followed by reperfusion. The

https://core.ac.uk/display/82555943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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consequences of coronary liga-
tion of a nonatherosclerotic cor-
onary artery, however, cannot be
directly extrapolated to the hu-
man situation where myocardial
infarction is caused by occlusive
coronary thrombosis superim-
posed onto an atherosclerotic un-
stable plaque (13).

Galiuto et al. (14), with sequential
measurements of myocardial perfu-
sion by myocardial contrast echocar-
diography (MCE), have recently
shown that in humans no-reflow
detected 24 h after successful
PCI spontaneously improves
over time in approximately 50%
of patients. Thus, no-reflow can
be categorized as sustained and
reversible. Sustained no-reflow is
probably the result of anatomical
irreversible changes of coronary
microcirculation, whereas revers-
ible no-reflow is the result of
functional and, thus reversible,
changes of microcirculation. In-
terestingly, whereas patients with
sustained no-reflow undergo un-
favorable left ventricle (LV) re-
modeling, patients with revers-

ble no-reflow maintain their LV volumes unchanged over
ime (14). Similar findings were shown by Hoffman et al.
15) by analyzing changes of myocardial blush grade
MBG) over time. In this study also the evolution of MBG
as a potent predictor of LV remodeling.
Taken together these studies demonstrate that no-reflow,

t least in some patients, is reversible, thus opening a new
cenario on the search for no-reflow reversal.

In humans, no-reflow is caused by the variable combination
f 4 pathogenetic components: 1) distal atherothrombotic
mbolization; 2) ischemic injury; 3) reperfusion injury; and
) susceptibility of coronary microcirculation to injury (Fig. 3).
s a consequence, appropriate strategies to prevent or treat

ach of these components are expected to reduce the
revalence of sustained no-reflow.
istal embolization. Emboli of different sizes can origi-

ate from epicardial coronary thrombus and from fissured
therosclerotic plaques, in particular during PPCI (16).
xperimental observations have shown that myocardial
lood flow decreases irreversibly when microspheres ob-
truct more than 50% of coronary capillaries (17). Okamura
t al. (18) used a Doppler guidewire in humans to detect
igh-intensity transient signals, which allowed the counting
f the number of embolic particles. The average number of
mboli throughout PPCI was 25. Thus, this small number

Abbreviations
and Acronyms

ATP � adenosine
triphosphate

CMR � cardiac magnetic
resonance

ECG � electrocardiogram/
electrocardiographic

ET � endothelin

IR � ischemia-reperfusion

IRA � infarct-related artery

LV � left ventricle

MBG � myocardial blush
grade

MCE � myocardial contrast
echocardiography

m-PTP � mitochondrial
permeability transition pore

PPCI � primary
percutaneous coronary
intervention

STEMI � ST-segment
elevation myocardial
infarction

STR � ST-segment
elevation resolution

TIMI � Thrombolysis In
Myocardial Infarction

TxA2 � thromboxane-A2
f emboli is unlikely to affect coronary blood flow. Yet, large m
mboli (�200-�m diameter) can obstruct pre-arterioles,
ausing infarctlets.
schemia-related injury. Changes in endothelial cells, vis-
ble after prolonged ischemia, are represented by endothelial
rotrusions and membrane-bound bodies, which often fill
he capillaries up to luminal obliteration. Furthermore, large
ndothelial gaps with extra vascular erythrocytes are com-
on (19). Morphological findings are accompanied by a

eduction of regional myocardial blood flow within the
reviously ischemic region (20). Moreover, myocardial cell
welling associated with interstitial edema might cause
icrovascular compression (21).
eperfusion-related injury. A massive infiltration of cor-
nary microcirculation by neutrophils and platelets occurs at
he time of reperfusion (19,22). Indeed, reintroduction of
eutrophils in post-ischemic myocardium results in their
ctivation, with subsequent adhesion to the endothelial
urface and migration in the surrounding tissue. Activated
eutrophils, in turn, release oxygen free radicals, proteolytic
nzymes, and pro-inflammatory mediators that can directly
ause tissue and endothelial damage. Neutrophils also form
ggregates with platelets that plug capillaries, thus mechan-
cally blocking flow (23,24). Finally, vasoconstrictors re-
eased by damaged endothelial cells, neutrophils, and plate-
ets contribute to sustained vasoconstriction of coronary

