

Topology and its Applications 72 (1996) 209-214

TOPOLOGY AND ITS APPLICATIONS

A nonexterior Hopf algebra and loop spaces

Yutaka Hemmi¹

Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780, Japan Received 3 April 1995; revised 8 February 1996

Abstract

Let A be the Hopf algebra over \mathbb{Z}/p for a prime p given by $A = \Lambda(x_i, y_i \mid 0 \leq i \leq p-2) \otimes (\mathbb{Z}/p[z]/(z^p))$ (deg $x_i = 2(p+1)i+3$, deg $y_i = 2(p+1)(i+1)-1$, deg z = 2(p+1)). Kane showed that A is a minimum candidate for the mod p cohomology of a simply connected mod p finite loop space with p-torsion. In fact, if p = 2, 3, 5, then for $X = G_2, F_4, E_8$, we have $H^*(X; \mathbb{Z}/p) \cong A$. We prove that if $p \geq 7$, then there are no such loop spaces X.

Keywords: Finite loop space; Nonexterior Hopf algebra; Cohomology

AMS classification: Primary 55P35; 57T25, Secondary 55R35; 57T05

1. Introduction

Let X be a simply connected loop space with finite mod p cohomology $H^*(X; \mathbb{Z}/p)$ for a prime p. Then, $H^*(X; \mathbb{Z}/p)$ is isomorphic as an algebra to a tensor product of monogenic Hopf algebras [1, Theorem 3.2]. If $H^*(X; \mathbb{Z}/p)$ is an exterior algebra, then for a space BX with $\Omega(BX) \simeq X, H^*(BX; \mathbb{Z}/p)$ is a polynomial algebra. Lots of facts are known about the realization problem of polynomial algebras over the mod p Steenrod algebra, and hence about loop spaces with exterior mod p cohomologies. On the other hand, very little is known for the case that $H^*(X; \mathbb{Z}/p)$ is not an exterior algebra. Kane [2, Theorem 1.3] showed that if the number of odd degree generators of $H^*(X; \mathbb{Z}/p)$ is less than 2(p-1), then $H^*(X; \mathbb{Z}/p)$ is an exterior algebra, while if it is just 2(p-1) and $H^*(X; \mathbb{Z}/p)$ is not an exterior algebra, then, as a Hopf algebra over the mod p Steenrod algebra, $H^*(X; \mathbb{Z}/p)$ is isomorphic to a Hopf algebra

 $A = \Lambda(x_i, y_i \mid 0 \leq i \leq p-2) \otimes \left(\mathbb{Z}/p[z]/(z^p) \right).$

¹ E-mail: hemmi@math.kochi-u.ac.jp.

^{0166-8641/96/\$15.00 © 1996} Elsevier Science B.V. All rights reserved *PII* S0166-8641(96)00027-2

Here deg $x_i = 2(p+1)i + 3$, deg $y_i = 2(p+1)(i+1) - 1$, deg z = 2(p+1), and for the coproduct $\mu^* : A \to A \otimes A$,

$$\mu^{*}(x_{i}) = x_{i} \otimes 1 + 1 \otimes x_{i} + \sum_{j=0}^{i-1} \frac{1}{(i-j)!} x_{j} \otimes z^{i-j},$$

$$\mu^{*}(y_{i}) = y_{i} \otimes 1 + 1 \otimes y_{i} + \sum_{j=0}^{i-1} \frac{1}{(i-j)!} y_{j} \otimes z^{i-j},$$

$$\mu^{*}(z) = z \otimes 1 + 1 \otimes z.$$

Furthermore, the action of the mod p Steenrod algebra is given by

$$\mathscr{P}^{\mathsf{I}}x_i = y_i, \qquad \beta y_0 = z.$$

We notice that if p = 2, then \mathscr{P}^1 is considered as Sq^2 , and so we have $z = \operatorname{Sq}^1 \operatorname{Sq}^2(x_0) = \operatorname{Sq}^3(x_0) = x_0^2$. Thus, A is considered as

$$A = \mathbb{Z}/2[x_0]/(x_0^4) \otimes \Lambda(y_0).$$

Recently, Yagita [3] showed that even if the number of odd generators is greater than 2(p-1), $H^*(X; \mathbb{Z}/p)$ has A as a sub-Hopf algebra over \mathbb{Z}/p on the condition that $H^*(X; \mathbb{Z}/p)$ has only one even degree generator in degree 2(p+1).

