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S-adenosylhomocysteine (SAH), the metabolic precursor

of homocysteine in the body, is a potent inhibitor of

methylation reactions. Several methylation reactions play a

major role in epigenetic regulation of protein expression,

atherosclerosis, and cancer development. Here we studied the

mechanisms responsible for the maintenance of circulating

SAH levels by measurement of the arterio-venous differences

across the kidney, splanchnic organs, and the lung in humans.

The lungs did not remove or add any circulating SAH, whereas

the liver released it into the hepatic veins. The kidney

extracted 40% of SAH and the SAH arterio–venous difference

across the kidney was directly and significantly related to

its arterial levels. Thus, the kidney plays a major role in

maintaining SAH levels and may, indirectly, control tissue

transmethylation reactions. Our findings of a pivotal role for

the human kidney in sulfur amino acid metabolism may also

account for the increased plasma levels of SAH in patients

with chronic kidney diseases.
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The biological effects of methionine transmethylation,
whereby the methyl group of S-adenosylmethionine (SAM)
is donated to a large variety of acceptor substrates, is of
obvious importance for the biosynthesis of a wide range of
compounds such as membrane phospholipids, neurotrans-
mitters, proteins, creatine, and hormones.1 Methylation
processes also play a major role in the epigenetic regulation
of protein expression and changes in human DNA methyla-
tion patterns are an important feature of many diseases,
including atherosclerosis and cancer.2,3 S-Adenosylhomocys-
teine (SAH) is the by-product of methionine transmethyla-
tion and the metabolic precursor of homocysteine in all
tissues (Figure 1). As SAH is a potent feedback inhibitor of
most methyltransferases,4 including the methionine remethy-
lation pathway, this compound plays an essential role in the
control of the overall transmethylation rates.4,5 Thus, the
efficiency of methyltransferase reactions is dependent on the
efficient tissue removal of SAH.4,5

About 30 years ago, Wilcken and Wilcken6 observed that
increased plasma sulfur amino acids levels were associated with
atherosclerosis and cardiovascular damage. Among the sulfur
compounds, homocysteine has been considered to be the
culprit for this association. However, the recent homocysteine-
lowering intervention trials have cast into doubt the issue of
causality.7 One potential explanation for these conflicting
results is that hyperhomocysteinemia itself may not be the
causative agent in vascular dysfunction, but instead may be a
marker for another risk factor.8,9 Recent studies suggest an
indirect mechanism for homocysteine toxicity, secondary to
SAH accumulation.9 An increase in intracellular SAH is
associated with DNA hypomethylation in endothelial cells.10

SAH levels are also associated with endothelial dysfunction in
mice with a deficiency of the cystathionine b-synthase gene.11

Recent experimental12 and clinical evidence13–15 also suggests
that the accumulation of SAH in body fluids, rather than
increased homocysteine levels, is associated with vascular
disease and tissue damage. Post-translational modification of
proteins, associated with high SAH intracellular accumulation,
has been described in patients with chronic kidney diseases.16,17

The sites and mechanisms which prevent the body
accumulation of SAH in the body are not well understood.9
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Like plasma homocysteine, plasma SAH levels are inversely
related to glomerular filtration rate.18,19 However, plasma
SAH appears to be more sensitive than plasma homocysteine
to small decrements in glomerular filtration rate.19 In
patients with chronic kidney diseases a 45-fold increase in
SAH as compared with a sixfold increase in SAM and
fourfold increase in plasma homocysteine is observed.13

These changes are not likely dependent on different urine
excretion of these compounds, as the fractional excretion of
SAM and SAH compared with that of creatinine has been
reported to be 93% for SAM and 39% for SAH, which may
explain the high ratio of SAM to SAH in normal urine.20

Stable-isotope studies in non-diabetic21,22 and diabetic
chronic kidney disease patients23 have shown impaired
metabolic clearance of homocysteine by both the trans-
sulfuration and the remethylation pathways. It is interesting
to note that Stam et al.22 observed that in chronic kidney
disease patients the methionine remethylation and trans-
methylation rates are inversely related to plasma SAH,
suggesting a strong inhibitory action of SAH on methio-
nine-dependent remethylation pathway.