icrocirculation (25).
From a molecular point of view inflammatory mediators

re involved in a complex interaction between platelets,
eutrophils, and endothelium. In particular, tumor necrosis
actor-alpha expression is induced by reperfusion, and it can
mpair endothelium-dependent coronary flow reserve (26).
urthermore, interleukin-1� has recently been associated
ith ischemia-reperfusion (IR) injury, because interleukin-1�
nockout animals exhibit marked reduction of ischemic
nduced inflammation (27). Selectin expression on cell
urfaces is also important for mechanical plugging of the
icrocirculation (28). Finally, the balance between nitric

xide and superoxide is tipped in favor of superoxide within
inutes of reperfusion of ischemic tissues, due to increased

roduction of xantine oxidase by neutrophils, endothelial
ells, and cardiac myocytes, which leads to an exacerbation
f the inflammatory state (29).
Reperfusion might also cause irreversible injury to
yocytes (30). During ischemia there is an increase of

ntracellular content of sodium (Na�) due to accumula-
ion of hydrogen (H�) that are exchanged by the
a�/H� exchanger. The subsequent exchange of doubly

harged positive calcium ion (Ca��) with Na� by sar-
olemmal Na�/Ca�� exchanger produces a calcium over-
oad that triggers uncontrolled hypercontraction and
timulates opening of the mitochondrial permeability
ransition pore (m-PTP), which further enhances calcium
verload. Furthermore, Na� extrusion trough Na�/
otassium (K�) adenosine triphosphate (ATP)-ase is
mpaired and together with Ca�� accumulation leads to
yocyte cell swelling, which contributes to subsequent
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upture of the cell membrane when the extracellular
smolality is rapidly normalized by reperfusion. Of note,
yclosporine, which blocks the m-PTP, has been recently
hown to reduce infarct size by 20% when administered
ntravenously in patients undergoing PPCI (31). Finally,
schemic pre-conditioning might also reduce infarct size
y blockade of m-PTP (32).
Natriuretic peptides might modulate IR injury. Atrial

atriuretic peptide might suppress the renin angiotensin-
ldosterone system and endothelin (ET)-1 that increase
nfarct size, microvascular obstruction, and cardiac remod-
ling (33). Accordingly, Hayashi et al. (34) showed that
nfusion of atrial natriuretic peptide in patients with their
rst anterior myocardial infarction is associated with lower
oncentration of ET-1, angiotensin-II, and aldosterone. Of
ote, B-type natriuretic peptide limits infarct size when
dministered before and during coronary occlusion through

KATP channel-dependent mechanism, which requires

Figure 1 Prevalence of Myocardial No-Reflow

Estimate of the number of patients (pts) receiving optimal reperfusion according to Th
ST-segment resolution (STR) of 100 patients without cardiogenic shock treated by prim
trials comparing standard percutaneous coronary intervention with thrombectomy or d
(Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complication
itric oxide synthase activity (35). s
ndividual predisposition of coronary microcirculation to
njury. In humans, no-reflow associated with ST-segment
levation is occasionally observed during elective procedures
36), whereas it can be absent after PPCI carried out several
ours after coronary occlusion. Predisposition might be
enetic and/or acquired. In particular, diabetes has been
ssociated with impaired microvascular reperfusion after
PCI, and hypercholesterolemia in the animal model ag-
ravates reperfusion injury by enhancing endothelial oxida-
ive stress (37,38). Finally, pre-conditioning seems to have a
eneficial effect on microvascular function (39).

