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xSPDE: Extensible software for stochastic equations
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Abstract

We introduce an extensible software toolbox, xSPDE, for solving ordinary and partial stochastic differential equations. The toolbox makes
extensive use of vector and parallel methods. Inputs are exceptionally simple, to reduce the learning curve, with default options for all of the
many input parameters. The code calculates functional means, correlations and spectra, checks for errors in both time-step and sampling, and
provides several choices of algorithm. Most aspects of the code, including the numerical algorithm, have a modular functional design to allow
user modifications.
c⃝ 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
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1. Motivation and significance

Stochastic differential equations or SDE’s are equations with
random noise terms [1–3]. They are widely used in many fields,
including biology, chemistry, physics, engineering, economics,
meteorology and other disciplines. There are very few publicly
available, general purpose software packages available to
solve them, especially when generalized to stochastic partial
differential equations. xSPDE is a Matlab based software
toolbox that numerically solves ordinary and partial differential
cases of stochastic equations, and graphs the results of
correlations and averages. It uses both vectorization and core
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parallelism for speed. Its object-oriented modular design makes
it easy to extend and modify.

The stochastic partial differential equations [4] or SPDEs
solved by the program are defined in one time dimension and
up to three space dimensions. The xSPDE toolbox is mainly de-
signed to treat Stratonovich equations [2], which are the broad-
band limit of a finite band-width random noise equation, but can
be used for Ito equations as well. An ordinary or partial stochas-
tic differential equation [5,6] for a real or complex vector field
a is:

∂a
∂t

= A [a] + B [a] · ζ (t) + L (∇) · a. (1)

Here, A is a vector or vector field, B a matrix, and ζ is
a real noise vector, delta-correlated in time. In the ordinary
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differential equation case,
ζi (t) ζ j


t ′


= δ

t − t ′


δi j . (2)

For stochastic partial differential equations, L [∇] is an
arbitrary matrix of linear terms and derivatives, diagonal in the
vector field component indices, and ζ =


ζ x , ζ k


are real delta-

correlated noise fields:
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Here f (k) is an arbitrary momentum filter, allowing the
treatment of noise with a finite correlation distance. Transverse
boundary conditions are currently assumed periodic, although
this can be changed due to the modular design.

Typically such equations are extensively used to treat
environmental and thermal noise, quantum noise in quantum
simulations, and also random effects due to the statistics of
discrete particle numbers in birth–death processes, which are
found in such disciplines as biology and chemistry.

The significance of xSPDE is its ease of use and adaptability.
It has a modular functional design, with an architecture that
can easily be extended to other languages in future. The
use of extensive, customizable default settings greatly reduces
the learning curve. It has interactive and batch modes with
compact inputs, and calculates both time-domain and space-
domain spectra. It has user-definable features including the
algorithm itself. A widely used C++ based toolbox called
XMDS [7,8] for solving problems like these is also available.
This covers different user requirements, and has less end-user
customization.

2. Software description

The main code is a short function called xspde. This calls the
simulation function xsim, then the graphics function xgraph.
These are also available separately, which is useful for batch
mode operation. The simulation function is modular, with 20
different functional components that are easily replaced or
modified. On completion, timing and errors are printed.

The xSPDE toolbox permits any definition of the differential
and linear functions in the original equations, as well as choices
of integration algorithms. Simulations can be carried out in a
sequence, to simulate the various stages in an experiment, with
general transfer functions and noise inputs.

It calculates averages of any function of complex or real
field vectors, with Fourier transforms in both time and space if
required. Error estimates due to the finite time-step and sample
size are both provided as standard features.

2.1. Data inputs and outputs

To explain the data flow, simulation inputs are stored in the
input cell array, which describes a sequence of simulations,
so that input = {in1, in2, ...}. Each structure in has
an output which is the input of the next one. Averages over
stochastic trajectories are recorded sequentially in the data cell
array, while raw trajectory data is stored in the raw cell array
if required. If there is one simulation in the sequence, just one
structure is needed. Outputs can be stored and graphed later,
by giving a filename. All averages and raw data results can
be stored in either Matlab (.mat) or standardized HDF5 (.h5)
formats.

2.2. Error control

The final output graphs and data will have error-bars if
error checking is specified, which is also the default parameter
setting. This is to make sure the final results are accurate. There
is a clear strategy if the errors are too large. Either increase
the time points or the number of steps between the time-points.
The algorithm and extrapolation order can also be changed to
improve errors.

Sampling error estimation in xSPDE uses sub-ensemble
averaging. Ensembles are specified in three levels. The first
level is calculated efficiently using a parallel vector of
trajectories. By the central limit theorem, these sample averages
are distributed as a normal distribution at large sample number.
This approach is limited by available memory.

Next, the sample averages are averaged over two higher
level ensembles, whose variance is used to estimate a standard
deviation in the mean, since each computed quantity is now
a normally distributed result. The next higher level ensemble
is carried out in series to minimize memory use, while the
highest uses parallel simulations over separate cores or CPUs
in a cluster.

3. Illustrative examples

3.1. Example of an SDE

The simplest type of stochastic equation is a random walk,
so that ∂a/∂t = ζ(t) , which has an xSPDE implementation in
one line of code:

in.da = @(a,z,r) z; xspde(in);

Here the notation in.[label] = [parameter ] adds a
parameter value with a particular label to the structure in.,
while the notation @(a,z,r) is the Matlab notation for an
inline or anonymous function, in this case the derivative da/dt ,
labeled in.da. All parameters have default values, and most do
not need to be entered. To give a standardized notation, a is the
stochastic field, z the random noise, and r is a structure which
holds the simulation time, r.t, the coordinates of the spatial
grid points, r.x, r.y, r.z, and other parameters.