In this study, to explore the sites and mechanisms
underlying the regulation of circulating SAH levels, we
measured plasma SAH across the kidney, splanchnic bed and
lung in humans. Our results show for the first time that the
human kidney plays a unique role in the removal of SAH
from circulation indicating that the kidney may have an
important role in the control of body transmethylation
reactions.

RESULTS

Individual arterial and venous levels of SAH, as well as their
arterio-venous difference across the kidney and splanchnic
organs are reported in Table 1. Renal vein SAH concentra-
tions were remarkably lower (by B40%; Po0.001) than the
corresponding arterial values measured in the same subjects,
demonstrating that plasma SAH decreases substantially after
a single pass across the kidney. Fractional extraction of SAH
was twofold greater than that of creatinine (Po0.01). The
SAH arterio-venous difference across the kidney was directly
related to SAH arterial levels (r¼ 0.72; Po0.02) (Figure 2).

SAH levels in the hepatic veins were B20% greater than
those in the artery (Po0.02), indicating that splanchnic
organs are a major source for SAH into the circulation. No
significant A–V gradient of SAH was observed across the
lung.

Mean homocysteine levels in the renal and in the liver
veins were not statistically different from those in the artery
(Femoral artery 10.4±1, Renal vein 10.3±1, Liver vein
10.1±1 mmol l�1; P¼NS). Similarly, no significant arterio-
venous homocysteine gradient was observed across the lung
(Femoral artery 10.4±1, Lung artery 10.1±1 mmol l�1).

DISCUSSION

We observed for the first time that the kidney is a major site
for the disposal of plasma SAH in humans. The SAH arterio-
venous difference across the kidney represents B40% of the
SAH arterial plasma concentration, positioning the human
kidney as a major tissue in the metabolic disposal of plasma
SAH. It is interesting to note that the arterio-venous
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Figure 1 | The metabolic conversion of methionine to
homocysteine. SAM¼ S-adenosylmethionine,
SAH¼ S-adenosylhomocysteine, 5-methyl-THF¼ 5-methyl-
tetrahydrofolate.

Table 1 | SAH plasma levels and fractional extractions across the kidney, splanchnic organs, and lung

Subject

Arterial
SAH

(nmol/l)

Renal vein
SAH

(nmol/l)

SAH
kidney A–V

(nmol/l)

SAH
kidney FE

(%)

Creatinine
kidney FE

(%)

Liver vein
SAH

(nmol/l)

SAH
splanchnic
AV (nmol/l)

SAH
splanchnic

FE (%)

Lung
artery SAH

(nmol/l)

SAH lung
V–A

(nmol/l)

1 26.0 25.0 1.0 +3.8 +22 40.0 �14 �53.8 21.0 �5
2 24.9 19.9 5.0 +20 +21.2 34.0 �9.1 �36.0 24.9 0
3 42.0 20.0 22.0 +52.4 +19 44.0 �2 �4.8 38.0 �4
4 22.6 14.6 7.9 +34.8 +18 25.9 �3.3 �15.0 42.0 19
5 29.9 10.1 19.8 +66.7 +28 33.1 �3.2 �10.5 17.0 �13
6 28.9 14.0 14.9 +51.6 +17 34.6 �5.7 �19.7 34.9 5.2
7 17.8 8.0 9.8 +55.1 +18 19.6 �1.8 �10.1 17.9 0.2
8 17.6 10.4 7.2 +40.9 +23 25.0 �7.4 �42.8 20.4 2.8
9 18.1 11.9 6.2 +34.2 +18 20.0 �1.9 �10.5 21.2 3.1

10 12.2 6.65 5.6 +45.7 +23 13.0 �0.8 �6.1 12.6 0.4
Mean±s.e.m. 24.1±2.7 14.1±1.9 10.0±2.2** 40.5±5.8*** 21±1 28.9±3.1 �4.9±1.12* �21±5.0 24.9±3.1 �0.8±2.6

A–V, arterio-venous; FE, fractional extraction (negative extraction means production); SAH, S-adenosylhomocysteine, V–A, venous–arterial.
*Po0.02 and **Po0.001 or less Artery vs Vein; ***Po0.01 vs creatinine FE across the kidney. ‘Splanchnic’ indicates the metabolic activity of the liver + intestine.
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difference of SAH is directly related to the arterial levels of
the same metabolite, implying that the regulatory role of the
kidney on plasma SAH occurs over a wide range of SAH
plasma levels. SAH has a molecular mass of 384 D,1 which is
within the filtration range of normal glomeruli. Although
SAH may be filtered and lost with the urine, its urinary
clearance is remarkably lower than creatinine clearance.20 In
our study, the fractional extraction of SAH across the kidney
was B2-fold greater than that of creatinine. This finding
strongly indicates that a large part of SAH is removed by
kidney metabolic clearance.