redictors of the
athogenetic Components of No-Reflow

redictors of distal embolization. Some angiographic
ndings predict the risk of distal embolization possibly
avoring no-reflow (Table 1). Yip et al. (40) proposed a

lysis In Myocardial Infarction (TIMI) flow grade, myocardial blush grade (MBG), and
rcutaneous coronary intervention (PPCI). *Estimation derived from 20 randomized

otection (75). **Estimation derived from core laboratory analysis of the CADILLAC
l (8). STEMI � ST-segment elevation myocardial infarction.
rombo
ary pe

istal pr
s) tria
core to assess thrombus burden on the basis of the
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ollowing features: 1) an angiographic thrombus with the
reatest linear dimension more than 3 times the reference
umen diameter; 2) cutoff pattern (lesion morphology with
n abrupt cutoff without taper before the occlusion);
) presence of accumulated thrombus (�5 mm of linear
imension) proximal to the occlusion; 4) presence of float-

Figure 2 Prognostic Value of No-Reflow According to Angiograp

The end point was cardiac death (9) or total mortality (4,6–8,64). Data are presen
MCE � myocardial contrast echocardiography; TMPG � TIMI myocardial perfusion

Figure 3 Mechanisms Responsible for No-Reflow

Four interacting mechanisms (distal embolization, ischemia-related injury,
reperfusion related injury, and individual susceptibility to microvascular injury)
are responsible for no-reflow phenomenon. The individual contribution of these
mechanisms to the pathogenesis of no-reflow is likely to vary in different
patients.
t

ng thrombus proximal to the occlusion; 5) persistent
ontrast medium distal to the obstruction; and 6) reference
umen diameter of the infarct-related artery (IRA) �4.0

m. All of these features were independent predictors of
o-reflow in 800 patients undergoing PPCI. The relevance
f high thrombus burden at the site of the culprit artery in
redicting distal embolization has also been shown by
imbruno et al. (41). Indeed, in a series of patients with
TEMI undergoing PPCI with distal filter protection, they
ound that Yip’s score was an independent predictor of total
ebris volume captured in the filter’s basket. Of note, distal
mbolization of thrombotic debris typically occurs after stent
lacement in large coronary vessels, whereas in small vessels it
s possible that the stent itself might fix the thrombus to the
essel wall, especially if the thrombus is not fresh anymore, as
lso suggested by the analysis of Yip et al. (40).
redictors of ischemia-related injury. A longer time to

eperfusion is associated with a higher prevalence of no-
eflow and with a larger no-reflow region (42) (Table 2).
nterestingly, Turschner et al. (43) showed that prolonged
schemia followed by reperfusion is associated with in-
reased thickness of the myocardium due to tissue edema,
hich eventually leads to no-reflow for mechanical reasons.
The extent of the ischemic region is another important

eterminant of no-reflow, as demonstrated in animal mod-
ls (Table 2). This is confirmed in man by the association of
lectrocardiographic (ECG) and echocardiographic indexes
f the extent of ischemic region, such as QRS score and wall
otion score index, respectively, and prevalence of no-

eflow (44,45). The higher prevalence of no-reflow when

Electrocardiographic, and Echocontrastographic Indexes

odds ratio (OR) and 95% confidence interval (CI).
other abbreviations as in Figure 1.
hic,

ted as
grade;
he left anterior descending is the IRA artery as compared
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ith other epicardial coronary arteries confirms that a larger
xtent of the ischemic area is an important predictor of
o-reflow (45).
redictors of reperfusion-related injury. An easily avail-
ble clinical predictor of no-reflow is neutrophil count, which
as been recently associated with microvascular injury after
PCI (46) (Table 2). Platelets also play an important role in
o-reflow. Accordingly, platelet reactivity on admission, as
ssessed by the Platelet Function Analyzer–100 (Dade Beh-
ing, Milan, Italy), is associated with the prevalence of no-
eflow and adverse remodeling (47). Furthermore, Huczek et
l. (48) demonstrated that mean platelet volume on admission
s an important predictor of impaired reperfusion. Interest-
ngly, early data from our group indicate that plasma levels of
hromboxane-A2 (TxA2) predict no-reflow (49) (Table 2).

