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Abstract

Let P , Q, R and S be complex square matrices and M = P + Q + R + S. A quadruple (P, Q, R, S) is
called a pseudo-block decomposition of M if

PQ = QP = 0, PS = SQ = QR = RP = 0 and RD = SD = 0,

where RD and SD are the Drazin inverses of R and S, respectively. We investigate the problem of finding for-
mulae for the Drazin inverse of M . The explicit representations for the Drazin inverses of M and P + Q + R

are developed, under some assumptions. As its application, some representations are presented for 2 × 2

block matrices
[
A B

0 C

]
and

[
A B

D C

]
, where the blocks A and C are square matrices. Several results of this

paper extend the well known representation for the Drazin inverse of
[
A B

0 C

]
given by Hartwig and Shoaf,

Meyer and Rose in 1977. An illustrative example is given to verify our new representations.
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1. Introduction

Let Cm×m denote the set of m × m complex matrices and A ∈ Cm×m. The smallest non-
negative integer k such that rank(Ak+1) = rank(Ak), denoted by Ind(A), is called the index
of A and Ind(A) = k. There is a unique matrix AD ∈ Cm×m satisfying the matrix equations
[5, p. 122]

Ak+1AD = Ak, ADAAD = AD, AAD = ADA. (1.1)

AD is called the Drazin inverse of A. If Ind(A) = 1, then AD is called the group inverse of
A and denoted by A#. Clearly, Ind(A) = 0 if and only if A is nonsingular, and in this case
AD = A−1.

The theory of Drazin inverses has been a substantial growth over the past decades. It is of great
theoretical interest as well as the applications in many diverse areas, including statistics, numerical
analysis, differential equations, Markov chains, population models, cryptography, and control
theory, etc. (see [5,12,14,15,17,21,22,24,27,28,30–32,37–39]). One topic of Drazin inverse of
considerable interest concerns the explicit representations for the Drazin inverse of a 2 × 2 block
matrix [2,3,6,8–11,13,18,19,23,29,34,36] and explicit representations for the Drazin inverse of
the sum of two matrices (cf. [7,20,25,26,33]).

Campbell and Meyer [5] posed the research problem in 1983: find an explicit representation for

the Drazin inverse of a 2 × 2 block matrix
[

A B

D C

]
in terms of the blocks of the partition, where

the blocks A and C are assumed to be square matrices. The motivation for this open problem
is the desire to find the general expressions for the solutions of the second-order system of the
differential equations [4]

Ex
′′
(t) + Fx′(t) + Gx(t) = 0,

where the matrix E is singular.
Lots of literature devoted to this topic has sprouted [6–8,13,19,20,29,33–35]. If one takes

a close look at these results, it is easy to see that a representation for the Drazin inverse of[
A B

0 C

]
, which was first given by Hartwig and Shoaf, Meyer and Rose in 1977 independently,

employed very frequently (abbreviated as Hartwig–Shoaf–Meyer–Rose formula, in [5, Theorem
7.7.1] or [16,29]). We can see that the Hartwig–Shoaf–Meyer–Rose formula is an effective and
basic tool for finding various explicit representations for the Drazin inverse of block matrix and
modified matrix [35]. It would be desirable and important to extend the Hartwig–Shoaf–Meyer–
Rose formula to the more general cases. This can be done in several ways. One direct and plain

way is to extend Hartwig–Shoaf–Meyer–Rose formula to the case of
[

A B

D C

]
, where D /= 0. But

we adopt a different approach in this paper.

Our approach is based on the following partition. For a 2 × 2 block matrix M =
[

A B

D C

]
,

where A and C are square matrices and their sizes need not be the same. It can be rewritten as a
block decomposition of M = P + Q + R + S, where

P =
[
A 0
0 0

]
, Q =

[
0 0
0 C

]
, R =

[
0 B

0 0

]
, and S =

[
0 0
D 0

]
.

In this case, one can see that P, Q, R and S satisfy the following relations:

PQ = QP = 0, PS = SQ = QR = RP = 0, and RD = SD = 0. (1.2)
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In general, we introduce the following definition.

Definition 1.1. Let M be a complex square matrix. If there exist four complex square matrices
P, Q, R and S satisfying (1.2) and M = P + Q + R + S, then the quadruple (P, Q, R, S) is
called a pseudo-block decomposition of M . Moreover, M is called a 2 × 2 pseudo-block matrix
corresponding to (P, Q, R, S), or simply a pseudo-block matrix. i.e., M has a pseudo-block
decomposition (P, Q, R, S).