For p = 2, 3, 5, the Lie groups G_2, F_4, E_8 realize A. On the other hand, if $p \ge 7$, there are no known simply connected loop spaces realizing A.

In this paper, we show the following fact.

Theorem 1.1. If $p \ge 7$, then there is no simply connected loop space X with the homotopy type of a CW-complex of finite type, so that $H^*(X; \mathbb{Z}/p) \cong A$ as a Hopf algebra over the mod p Steenrod algebra.

Our method can also be applied to prove that A is not realized by an A_p -space.

The results by Kane [2] and Yagita [3] are not for loop spaces but for homotopy associative H-spaces. The author does not know if A is realized by a homotopy associative H-space.

2. 3-connected covering

In the rest of this paper, the cohomology is assumed to have coefficients in \mathbb{Z}/p for a fixed odd prime p unless otherwise stated.

In this section we assume that X is a simply connected loop space with the homotopy type of a CW-complex of finite type, so that

 $H^*(X) \cong A$

as a Hopf algebra over the mod p Steenrod algebra \mathscr{A} . Let $r: X\langle 3 \rangle \to X$ be the 3-connected cover of X. Then we can prove the following:

Lemma 2.1. We have

$$H^*(X\langle 3\rangle) \cong \Lambda(r^*x_i, r^*y_i, v, w \mid 1 \leq i \leq p-2) \otimes \mathbb{Z}/p[u],$$

where $\deg r^* x_i = 2(p+1)i + 3$, $\deg r^* y_i = 2(p+1)(i+1) - 1$, $\deg v = 2p^2 + 1$, $\deg w = 2p^2 + 2p - 1$, $\deg u = 2p^2$, and

$$\mathscr{P}^{1}r^{*}x_{i} = r^{*}y_{i}, \quad \beta u = v, \quad \mathscr{P}^{1}v = w.$$

Furthermore, $r^*x_i, r^*y_i, v, w \in H^*(X\langle 3 \rangle)$ are all primitive, and $r^*x_0 = r^*y_0 = r^*z = 0$.

The above lemma can be proved by using the Serre spectral sequence, and we omit the proof.

Let $BX\langle 3 \rangle$ be a space with $\Omega(BX\langle 3 \rangle) \simeq X\langle 3 \rangle$. Then we have the cobar spectral sequence $\{E_r^{s,t}, d_r : E_r^{s,t} \to E_r^{s+r,t-r+1}\}$ converging to $H^*(BX\langle 3 \rangle)$. The E_1 -term is the cobar complex of $\widetilde{H}^*(X\langle 3 \rangle)$, i.e.,

$$E_1^{s,*} = \widetilde{H^*} (X\langle 3 \rangle)^{\otimes s},$$

$$d_1 | E_1^{s,*} = \sum_{j=1}^s (-1)^j \operatorname{id}^{\otimes j-1} \otimes \widetilde{\mu} \otimes \operatorname{id}^{\otimes s-j},$$

where we use the notation $\Phi^{\otimes t}$ for the *t*-fold tensor product of Φ for any module or map Φ . Then, we have

$$E_2^{*,*} = \operatorname{Cotor}_{H^*(X\langle 3 \rangle)}^{*,*}(\mathbb{Z}/p, \mathbb{Z}/p).$$

We can prove the following fact.