Natural antioxidant levels might protect from no-reflow
s suggested by Matsumoto et al. (50), who demonstrated
hat levels of vitamin C, vitamin E, and glutathione perox-
dase obtained from coronary sinus before PPCI were
ignificantly lower in patients exhibiting no-reflow than in
atients exhibiting myocardial reperfusion.
ET-1 plays a key role in no-reflow, depending on its

trong vasoconstrictive effect exerted on small-resistance

Predictors of Pathogenetic Components of No-RTable 1 Predictors of Pathogenetic Compon

Pathogenetic Mechanism of No-Reflow

Distal embolization Thrombus burd

Ischemia Ischemia durat

Ischemia exten

Reperfusion Neutrophil coun

ET-1 levels (51)

TXA2 levels (49

Mean platelet v

Individual susceptibility Diabetes (37)

Acute hyperglyc

Hypercholestero

Lack of pre-con

ET � endothelin; TXA2 � thromboxane A2.

ain Randomized Trials for the Management of No-ReflowTable 2 Main Randomized Trials for the Management of No-Refl

Treatment (Ref. #) No. of Patients Dose

Thrombectomy (77) 1,071 —

Adenosine IV (89) 2,118 50 or 70 �g/kg/min

Adenosine IC (86) 54 4 mg

Adenosine IC (87) 51 60 mg

Nitroprusside IC (90) 98 60 �g

Nicorandil IV (94) 81 4 mg bolus � 6 mg/infusion
� oral nicorandil

Nicorandil IC � IV (95) 92 0.5 mg IC � 4 mg IV bolus and
continuous infusion of 6 mg/h

Abciximab IV (84) 2,082 0.25 mg/kg � 12 h infusion

Abciximab IV (83) 90 0.25 mg/kg � 12 h infusion

Occurrence of in-hospital heart failure, repeat hospital stay for heart failure, or 6-month death. †C
yocardial infarction, target vessel revascularization, major stroke.

IC � intracoronary; IV � intravenous; LV � left ventricular; MBG � myocardial blush grade; MCE � myo

ntervention; STR � ST-segment elevation resolution; TIMI � Thrombolysis In Myocardial Infarction.
oronary arteries, on the enhancement of neutrophil adhe-
ion to the endothelium, and on the induction of elastase
elease, which might also mediate tissue injury and edema
51). Of note, we recently demonstrated that ET-1 levels on
dmission are an independent predictor of no-reflow (51)
Table 2). ET-1 is a possible therapeutic target, and this
otion is supported by the beneficial effect of selective ET-1
ntagonist in animal models of IR (52).

Thus, the severity of reperfusion injury might be assessed
ith clinical predictors such as neutrophil count, mean
latelet volume, platelet reactivity, TxA2, and ET-1 levels.
redictors of individual susceptibility to microvascular

njury. Genetic and acquired susceptibility to microvascular
njury might play an important role in the modulation of
o-reflow (Table 2).
Interestingly, a recent study suggested that the 1976T�C

olymorphism of the adenosine 2A receptors gene is asso-
iated with a higher prevalence of no-reflow (53). Further-
ore, patients with no-reflow show a more compact fibrin

etwork, possibly suggesting a genetic mediated resistance
o lysis (54).

Baseline reactivity of inflammatory cells also might mod-
late the severity of no-reflow. Yet, we failed to find a

and Therapeutic Implicationsof No-Reflow and Therapeutic Implications

ctor Therapeutic Implications

) Thrombus aspiration

,43) Reduction of coronary time

5) Reduction of oxygen consumption

Specific antineutrophil drugs

ET-1r antagonists

TXA2r antagonists

or reactivity (47,48) Antiplatelet drugs

Correction of hyperglycemia

(57) Correction of hyperglycemia

(38) Statin therapy

ng (58) Nicorandil

ministration Timing Primary End Point

Event Rate

NNTTreatment Control

uring PCI MBG 0–1 17.1 26.3 10.7

re-post PCI Clinical* 16.3 17.9 59.0

re-PCI TIMI flow grade �3 0.0 30.0 3.4

ost-PCI STR 67.0 91.0 4.1

uring PCI STR 48.3 48.8 1,200

re-post PCI MCE 15.0 33.0 5.2

re-post PCI Clinical† 9.6 33.3 4.2

re-during-post PCI Clinical‡ 10.2 20.0 10.0

re-during-post PCI LV remodeling 7.0 30.0 4.3

ite incidence of reperfusion arrhythmias, chest pain, no-reflow/slow flow. ‡Death, recurrent acute
eflowents