It is obvious that a 2 × 2 matrix
[

A B

0 C

]
has a pseudo-block decomposition (P0, Q0, R0, 0),

where P0 =
[

A 0
0 0

]
, Q0 =

[
0 0
0 C

]
, R0 =

[
0 B

0 0

]
and

R2
0 = 0 and rank(P0 + Q0) = rank(P0) + rank(Q0),

which is a special kind of a pseudo-block decomposition of M .
Onemain aimofour paper is tofind the explicit formulas of (P + Q + R)D,where (P, Q, R, 0)

is a pseudo-block decomposition of matrix P + Q + R. The formulae of (P + Q + R)D given
by (3.11) and (3.12), extend Hartwig–Shoaf–Meyer–Rose formula in three aspects. Firstly, the
condition

rank(P + Q) = rank(P ) + rank(Q)

is removed. Secondly, the condition Ind(P + Q + R) � max{Ind(P ), Ind(Q)} is also relaxed.
Thirdly, the conditionR2 = 0 is replaced byRD = 0, i.e.,R is nilpotent. It is not difficult to find the
formula of (P + Q + R + S)D under some restrictions, where (P, Q, R, S) is a pseudo-block
decomposition of the matrix P + Q + R + S. These results also generalize Hartwig–Shoaf–
Meyer–Rose formula to the case S /= 0.

The paper is organized as follows. In Section 2, we will introduce preliminary. Section 3
is devoted to the study of explicit representations of the group inverse and Drazin inverse for
the matrix P + Q + R, where (P, Q, R, 0) is a pseudo-block decomposition of P + Q + R.
We find the necessary and sufficient condition for the existence of group inverse of the pseudo-
block matrix P + Q + R and present the explicit representation of (P + Q + R)# (if it exists)
under the condition Ind(P ) = Ind(Q) = 1. Based on it, the explicit representation of Drazin
inverse for the pseudo-block matrix P + Q + R is given, which is one of our main formulae.
Our another main results are included in Section 4. There are some explicit representations of
(P + Q + R + S)D under some conditions, where (P, Q, R, S) is a pseudo-block decomposition
of the matrix P + Q + R + S. Some 2 × 2 block matrix version results are also given in this
section, which extend Hartwig–Shoaf–Meyer–Rose formula and a key lemma of [19]. Finally, in
Section 5, we present an illustrative example to show the concept of pseudo-block decomposition
of a matrix is useful to find the Drazin inverse of a square matrix.

Throughout this paper we denote zero matrix by 0, the identity matrix by I . If the lower limit
of a sum is bigger than its upper limit, we always define the sum to be 0. We denote the transpose
and conjugate transpose of a matrix A by AT and A∗, respectively. We also define G0 = I for
any square matrix G hereinafter.

2. Preliminary

In this section, we recall the following properties of Drazin inverse (cf. [1,5,32]), which will
be used later on.
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Let A be complex square matrix and let l and m be integers, then

AD = 0, if and only if A is nilpotent. (2.1)

If l > m > 0, then Am(AD)l = (AD)l−m. (2.2)

If l > 0, then (Al)D = (AD)l, Al(Al)D = AAD. (2.3)

If l − max{Ind(A), 1} � m > 0, then Al(AD)m = Al−m. (2.4)

(AT)D = (AD)T. (2.5)

An additive result for the sum of two matrices which gives a representation for (P + Q)D

under the condition PQ = 0.

Lemma 2.1 [16, Lemma 4, 20, Corollary 2.1]. Let P , Q and R be complex matrices and Rk = 0:

(1) If RP = 0, then (R + P)D = P D +
k−1∑
i=1

(P D)i+1Ri,

(2) If QR = 0, then (Q + R)D = QD +
k−1∑
i=1

Ri(QD)i+1.

3. Explicit representations of group inverse and Drazin inverse of pseudo-block matrix
P + Q + R

In this section, we investigate the group inverse of a pseudo-block matrix P + Q + R cor-
responding to (P, Q, R, 0) under some conditions. The results are presented in the following
theorem in which we establish the representation for the Drazin inverse of the pseudo-block
matrix P + Q + R.

Theorem 3.1. Let P, Q and R be complex m-square matrices and M = P + Q + R. Let (P, Q,

R, 0) be a pseudo-block decomposition of M. Suppose that Ind(P ) � 1, Ind(Q) � 1 and
Ind(R) � 2. Then the following assertions hold:

(1) Ind(M) � Ind(R),

(2) Ind(M) � 1 if and only if

k−2∑
i=1

(P #)iRi+1(I − QQ#) +
k−2∑
j=1

(I − PP #)Rj+1(Q#)j

= (I − PP #)R(I − QQ#) +
k−3∑
i=1

k−i−2∑
j=1

(P #)iRi+j+1(Q#)j . (3.1)