As a new finding, we observed that SAH is released by the
splanchnic organs. SAH levels in the hepatic veins were
markedly greater (B21%) than those in the artery, indicating
that splanchnic organs are a major source for SAH entering
into the circulation. In contrast, no significant SAH gradient
was observed across the lung.

The efficiency of methyltransferase reactions is dependent
on the efficient removal of SAH. This is effectively
accomplished by SAH hydrolase, an enzyme that appears to
act in close proximity to the methyltransferases. SAH
hydrolase is highly expressed in the rat kidney and is
homogeneously localized in proximal and distal tubule cells
as well as in glomeruli.24,25 This distribution is likely involved
in maintaining efficient transmethylation reactions and
thereby low intracellular kidney SAH levels. Considering an
average kidney plasma flow of 600 ml/min26 the removal of
SAH by the kidney would according to the results of our
study amount to B8.6 mmol/day. This figure clearly matches
the estimated release of SAH by splanchnic organs (about
B6mmol/day, considering a plasma flow of about 800 ml/
min).26 According to these findings, extracellular SAH pools
(B350 nmol, considering a plasma SAH concentration
25 nmol/l and extracellular fluid 14 l in a 70 kg man)27 are
composed of only a small fraction (about 4%) of the
estimated kidney daily removal, suggesting that the extra-
cellular SAH pool is renewed by tissue SAH generation and
SAH kidney removal several times a day.

In conclusion, this study is the first to show that the
human kidney is the major site for the metabolic disposition
of plasma SAH in the body. These data display a new role for
the kidney in the metabolic regulation of sulfur amino

acids and, indirectly, of tissue methyl transfer reactions in
humans.

MATERIALS AND METHODS
Patients and procedures
Ten patients (seven men, three women, mean age 67, range 56–74
years, BMI 24±1 kg/m2) who were scheduled for elective cardiac
catheterization for hemodynamic evaluation or the assessment of
coronary heart disease were eligible for enrollment in this protocol.
The patients were enrolled in the study on a consecutive basis if they
met the following exclusion criteria: NYHA Class III congestive
heart failure, a recent myocardial infarction, pregnancy, or unstable
renal function. Their estimated28 glomerular filtration rate was
83±5 ml/min per 1.73 m2. No subject had evidence of liver disease
or diabetes mellitus. The study was approved by the Ethical
Committee of the Department of Internal Medicine of the
University of Genoa. Subjects were informed about the purposes,
procedures, and possible risks of the study, before their informed
consent was obtained. The procedures were in accordance with the
Helsinki declaration. Three sets of blood samples were obtained at
B20-min intervals from the femoral artery as well as from the renal
veins, the hepatic veins, and the pulmonary artery, in the
postabsorptive state. Plasma SAH and homocysteine levels were
determined in triplicate by HPLC.15 This method measures both
SAH and SAM in body fluids. However, although the intra-assay
coefficient of variation for SAH is remarkably low (4.7%),
coefficient of variation for SAM analysis is greater (B10%), which
makes unlikely the possibility to detect small SAM arterio-venous
differences.15 Therefore, data regarding SAM are not reported. All
samples from one individual were always run in the same batch.
Blood acid-base, glucose, lactate, and creatinine were measured with
an ABL800 Flex apparatus (Radiometer, Copenhagen, Denmark).

Calculations and statistical methods
The arterio-venous difference of SAH and homocysteine across the
splanchnic organs, lung, and kidney was calculated as: [A]�[V],
where [A] and [V] are the metabolite concentrations in arterial and
venous plasma. Fractional extractions were calculated as
100� ([A]�[V]/[A]). Statistical analysis was performed using
analysis of variance for repeated measures to compare arterial
data with venous data (Statview Statistical Package, Abacus,
Berkeley, CA, USA). Linear regression and correlation were
employed to evaluate the relation between two variables. A P-value
of o0.05 was considered statistically significant. All data are
expressed as means±s.e.
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