Predi

en (40

ion (42

t (44,4

t (46)

)

olume

emia

lemia

ditioni
ow

Ad

D
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P

ompos
cardial contrast echocardiography; NNT � number needed to treat; PCI � percutaneous coronary
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orrelation between C-reactive protein serum levels mea-
ured within 6 h of chest pain onset and the prevalence of
o-reflow (55). In contrast, peak C-reactive protein reflect-

ng necrosis extent has been associated with no-reflow (56).
Acquired risk factors such as diabetes and hypercholes-

erolemia might predispose to no-reflow, as suggested by
bservation carried out in humans and in animal models
37,38).

Recent studies have demonstrated an association between
cute hyperglycemia and no-reflow, which was independent
f previous glycemic control evaluated by glycosylated he-
oglobin A1c levels and might suggest a direct detrimental

ffect of acute hyperglycemia on reperfusion injury (57).
inally, pre-infarction angina might have a protective effect,
ecause it induces ischemic pre-conditioning (58), which, in
ontrast, is abolished by binge drinking (59).

iagnosis

oronary angiography. No-reflow can be assessed during
PCI with Thrombolysis In Myocardial Infarction (TIMI)
ow grade and MBG in the coronary care unit by assessing
he ST-segment elevation resolution (STR) after PPCI and
an be better quantified by noninvasive imaging techniques,
uch as MCE and contrast-enhanced cardiac magnetic
esonance (CMR) (Fig. 4).

No-reflow can initially be demonstrated by analysis of
IMI flow grade (60). Indeed, TIMI flow grade 0 to 2,
bserved in 5% to 10% of patients, is predictably associated
ith no-reflow. The latter, however, also occurs in a sizeable
roportion of patients with apparent successful large epicar-
ial vessel reopening resulting in TIMI flow grade 3. Thus,
he sensitivity of TIMI flow assessment in the detection of
o-reflow is rather low. At the time of PPCI, no-reflow can
e inferred more efficiently by assessing MBG, which
escribes the relative “blush” or intensity of the radio-
pacity of myocardial tissue achieved with an epicardial
oronary injection of contrast medium and the rapidity that
his enhancement clears with. The more intense the myo-
ardial blush and the faster its clearance, the better the
icrovascular perfusion. The MBG is scored on a scale of 0

o 3, with higher scores indicating better perfusion. An
BG 0 to 1, suggestive of no-reflow, is observed in as high

s 50% of patients with TIMI flow grade 3 (61). Taken
ogether, angiographic no-reflow can be defined as a TIMI
ow grade �3 or 3 with an MBG 0 to 1.
CG. Largely used in the clinical arena and in trials is the
easurement of STR 1 h after PPCI. Different methods

ave been proposed to measure STR. Lack of STR �50%
r 70% is considered as an established marker of no-reflow,
ecause its predictive value was demonstrated at the start of
he pharmacological reperfusion era and has been confirmed
n the contemporary mechanical reperfusion era (62). No-
ably, approximately one-third of patients with TIMI flow

rade 3 and MBG 2 to 3 do not exhibit STR (63).
Figure 4 No-Reflow as Assessed by Angiography
(MBG), ECG, and Imaging Techniques