Lemma 2.2. If u is primitive, then for total degree less than or equal to $2p^3$, we have

$$E_2^{*,*} \cong \mathbb{Z}/p[X_i, Y_i, V, W \mid 1 \leq i \leq p-2] \otimes \Lambda(U).$$

If u is not primitive, then for total degree less than $2p^3$, we have

 $E_2^{*,*} \cong \mathbb{Z}/p[X_i, Y_i, V, W \mid 1 \le i \le p-2]/(U').$

Here $X_i = [r^*x_i]$, $Y_i = [r^*y_i]$, U = [u], V = [v], W = [w], and (U') is an ideal generated by some class U' of degree $(2, 2p^2)$.

Proof. The first half is clear.

Suppose that u is not primitive. We define a filtration $\{F_n\}$ of $H^*(X(3))$ by

$$\begin{split} F_0 &= \Lambda(r^*x_i, r^*y_i, v, w), \\ F_n &= F_{n-1} + u \cdot F_{n-1} \quad (n \ge 1) \end{split}$$

Then the filtration $\{F_n\}$ is compatible with the coalgebra structure on $H^*(X\langle 3\rangle)$, that is, if μ^* is the coproduct on $H^*(X\langle 3\rangle)$, then $\mu^*(F_n) \subset \sum F_i \otimes F_{n-i}$. Thus, we have a filtration on the cobar complex of $H^*(X\langle 3\rangle)$. Let $\{\tilde{E}_r^{*,*}, \tilde{d}_r\}$ be the spectral sequence associated to the above filtration. Then, $\tilde{E}_{\infty}^{*,*}$ is the graded associated algebra of $\operatorname{Cotor}_{H^*(X\langle 3\rangle)}^{*,*}(\mathbb{Z}/p, \mathbb{Z}/p)$, and

$$\overline{E}_2^{*,*} \cong \operatorname{Cotor}_B^{*,*}(\mathbb{Z}/p,\mathbb{Z}/p),$$

where $B = \sum F_n/F_{n-1}$. By definition, B is isomorphic to $\Lambda(r^*x_i, r^*y_i, v, w) \otimes \mathbb{Z}/p[u]$ with all generators primitive. Thus we have

$$\widetilde{E}_2^{*,*} \cong \mathbb{Z}/p[\widetilde{X}_i, \widetilde{Y}_i, \widetilde{V}, \widetilde{W}] \otimes \Lambda(\widetilde{U})$$

for total degree $\leq 2p^3$, where $\widetilde{X}_i = [r^*x_i]$, $\widetilde{Y}_i = [r^*y_i]$, $\widetilde{U} = [u]$, $\widetilde{V} = [v]$, and $\widetilde{W} = [w]$.

Now $\widetilde{X}_i, \widetilde{Y}_i, \widetilde{V}, \widetilde{W}$ are all infinite cycles. Let \widetilde{d}_r be the first nontrivial differential for total degree $\leq 2p^3$. Put $\widetilde{U}' = \widetilde{d}_r(\widetilde{U}) \neq 0$. Then we have

$$\widetilde{E}_{r+1}^{*,*} \cong \mathbb{Z}/p[\widetilde{X}_i, \widetilde{Y}_i, \widetilde{V}, \widetilde{W}]/(\widetilde{U}')$$

for total degree $\leq 2p^3$. Since $\widetilde{E}_{r+1}^{s,t}$ has no nontrivial classes of odd total degree for $s + t \leq 2p^3$, we have $\widetilde{E}_{\infty}^{s,t} = \widetilde{E}_{r+1}^{s,t}$ for $s + t < 2p^3$. This shows that there is an epimorphism

$$\mathbb{Z}/p[X_i, Y_i, V, W] \to \operatorname{Cotor}_{H^*(X\langle 3 \rangle)}^{*,*}(\mathbb{Z}/p, \mathbb{Z}/p)$$

for total degree $\langle 2p^3$. Let U' be a nontrivial class of minimal total degree in the kernel of the above map. Since U' is determined by $d_1(u) = \tilde{\mu}(u)$ in the cobar complex of $H^*(X\langle 3 \rangle)$, we have deg $U' = (2, 2p^2)$. It is clear that the induced epimorphism

$$\mathbb{Z}/p[X_i, Y_i, V, W]/(U') \to \operatorname{Cotor}_{H^*(X\langle 3 \rangle)}^{*,*}(\mathbb{Z}/p, \mathbb{Z}/p)$$

is also an isomorphism for total degree $< 2p^3$ by considering the rank. Thus the second half is proved. \Box