Furthermore, if M# exists, then it is given by

M# =
k∑

i=1

(P #)iRi−1(I − QQ#) +
k∑

j=1

(I − PP #)Rj−1(Q#)j

−
k−1∑
i=1

k−i∑
j=1

(P #)iRi+j−1(Q#)j , (3.2)

where k = Ind(R).
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Proof. Let the right-hand side of (3.2) be X. We will show that X = MD by the definition of
Drazin inverse. Firstly

MX =
⎡
⎣
(

PP # +
k−1∑
i=1

(P #)iRi(I − QQ#)

)
−
⎛
⎝k−1∑

j=1

PP #Rj (Q#)j

+
k−2∑
i=1

k−i−1∑
j=1

(P #)iRi+j (Q#)j

⎞
⎠
⎤
⎦+ QQ# +

k−1∑
j=1

Rj (Q#)j

= PP # + QQ# +
k−1∑
i=1

(P #)iRi(I − QQ#) +
k−1∑
j=1

(I − PP #)Rj (Q#)j

−
k−2∑
i=1

k−i−1∑
j=1

(P #)iRi+j (Q#)j . (3.3)

Similarly

XM = PP # + QQ# +
k−1∑
i=1

(P #)iRi(I − QQ#) +
k−1∑
j=1

(I − PP #)Rj (Q#)j

−
k−2∑
i=1

k−i−1∑
j=1

(P #)iRi+j (Q#)j , (3.4)

which imply

MX = XM. (3.5)

We now prove that XMX = X. Let us denote the first, second and third terms on the right-hand
side of (3.2) by X1, X2 and X3, respectively. Then X = X1 + X2 − X3. Expanding XM as (3.4),
we obtain that

XMX2 =
⎛
⎝Q# +

k−1∑
j=1

(I − PP #)Rj (Q#)j+1 −
k−2∑
i=1

k−i−1∑
j=1

(P #)iRi+j (Q#)j+1

⎞
⎠

+
k−2∑
i=1

k−i−1∑
j=1

(P #)iRi+j (Q#)j+1 =
k∑

j=1

(I − PP #)Rj−1(Q#)j .

Hence

XMX =
k∑

i=1

(P #)iRi−1(I − QQ#) +
k∑

j=1

(I − PP #)Rj−1(Q#)j

−
k−1∑
i=1

k−i∑
j=1

(P #)iRi+j−1(Q#)j ,
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namely

XMX = X. (3.6)

Now we claim that

Mk+1X = Mk. (3.7)

In fact, by induction on l > 1, one can see that

Ml = P l + Ql + Rl +
l−1∑
i=1

l−i∑
j=0

P jRiQl−i−j . (3.8)

Notice that P(I − PP #) = 0, Q(I − QQ#) = 0, and Rk = Rk+1RD = 0, combining (3.8) and
(3.3), we obtain

Mk+1X =
⎛
⎝P k +

k−1∑
i=1

P k−iRi(I − QQ#) −
k−2∑
i=1

k−i−1∑
j=1

P k−iRi+j (Q#)j

⎞
⎠

+ Qk +
⎛
⎝k−1∑

i=1

k−i∑
j=0

P jRiQk−i−jQQ# +
k−1∑
i=1

k−1∑
j=1

P k−iRi+j (Q#)j

⎞
⎠

= P k + Qk +
k−1∑
i=1

k−i∑
j=0

P jRiQk−i−j

= Mk (3.9)

as claimed in (3.7). Also, we have

M2X =
[
P +

(
PP #R(I − QQ#) +

k−2∑
i=1

(P #)iRi+1(I − QQ#)

)

−
⎛
⎝k−2∑

j=1

PP #Rj+1(Q#)j +
k−3∑
i=1

k−i−2∑
j=1

(P #)iRi+j+1(Q#)j

⎞
⎠
⎤
⎦+ Q

+
⎡
⎣(R − R(I − QQ#)) +

k−1∑
j=1

Rj+1(Q#)j

⎤
⎦

= (P + Q + R)

+
⎛
⎝k−2∑

i=1

(P #)iRi+1(I − QQ#) +
k−2∑
j=1

(I − PP #)Rj+1(Q#)j

⎞
⎠

−
⎛
⎝(I − PP #)R(I − QQ#) +

k−3∑
i=1

k−i−2∑
j=1

(P #)iRi+j+1(Q#)j

⎞
⎠ . (3.10)

If M# exists, then (3.2) holds. We can use M# = X and (3.10), it is not difficult to see that
Ind(M) � 1 if and only if (3.1) holds. This completes the proof. �
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Remark 3.1. Theorem 3.1 is not only important for the representation of Drazin inverse, but
also useful for the existence of group inverse. If we assume Ind(R) < 2 (equivalently R = 0, if
(P, Q, R, 0) is a pseudo-block decomposition of M), and keep other assumptions of Theorem
3.1, then it is still true for Ind(M) � 1 and the formula (3.2).