(A) Right: MBG 0 (white arrows); left: MBG 3 (white arrows). (B) Right: lack
of STR; left: complete STR. (C) Right: no-reflow assessed by MCE (white
arrows); left: reflow assessed by MCE (white arrows). (D) Right: no-reflow
assessed by magnetic resonance imaging with first-pass of gadolinium (top) or
the delayed enhancement (bottom) (white arrows); left: reflow assessed by
magnetic resonance imaging with first-pass of gadolinium (top) or the delayed
enhancement (bottom) (white arrows). Abbreviations as in Figures 1 and 2.
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Because TIMI flow grade, MBG, and STR might be
btained from the routine management of STEMI patients,
re inexpensive, and provide additional prognostic information,
heir assessment should become current clinical practice. No-
ably, the integration of MBG and STR has been shown to
mprove patient risk stratification. Indeed, 2 independent
tudies, in patients treated by either PPCI (64) or pharmaco-
ogical reperfusion (63), have reported very good outcomes in
atients with an MBG 2 to 3 and STR �70%, very poor
utcomes in patients with MBG 0 to 1 and STR�70%, and an
ntermediate prognosis in patients with discordant results of
ngiographic and ECG indexes of no-reflow.

oninvasive imaging techniques. Although easily avail-
ble in the clinical arena, neither blush grade nor ECG
esolution provide a direct assessment of myocardial perfu-
ion. In contrast, noninvasive imaging techniques such as

CE and CMR provide a more direct assessment of
yocardial perfusion.
Myocardial contrast echocardiography uses ultrasound to

isualize contrast microbubbles that freely flow within
atent microcirculation. Such microbubbles are injected in
he peripheral circulation, safely pass the pulmonary circu-
ation, and reach intact coronary bed. They have a rheology
imilar to that of red blood cells and thus freely flow within
oronary microvessels, as the only 1 pure intravascular
racer. Lack of intramyocardial contrast opacification is due
o microvascular obstruction; thus, it represents the extent
f no-reflow (65,66). In the AMICI study, the extent of
o-reflow at MCE was demonstrated to be the best predic-
or of adverse LV remodeling after acute myocardial infarc-
ion, being superior to STR and to MBG among patients
xhibiting TIMI flow grade 3 (10).

Cardiac magnetic resonance imaging uses gadolinium to
ssess regional cardiac perfusion. No-reflow can be diag-
osed as: 1) lack of gadolinium enhancement during first
ass; and 2) lack of gadolinium enhancement within a
ecrotic region, identified by late gadolinium hyper-
nhancement (67). In particular, very good correlation has
een found between gadolinium enhancement during first
ass and MBG, thus suggesting that these 2 parameters
ight reflect the microvascular integrity within the infarct

one (68). Studies performed by CMR have confirmed that
o-reflow is a powerful predictor of LV remodeling and of
atient survival (11).

revention and Treatment of No-Reflow
ccording to Timing and Pathogenetic Components

everal therapeutic strategies have been tested for the
revention and treatment of no-reflow with inconsistent
esults, possibly because they have been applied indiscrimi-
antly to all patients. It is conceivable that the relevance of
ach pathogenetic component of no-reflow is different in
ifferent patients. Therefore, the assessment of the multiple
echanisms of no-reflow might guide the development of
ersonalized forms of treatment (Table 2). Thus, it is P
ossible to envision a personalized treatment of no-reflow
hat stems from the assessment of the predictors of the 4
athogenetic components of the phenomenon. The treat-
ent should then aim at counteracting the prevailing
echanism(s) of no-reflow (Fig. 5).
anagement of distal embolization. Although the detri-
ental effects of distal embolization during PCI are well-

ecognized, thus prompting its prevention during reperfu-
ion, no specific technique is currently recommended in
uidelines to prevent distal embolization during PPCI.
irect stent implantation, by avoiding balloon-induced

hrombus fragmentation and by entrapping the athero-
hrombus under the stent struts, has been suggested as a
ossible technique to reduce distal embolization. One trial
69) showed improved reperfusion in selected patients
andomized to direct stenting as compared with standard
PCI. However, only a specific subset of patients (those
ith good distal visualization of the IRA after guidewire
assage through the culprit lesion) is suitable for direct
tenting.