Much greater complexity than this is certainly possible. As
another example, frequency spectra have many uses, especially
for understanding the steady-state fluctuations of any stochastic
physical system. To achieve this, one simply includes the
parameter, in.transforms=1, to Fourier transform the field
over time, giving the spectrum. Ensemble averaging is achieved
by including a value for the parameter in.ensembles. A
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random initial distribution is available on defining the function
in.initial, whose first argument is a random field.

3.2. Example of an SPDE

A typical SPDE is the stochastic Ginzburg–Landau (SGL)
equation. In this example, it has one time dimension and two
space dimensions, for a total of d = 3. It describes symmetry
breaking: the system develops a spontaneous phase which can
vary spatially as well. The model is widely used to describe
lasers, magnetism, superconductivity, superfluidity and even
particle physics:

∂a/∂t =


1 − |a|

2


a + bζ(x, t) + c∇2a (4)

where
ζ(x, t)ζ ∗(x ′, t ′)


= 2δ


t − t ′


δ

x − x ′


. (5)

Solving the SGL equation for b = 0.001 and c = 0.01i
requires the short script given below, which specifies 10 steps
per plotted point for good accuracy, together with 6 movie
images to analyze the dynamics in three dimension. The output
intensity, |a|

2 as a function of time for a single random
trajectory is graphed in Fig. 1.

in.noises = 2;
in.dimension = 3;
in.steps = 10;
in.linear = @(D,r) i*0.01*(D.x.^2+D.y.^2);
in.observe = @(a,~) abs(a).^2;
in.images = 6;
in.olabels = ’|a|^2’;
in.da = @(a,z,r) (1-abs(a(1,:)).^2).*a...

+0.001*(z(1,:)+i*z(2,:));
xspde(in)

Here D.x is an x-derivative, evaluated using Fourier trans-
forms, and used by the linear response function, in.linear. In
Matlab syntax, to multiply vectors element-wise, like ai = bi ci ,
the notation a=b.*c is used. Fields in any dimension are ma-
trices in xSPDE. The first index is the field component, while
the second index indicates different trajectories and lattice loca-
tions that can be treated in parallel. The notation a(1,:) means
that the operation is repeated over all values of the second in-
dex, which is the lattice/ensemble index.

4. Impact

The problems solved by xSPDE include many commonly
encountered cases of ordinary and partial differential stochastic
equations. These equations have uses in biology, chemistry,
physics, economics, engineering and meteorology. They are
used to model quantum noise and/or environmental noise,
all of which have important applications. For greater speed,
the design makes it simple to replace components with more
specialized GPU-based code [9].

The main utility of the program is its agility. A small number
of inputs are required for each new problem, which speeds up
Fig. 1. Simulation of an SGL trajectory in two dimensions, projected onto
y = 0. Colors correspond to the value of |a|

2 and only added for the sake
of expressiveness.

development time, and reduces the need for extensive testing
in different applications. A previous package, xMDS, has had
over 40,000 downloads to date. The improvement provided
by xSPDE is its ease of use and greater modularity, allowing
simple end-user modification even beyond the extensive
functionality already included.

The underlying code body is well-tested. It comes with a
set of 19 illustrative benchmark equations, each with analytic
solutions. There are default settings for every type of program
input, so that the learning curve is minimal. Estimates of time-
step and sampling errors give an accuracy bound for any result,
apart from lattice discretization error estimates. The toolbox is
mainly used by graduate students in computational physics, but
is not limited to physics.

4.1. Interactive and batch applications

The interactive use of the xSPDE program can provide a
rapid turn-around. This is useful when learning the toolbox,
choosing parameter values, or for error control. In the interac-
tive mode, xSPDE inputs and functions are entered directly into
the Matlab command window for immediate feedback.

One important advantage of this approach is the speed of
prototyping, due to the reduced time required to test and code.
The amount of user code required to analyze a new research
problem is usually no more than a single page, compared to
thousands of lines of code in a hand-coded program with this
functionality. In 2015, it was used interactively at the ANZSUP
physics summer school, resulting in a 40 student class each
coding and solving several unseen, challenging problems in less
than four hours, having never used xSPDE previously.

For larger, more time-critical research projects, batch use is
routine, and the xSPDE code is unchanged apart from adding a
file-name for data storage. Operation over multiple cores and
nodes on parallel clusters of any size is obtained simply by
adding a single parameter to the in.ensembles vector. To
adapt the basic functionality to a new user requirement, one
can redefine any function or structure name to augment the
defaults.
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4.2. Open object-oriented architecture

The overall data structure is object-oriented, including data
and methods. Yet xSPDE has a more open architecture than
the usual object-oriented style of programming, which is a
deliberate choice to allow extensibility. As an example, in some
physics applications it is important to normalize the field after
each time-step. In xSPDE, one simply redefines the default
time-step function, xMP, by adding in.step = @normstep,
together with a new function definition:

function b = normstep(a,z,dt,r)
b = xMP(a,z,dt,r);
norm = sqrt(xint(abs(b).^2,r.dx, r));
b = b/norm;
end

5. Conclusion

We have described an open toolbox for integrating stochastic
equations with a highly modular and extensible architecture,
having applications in many fields.
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