Combining the above remark and Theorem 3.1, we obtain the following corollary, which will
be useful.

Corollary 3.1. Let P, Q and R be complex m-square matrices and M = P + Q + R. Let (P, Q,

R, 0)be a pseudo-block decomposition ofM.Suppose that Ind(P ) � 1, Ind(Q) � 1, Ind(R) � 3,

and Ind(M) � 1. Then

M# = P # + Q# + (P #)2R(I − QQ#) + (P #)3R2(I − QQ#)

+ (I − PP #)R(Q#)2 + (I − PP #)R2(Q#)3 − P #RQ#

− (P #)2R2Q# − P #R2(Q#)2.

Now we present our main result: the explicit representation for the Drazin inverse of a pseudo-
block matrix P + Q + R corresponding to (P, Q, R, 0). This result is based on Corollary 3.1.

Theorem 3.2. Let P, Q, R be complex m-square matrices and M = P + Q + R. Let k =
Ind(R), lP = Ind(P ), and lQ = Ind(Q). Suppose (P, Q, R, 0) is a pseudo-block decomposition
of M. Then

MD = P D + QD −
k−1∑
i=1

k−i∑
j=1

(P D)iRi+j−1(QD)j

+
⎛
⎝k−1∑

i=1

iQ∑
j=0

(P D)i+j+1RiQj +
k−2∑
i=1

k−i−1∑
j=1

(P D)m+i+1Ri+jQm−j

⎞
⎠ (I − QQD)

+ (I − PP D)

⎛
⎝k−1∑

i=1

iP∑
j=0

P jRi(QD)i+j+1

+
k−2∑
i=1

k−i−1∑
j=1

P m−iRi+j (QD)m+j+1

⎞
⎠ , (3.11)

where iP = min{lP − 1, m − i} and iQ = min{lQ − 1, m − i}. Alternatively

MD = P D + QD −
m−1∑
i=1

m−i∑
j=1

(P D)iRi+j−1(QD)j

+
⎛
⎝m−1∑

i=1

m−i∑
j=0

(P D)i+j+1RiQj +
m−2∑
i=1

m−i−1∑
j=1

(P D)m+i+1Ri+jQm−j

⎞
⎠ (I − QQD)

+(I − PP D)

⎛
⎝m−1∑

i=1

m−i∑
j=0

P jRi(QD)i+j+1 +
m−2∑
i=1

m−i−1∑
j=1

P m−iRi+j (QD)m+j+1

⎞
⎠ .

(3.12)
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Proof. Using an additive result for the sum of two matrices included in [20] or Lemma 2.1, which
gives a representation for (A + B)D under the condition AB = 0.

The steps of the proof are the following:

MD = [P + (R + Q)]D

=
l−1∑
t=0

(P D)t+1(R + Q)t� +
lP −1∑
t=0

(I − PP D)P t [(R + Q)D]t+1,

where � = I − (R + Q)(R + Q)D and l = Ind(R + Q).
We also have

(R + Q)D =
k−1∑
j=0

Rj (QD)j+1, � = I − QQD +
k−1∑
j=0

Rj+1(QD)j+1.

Prove by induction that

(R + Q)t =
t∑

i=0

Rt−iQi, [(R + Q)D]t+1 =
k−1∑
j=0

Ri(QD)t+j+1

and substitute the above expressions in the formula for MD to obtain the desired result. �

The following corollary of Theorem 3.2 is obvious.

Corollary 3.2. Let P, Q and R be complex m-square matrices and M = P + Q + R. Let (P, Q,

R, 0) be a pseudo-block decomposition of M. Suppose Ind(R) � 2 (i.e., R2 = 0), lP = Ind(P )

and lQ = Ind(Q), then

(P + Q + R)D = P D + QD − P DRQD +
⎛
⎝m−1∑

j=0

(P D)j+2RQj

⎞
⎠ (I − QQD)

+ (I − PP D)

⎛
⎝m−1∑

j=0

P jR(QD)j+2

⎞
⎠

= P D + QD − P DRQD +
⎛
⎝lQ−1∑

j=0

(P D)j+2RQj

⎞
⎠ (I − QQD)

+ (I − PP D)

⎛
⎝lP −1∑

j=0

P jR(QD)j+2

⎞
⎠ . (3.13)