A more promising technical approach to prevent no-
eflow during mechanical reperfusion is the use of throm-
ectomy devices and of distal filters. Yet, skepticism arose
fter publication of 2 large trials showing that rheolytic
hrombectomy (70) and distal occlusive protection (71) do
ot improve reperfusion, as compared with standard PPCI.
he negative results of these trials, however, should be

nterpreted within the limitations of their design, which was
haracterized by the enrollment of patients at low risk of
o-reflow and by the use of first-generation, complex
evices. Another study conducted by skilled operators with
nother complex thrombectomy device (the X-sizer) in
igh-risk patients did show improvement of myocardial
eperfusion (72). These inconsistencies prompted us to
esign the REMEDIA (Randomized Evaluation of the
ffect of Mechanical Reduction of Distal Embolization by
hrombus-Aspiration in Primary and Rescue Angioplasty)

rial, which was the first randomized trial to assess the role
f thrombectomy performed with a simple manual aspira-
ion catheter, as compared with conventional PPCI (73).
he results of the REMEDIA trial were promising, because
anual thrombectomy was safe and resulted in better
yocardial perfusion indexes as compared with standard
PCI. The benefit was particularly evident in the subset of
atients with higher thrombus burden and with total IRA
cclusion, thus suggesting that the efficacy of thrombectomy
ight be dependent on individual patient characteristics

73). In the MCE substudy of the same trial thrombus-
spiration significantly reduced no-reflow (74). A recent
eta-analysis showed that thrombectomy was associated
ith a significant improvement of reperfusion as assessed by
TR and MBG, whereas distal protection was not (75).
inally, a very recent, large trial by Svilaas et al. (76)
onfirmed the improvement of reperfusion associated with
anual thrombus-aspiration as compared with standard

PCI. This landmark study has been the first to show that
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mprovement of myocardial perfusion by manual thrombus
spiration translated in a strikingly lower mortality at
2-month follow-up (77). Taken together, these studies
uggest that manual thrombus aspiration should be used in
he setting of PPCI, particularly in patients with a high
hrombus burden (78).

anagement of ischemia-related injury. Strategies aimed
t reducing pain-onset-to-balloon time are currently widely
nvestigated and might reduce the prevalence of no-reflow
y reducing total ischemic time. Similarly, drugs known to
educe myocardial oxygen consumption and consequently
he severity of ischemia might improve the outcome, at least
artially, through an improvement of myocardial perfusion
79). The beneficial effects of carvedilol, fosinopril, and
alsartan on coronary no-reflow have indeed been recently
emonstrated (80,81).

anagement of reperfusion-related injury. Patients at
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imilar rates of final TIMI flow grade 3 (86% vs. 88%), of
dverse cardiac remodeling, and of clinical events at 1
onth in the 2 arms. Taken together, these findings suggest

hat glycoprotein IIb/IIIa antagonists prevent no-reflow.
nterestingly, intracoronary abciximab has been proven to be
uperior to intravenous abciximab in patients treated by
rimary PPCI (85). The evidence that this beneficial effect
n myocardial perfusion translates into an improvement of
he outcome, however, has convincingly been obtained for
bciximab only.

Adenosine is an endogenous nucleoside mainly produced
y the degradation of adenosine triphosphate, which antag-
nizes platelets and neutrophils, reduces calcium overload
nd oxygen free radicals, and induces vasodilation (86). In a
andomized trial, intracoronary administration of 4 mg of
denosine before complete vessel reopening resulted in a
ower rate of no-reflow as compared with the control arm
86). More recently, intracoronary administration of a very
igh dose of adenosine (60 mg) was found to reduce the rate
f incomplete STR after PPCI. In this study, patients were
andomized to intracoronary adenosine or placebo if STR
fter PPCI was �70%. The authors found that more
atients showed STR after adenosine as compared with
lacebo (33% vs. 9%) (87). Intravenous adenosine has been
ested in 2 large randomized trials (AMISTAD [Acute

yocardial Infarction STudy of Adenosine] I and II)
88,89). Both studies showed a reduction of incomplete
TR with a 3-h infusion of adenosine, but in-hospital and
-month clinical outcome were similar to those observed in
he placebo group.

Nitroprusside is a nitric oxide donor that does not depend
n intracellular metabolism to derive nitric oxide, with
otent vasodilator properties. Intracoronary administration
f nitroprusside, compared with control, failed to improve
orrected TIMI frame count and rate of complete STR (90).
onversely, 2 small registries showed an improvement of
nal TIMI flow grade after administration of intracoronary
itroprusside given in the attempt to reverse no-reflow
91,92).

Nicorandil is a hybrid drug of ATP-sensitive K� channel
pener and nicotinamide nitrate and has been shown to
ecrease infarct size and incidence of arrhythmias after
oronary ligation and reperfusion in experimental animals,
robably by suppressing free radical generation and by
odulating neutrophil activation (93). Intravenous infusion

f nicorandil for 24 h after PPCI resulted in better angio-
raphic, functional, and clinical outcome as compared with
lacebo in 2 randomized studies (94,95).
Among potential new therapeutic approaches against IR

njury, the use of atrial natriuretic peptide has been tested
ecently in a large-scale randomized trial. Indeed, Kitakaze
t al. (96) in the J-WIND (Japan-Working Groups of
cute Myocardial Infarction for the Reduction of Necrotic
amage) trial, which randomized 227 patients to receive

ntravenous atrial natriuretic peptide and 292 patients to

lacebo, demonstrated that atrial natriuretic peptide treat- a
ent was associated with a reduction of 14.7% in infarct
ize, an increase in the 6 to 12 months of LV ejection
raction by 5%, and an improved myocardial perfusion. In
he same trial the authors randomized 276 patients to
ntravenous nicorandil or placebo but failed to show any
eduction in the infarct size or improvement in LV ejection
raction in the nicorandil group. However, oral nicorandil
rescribed during the follow-up improved LV ejection
raction.

Verapamil is a calcium-channel blocker that has been
sed for the prevention and therapy of no-reflow. In a small
andomized study by Taniyama et al. (97) in 40 patients
ith first STEMI, intracoronary verapamil as compared
ith placebo was associated with better microvascular func-

ion as assessed by MCE. Accordingly, intracoronary vera-
amil has been successfully used to reverse no-reflow after
PCI (98).
anagement of individual susceptibility to microcircu-

atory injury. Although genetically determined susceptibil-
ty to microcirculatory injury is difficult to modulate, ac-
uired susceptibility might be treated. Indeed, optimal and
rompt treatment of hyperglycemia is likely to be an
mportant target in the prevention of no-reflow. Accord-
ngly, the DIGAMI (Diabetes Mellitus Insulin-Glucose
nfusion in Acute Myocardial Infarction) study demon-
trated that periprocedural reduction of blood glucose was
ssociated with a reduction of infarct size (99). Further-
ore, statins are emerging as drugs potentially able to

educe reperfusion injury (99). Iwakura et al. (100) have
emonstrated that chronic statin therapy in patients with or
ithout hypercholesterolemia is associated with lower prev-

lence of no-reflow and better functional recovery.
Finally, induction of ischemic pre-conditioning by drugs

r nonpharmacologic stimuli such as remote ischemia of the
rms (101) and avoidance of substances potentially blocking
re-conditioning like sulfonylureas and high doses of alco-
ol might be other measures able to prevent no-reflow
102).

uture Perspectives

he understanding of the prevailing pathogenic mecha-
ism(s) of no-reflow in the individual patient is probably

mportant in the selection of the most appropriate thera-
eutic approach. Indeed, patients with a high thrombus
core are more likely to benefit from thrombus aspiration,
hereas those at high risk of reperfusion injury are more

ikely to benefit from pharmacotherapy. New drugs such as
T-1 or TxA2 antagonists and the combination of old
rugs such as adenosine, nitroprusside, and nicorandil
hould be tested in large controlled randomized trials in
atients at high risk of reperfusion injury. Finally, optimal
nd prompt risk factor control and induction of pre-
onditioning represent additional therapeutic options that,

gain, should be tested in large controlled randomized trials.
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