Remark 3.2. Let P =
[

A 0
0 0

]
, Q =

[
0 0
0 C

]
and R =

[
0 B

0 0

]
. If we take the block decomposi-

tion (P, Q, R, 0) of M = P + Q + R =
[

A B

0 C

]
, then the famous Hartwig–Shoaf–Meyer–Rose

formula follows immediately from Corollary 3.2, as P D =
[

AD 0
0 0

]
and QD =

[
0 0
0 CD

]
, where

A and C are square matrices.
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Corollary 3.3 (Hartwig–Shoaf–Meyer–Rose formula [5, Theorem 7.7.1, 16, 29]). If M =
[

A B

0 C

]
∈ Cm×m(A and C are square), lA = Ind(A) and lC = Ind(C), then

MD =
[
AD X

0 CD

]
,

where

X =
⎛
⎝lC−1∑

j=0

(AD)j+2BCj

⎞
⎠ (I − CCD) + (I − AAD)

⎛
⎝lA−1∑

j=0

AjB(CD)j+2

⎞
⎠− ADBCD.

4. Explicit representations of Drazin inverse of pseudo-block matrix P + Q + R + S

Our next goal is to present some explicit representations for the Drazin inverse of a pseudo-block
matrix P + Q + R + S corresponding to (P, Q, R, S) under some assumptions.

We begin with a lemma.

Lemma 4.1. Let P, Q and R be complex m-square matrices and M = P + Q + R. Suppose
(P, Q, R, 0) is a pseudo-block decomposition of M, then

(
MD

)l =
(
(P + Q + R)D

)l

= (P D)l + (QD)l

+
l−1∑
k=1

m−2∑
i=1

m−i−1∑
j=1

(P D)k+iRi+j (QD)l−k+j

−
l∑

k=1

m−1∑
i=1

m−i∑
j=1

(P D)k+i−1Ri+j−1(QD)l−k+j

+
⎛
⎝m−1∑

i=1

m−i∑
j=0

(P D)l+i+jRiQj +
m−2∑
i=1

m−i−1∑
j=1

(P D)l+m+iRi+jQm−j

⎞
⎠ (I − QQD)

+ (I − PP D)

⎛
⎝m−1∑

i=1

m−i∑
j=0

P jRi(QD)l+i+j +
m−2∑
i=1

m−i−1∑
j=1

P m−iRi+j (QD)l+m+j

⎞
⎠

for l = 2, 3, . . .

Proof. By (3.12) in Theorem 3.2 and induction on l, the desired result follows after carefully
verification. �

Theorem 4.1. Let P, Q, R and S be complex m-square matrices and M = P + Q + R + S.

Suppose (P, Q, R, S) is a pseudo-block decomposition of M and SP = SR = 0, then
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MD = P D + QD +
lS∑

l=2

(QD)lSl−1

+
lS∑

l=2

l−1∑
k=1

m−1∑
i=1

m−i∑
j=1

(P D)k+iRi+j (QD)l−k+j Sl−1

+
lS∑

l=1

m−1∑
i=1

m−i∑
j=0

(P D)l+i+jRiQj (I − QQD)Sl−1

+
lS∑

l=1

m−1∑
i=1

m−i∑
j=0

(I − PP D)P jRi(QD)l+i+j Sl−1

+
lS∑

l=1

m−2∑
i=1

m−i−1∑
j=1

(P D)l+m+iRi+jQm−j (I − QQD)Sl−1

+
lS∑

l=1

m−2∑
i=1

m−i−1∑
j=1

(I − PP D)P m−iRi+j (QD)l+m+j Sl−1

−
lS∑

l=1

l∑
k=1

m−1∑
i=1

m−i∑
j=1

(P D)k+i−1Ri+j−1(QD)l−k+j Sl−1, (4.1)

where lS = Ind(S). Alternatively, replacing lS by an integer n (m � n � lS) in (4.1), the above
explicit representation still holds.

Proof. It follows from Lemma 2.1 that

MD = (P + Q + R + S)D =
lS∑

l=1

((P + Q + R)D)lSl−1, (4.2)

since that SP = SQ = SR = 0. Clearly, (P, Q, R, 0) is also a pseudo-block decomposition of
the matrix P + Q + R. Combining (4.2) with Lemma 4.1, (4.1) is easy to obtain. This completes
the proof. �

Now, replacing the condition SP = SR = 0 in the above theorem by RS = QS = 0, we derive
an analogous result.

Theorem 4.2. Let P, Q, R and S be complex m-square matrices and M = P + Q + R + S.

Suppose (P, Q, R, S) is a pseudo-block decomposition of M and RS = QS = 0, then

MD = P D + QD +
lS∑

l=2

Sl−1(P D)l

+
lS∑

l=2

l−1∑
k=1

m−2∑
i=1

m−i−1∑
j=1

Sl−1(P D)k+iRi+j (QD)l−k+j

+
lS∑

l=1

m−1∑
i=1

m−i∑
j=0

Sl−1(P D)l+i+jRiQj (I − QQD)
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+
lS∑

l=1

m−1∑
i=1

m−i∑
j=0

Sl−1(I − PP D)P jRi(QD)l+i+j

+
lS∑

l=1

m−2∑
i=1

m−i−1∑
j=1

Sl−1(P D)l+m+iRi+jQm−j (I − QQD)

+
lS∑

l=1

m−2∑
i=1

m−i−1∑
j=1

Sl−1(I − PP D)P m−iRi+j (QD)l+m+j

−
lS∑

l=1

l∑
k=1

m−1∑
i=1

m−i∑
j=1

Sl−1(P D)k+i−1Ri+j−1(QD)l−k+j , (4.3)

where lS = Ind(S). Alternatively, replacing lS by any integer n (m � n � lS) in (4.3), the above
explicit representation still holds.

Proof. The proof is similar to that of Theorem 4.1. �

Specializing Theorem 4.1 to the case Ind(S) � 2 and Ind(R) � 2 (i.e., R2 = S2 = 0), we have
the corollary.

Corollary 4.1. Let P, Q, R and S be complex m-square matrices and M = P + Q + R + S.

Suppose (P, Q, R, S) is a pseudo-block decomposition of M, SP = SR = 0 and S2 = R2 = 0,

then

MD = P D + QD − P DRQD + ((QD)2 − P DR(QD)2 − (P D)2RQD)S

+
m−1∑
j=0

(P D)j+2RQj(I − QQD) +
m−1∑
j=0

(I − PP D)P jR(QD)j+2

+
m−1∑
j=0

((P D)j+3RQj(I − QQD) + (I − PP D)P jR(QD)j+3)S (4.4)

or alternatively

MD = P D + QD − P DRQD + ((QD)2 − P DR(QD)2 − (P D)2RQD)S

+
lQ−1∑
j=0

(P D)j+2RQj(I − QQD) +
lP −1∑
j=0

(I − PP D)P jR(QD)j+2

+
lQ−1∑
j=0

(P D)j+3RQj(I − QQD)S +
lP −1∑
j=0

(I − PP D)P jR(QD)j+3S, (4.5)

where lP = Ind(P ) and lQ = Ind(Q). Furthermore

Ind(M) � Ind(P ) + Ind(Q) + 2. (4.6)
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Proof. The formulas (4.4) and (4.5) are immediate from Theorem 4.1. All we need to do now is
to prove (4.6).

By induction on l, we have

Ml+1 = P l+1 + Ql+1 + QlS +
l∑

i=0

P l−iRQi +
l−1∑
i=0

P l−i−1RQiS

for l � 1. Let Yi be the ith terms on the right-hand side of above equality for i = 1, 2, . . . , 5, and
X = MD. Combining the above equality with (4.5), for l � lP + lQ + 2, we obtain

Ml+1MD = Y1X + Y2X + Y3X + Y4X + Y5X = Y1X + Y2X + Y4X

=
[
P l − P lRQD − P lRQD − (P lR(QD)2 + P l−1RQD)S

+
l−1∑
j=0

P l−j−1RQj(I − QQD) +
l−2∑
j=0

P l−j−2RQj(I − QQD)S

⎤
⎦

+ (Ql + Ql−1S) +
[(

P lRQD +
l−1∑
i=0

P l−i+1RQi · QQD

)

+
(

P lR(QD)2S + P l−1RQDS +
l−2∑
i=0

P l−i−2RQi · QQDS

)]

= Ml, (4.7)

since that SX3 = 0, SX5 = 0,
∑l−1

j=lQ
P l−j−1RQj(I − QQD) = 0, P l(P D)j = P l−j for l −

max{Ind(P ), 1} � j > 0, and
∑l−2

j=lQ
P l−j−2RQj(I − QQD)S = 0. Clearly, (4.6) follows from

(4.7). �

By restricting our attention to the cases P D = 0 (i.e., P is nilpotent) in Corollary 4.1, then we
can obtain the following Corollary.

Corollary 4.2. Let P, Q, R and S be complex m-square matrices and M = P + Q + R + S.

Suppose (P, Q, R, S) is a pseudo-block decomposition of M, SP = SR = 0, S2 = R2 = 0 and
P is nilpotent, then

MD = QD + (QD)2S +
m−1∑
j=0

P jR(QD)j+2 +
m−1∑
j=0

P jR(QD)j+3S

= QD + (QD)2S +
lp−1∑
j=0

P jR(QD)j+2 +
lp−1∑
j=0

P jR(QD)j+3S, (4.8)

where lP = Ind(P ). Furthermore

Ind(M) � Ind(P ) + Ind(Q) + 1. (4.9)

Proof. The formula (4.8) follows from Corollary 4.1. The proof of (4.9) is analogous to that of
(4.6) in Corollary 4.1. �
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We now pay our attention to obtain the Drazin inverse of a 2 × 2 block matrix, which also
extend Hartwig–Shoaf–Meyer–Rose formula.

Let P =
[

A 0
0 0

]
, Q =

[
0 0
0 C

]
, R =

[
0 B

0 0

]
and S =

[
0 0
D 0

]
, where A and C are square

matrices. Taking the block decomposition (P, Q, R, S) of M = P + Q + R + S =
[

A B

D C

]
, the

desired results are derived from Corollary 4.1 and Theorem 4.2, respectively.

Corollary 4.3. Let M =
[

A B

D C

]
∈ Cm×m, lA = Ind(A) and lC = Ind(C), where A and C are

square. Suppose DA = 0 and DB = 0, then

MD =
[
AD + X2D X1

(CD)2D CD

]
,

where

Xi =
m−1∑
j=0

((AD)i+j+1BCj (I − CCD) + (I − AAD)AjB(CD)i+j+1)

−
i−1∑
j=0

(AD)j+1B(CD)i−j

=
⎛
⎝lC−1∑

j=0

(AD)i+j+1BCj

⎞
⎠ (I − CCD) + (I − AAD)

⎛
⎝lA−1∑

j=0

AjB(CD)i+j+1

⎞
⎠

−
i−1∑
j=0

(AD)j+1B(CD)i−j (i = 1, 2). (4.10)

Furthermore

Ind(M) � Ind(A) + Ind(C) + 2.

Corollary 4.4 [11, Theorem 2.1]. Let M =
[

A B

D C

]
∈ Cm×m, lA = Ind(A) and lC = Ind(C),

where A and C are square. Suppose BD = 0 and CD = 0, then

MD =
[

AD X1

D(AD)2 CD + DX2

]
,

where X1 and X2 are defined in (4.10). Furthermore

Ind(M) � Ind(A) + Ind(C) + 2.

The following results hold from Corollaries 4.2 and 4.4.

Corollary 4.5 [13]. Let M =
[

A B

D C

]
∈ Cm×m, where A and C are square matrices. Suppose

BD = 0, CD = 0 and BC = 0, then

MD =
[

AD (AD)2B

D(AD)2 CD + D(AD)3B

]
.
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Corollary 4.6 [19]. Let M =
[

A B

D C

]
∈ Cm×m, lA = Ind(A) and lC = Ind(C), where A and C

are square. Suppose BD = 0, CD = 0 and C is nilpotent, then

MD =

⎡
⎢⎢⎢⎣

AD
lC−1∑
j=0

(AD)j+2BCj

D(AD)2
lC−1∑
j=0

D(AD)j+3BCj

⎤
⎥⎥⎥⎦ =

[
I

DAD

]
AD

[
I

lC−1∑
j=0

(AD)j+1BCj

]
.

Furthermore

Ind(M) � Ind(A) + Ind(C) + 1.

We conclude this section with the following remark.

Remark 4.1. It is easy to know that if (P, Q, R, S) is a pseudo-block decomposition for the
matrix P + Q + R + S, then (P T, QT, ST, RT) is a pseudo-block decomposition for the matrix
P T + QT + ST + RT. On the other hand, by the property (2.5), we have

(P + Q + R + S)D = ((P T + QT + ST + RT)D)T. (4.11)

Under similar conditions, we can express (P T + QT + ST + RT)D by Theorems 4.1 and 4.2
and Corollaries 4.2 and 4.3, respectively. So, from (4.11), one can see that there are many results
similar to Theorems 4.1 and 4.2 and Corollaries 4.2 and 4.3. It is trivial to derive these results and
we omit them here.

5. Example

Now we present an example to show that the block forms of M and its block decompositions fail
to apply to find MD by previous formulae directly, but one can work with a special pseudo-block
decomposition of M .

Example 5.1. Let

M =

⎡
⎢⎢⎣

8 0 8 8
0 0 −6 6
4 −4 −7 15
4 −4 −7 15

⎤
⎥⎥⎦ =

[
A B

D C

]
.

There exist three cases of the block form as follows:

Case (1): A = [
8
]
, B = [

0, 8, 8
]
, C =

⎡
⎢⎣

0 −6 6

−4 −7 15

−4 −7 15

⎤
⎥⎦ , D =

⎡
⎢⎣

0

4

4

⎤
⎥⎦ .

Case (2): A =
[
8 0

0 0

]
, B =

[
8 8

−6 6

]
, C =

[−7 15

−7 15

]
, D =

[
4 −4

4 −4

]
.

Case (3): A =
⎡
⎢⎣

8 0 8

0 0 −6

4 −4 −7

⎤
⎥⎦ , B =

⎡
⎢⎣

8

6

15

⎤
⎥⎦ , C = [

15
]
, D = [

4, −4, −7
]
.
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In each case, one can verify that DB /= 0 and BD /= 0. Thus the block matrix version results
Corollaries 4.3 and 4.4 fail to find MD. Similarly, let (P1, Q1, R1, S1) be the block decompositions
of M , where

P1 =
[
A 0
0 0

]
, Q1 =

[
0 0
0 C

]
, R1 =

[
0 B

0 0

]
, S1 =

[
0 0
D 0

]
.

We can see that Theorems 4.1, 4.2 and Corollary 4.1, also fail to find MD, since S1R1 /= 0
and R1S1 /= 0. If we take a special pseudo-block decomposition (P2, Q2, R2, S2) of M as fol-
lows:

P2 =

⎡
⎢⎢⎢⎣

8 −8 8 8

0 0 0 0

4 −4 2 6

4 −4 2 6

⎤
⎥⎥⎥⎦ , Q2 =

⎡
⎢⎢⎢⎣

0 0 2 −2

0 0 −2 2

0 0 −2 2

0 0 −2 2

⎤
⎥⎥⎥⎦ ,

R2 =

⎡
⎢⎢⎢⎣

0 8 0 0

0 0 −4 4

0 0 −8 8

0 0 −8 8

⎤
⎥⎥⎥⎦ , S2 =

⎡
⎢⎢⎢⎣

0 0 −2 2

0 0 0 0

0 0 1 −1

0 0 1 −1

⎤
⎥⎥⎥⎦ ,

then we can compute MD by Theorem 4.1. In fact, one can verify that (P2, Q2, R2, S2) is a
pseudo-block decomposition of M , as S2P2 = 0 and S2R2 = 0.

Let αT
1 = (0, 0, 1, 1), αT

2 = (1, 0, 0, 0), αT
3 = (−1, 1, 1, 1), βT

1 = (4, −4, 2, 6), βT
2 = (8, −8,

8, 8), and βT
3 = (0, 0, −2, 2). Note that (UV )D = U [(V U)D]2V (cf. [10]), where U and V are

r × s and s × r matrices, respectively, we have

P D
2 = (α1β

T
1 + α2β

T
2 )D =

(
[α1, α2]

[
βT

1

βT
2

])D

= [α1, α2]
⎡
⎣([βT

1

βT
2

]
[α1, α2]

)D
⎤
⎦

2 [
βT

1

βT
2

]
= 1

256

⎡
⎢⎢⎣

8 −8 6 10
0 0 0 0
4 −4 3 5
4 −4 3 5

⎤
⎥⎥⎦

and QD
2 = (α3β

T
3 )D = α3[(βT

3 α3)
D]2βT

3 = 0. Hence by Theorem 4.1, we have

MD = P D
2 +

lS2∑
l=1

m−1∑
i=1

m−i∑
j=0

(P D
2 )l+i+jRi

2Q
j

2S
l−1
2

+
lS2∑
l=1

m−2∑
i=1

m−i−1∑
j=1

(P D
2 )l+m+iR

i+j

2 Q
m−j

2 Sl−1
2

= P D
2 + (P D

2 )2R2 + (P D
2 )3(R2Q2 + R2

2)

= 1

256

⎡
⎢⎢⎣

8 −8 6 10
0 0 0 0
4 −4 3 5
4 −4 3 5

⎤
⎥⎥⎦+ 1

256

⎡
⎢⎢⎣

0 4 −6 6
0 0 0 0
0 2 −3 3
0 2 −3 3

⎤
⎥⎥⎦
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+ 3

1024

⎡
⎢⎢⎣

0 0 −2 2
0 0 0 0
0 0 −1 1
0 0 −1 1

⎤
⎥⎥⎦

= 1

1024

⎡
⎢⎢⎣

32 −16 −6 70
0 0 0 0
16 −8 −3 35
16 −8 −3 35

⎤
⎥⎥⎦ ,

now QD
2 = 0, lS2 = Ind(S2) = 2 (since S2

2 = 0 and S2 /= 0), m = 4, R3
2 = 0, Q2S2 = 0, R2S2 =

0, Q2
2 = 0, and R2

2Q2 = 0.

6. Concluding remarks

This paper is devoted to present various representation formulae for the Drazin inverses of
M = P + Q + R + S, and derive representations of the Drazin inverse of a 2 × 2 block matrix[

A B

D C

]
. It is still very difficult to obtain the most general expressions of the Drazin inverse of a

2 × 2 block matrix without any restrictions, which is a future research topic.
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