If u is not primitive, the above lemma shows that $E_2^{s,t}$ with $s + t < 2p^3$ has no nontrivial classes of odd total degree, which shows that the spectral sequence collapses for total degree less than $2p^3 - 1$. We have the same conclusion in the first case provided that u is transgressive, for dimensional reasons. If u is primitive and not transgressive, then we have only one nontrivial differential d_r with $0 \neq d_r(u) \in E_r^{1+r,2p^2-r+1}$. Then, by the same method as in the proof of the above lemma, we have the following result.

Lemma 2.3. If u is transgressive, then for degree less than $2p^3$, we have

$$H^*ig(BX\langle 3
angleig)\cong \mathbb{Z}/p[X_i,Y_i,V,W\mid 1\leqslant i\leqslant p-2]\otimes A(U).$$

If u is not transgressive, then for degree less than $2p^3 - 1$, we have

$$H^*(BX\langle 3\rangle) \cong \mathbb{Z}/p[X_i, Y_i, V, W \mid 1 \leq i \leq p-2]/(U'')$$

for some U" with deg U" = $2p^2+2$. Here deg $X_i = 4+2(p+1)i$, deg $Y_i = 2(p+1)(i+1)$, deg $U = 2p^2 + 1$, deg $V = 2p^2 + 2$, deg $W = 2p^2 + 2p$, and $\mathscr{P}^1X_i = Y_i$, $\mathscr{P}^1V = W$, $\beta U = V$.

Let I be the ideal of $H^*(BX(3))$ generated by the following factors:

- (i) $\sum_{t \ge 2p^3-1} H^t(BX\langle 3 \rangle),$
- (ii) $\overline{\{X_i, Y_i, V, W \mid i \neq (p-3)/2, p-2\}},$
- (iii) U if u is transgressive.

We prove the following:

Lemma 2.4. Let $p \ge 5$. Put $\alpha = X_{(p-3)/2}$, $\beta = Y_{(p-3)/2}$, $\gamma = X_{p-2}$ and $\delta = Y_{p-2}$. Then

$$H^*(BX\langle 3\rangle)/I \cong \mathbb{Z}/p[\alpha,\beta,\gamma,\delta]/(\deg \ge 2p^3-1).$$

Furthermore, I is closed under the action of \mathscr{A} . Thus $\mathbb{Z}/p[\alpha, \beta, \gamma, \delta]/(\deg \ge 2p^3 - 1)$ is an unstable algebra over \mathscr{A} with the following relations:

 $\mathscr{P}^{1} \alpha = eta, \qquad \mathscr{P}^{1} \gamma = \delta.$

Proof. For the case that u is transgressive, the first half of the lemma is clear.

For the case that u is not transgressive, $H^*(BX\langle 3\rangle)/I$ is clearly a quotient algebra of $C = \mathbb{Z}/p[\alpha, \beta, \gamma, \delta]/(\deg \ge 2p^3 - 1)$. Here, every element in C has degree congruent to $0 \mod 2(p-1)$. Since $\deg U'' = 2p^2 + 2 \ne 0 \mod 2(p-1)$, there are no more relations for $H^*(BX\langle 3\rangle)/I$, and we have $H^*(BX\langle 3\rangle)/I \cong C$.

Next note that deg $X_i \equiv \deg Y_i \neq 0 \mod 2(p-1)$ for $i \neq (p-3)/2$, p-2, and deg $V \neq 0 \mod 2(p-1)$, deg $W \neq 0 \mod 2(p-1)$. Thus we have $\mathscr{P}^k(I) \subset I$ for dimensional reasons. Since there are no odd degree elements in $H^*(BX\langle 3 \rangle)/I$, I is also closed under the Backstein operation, and we have the results. \Box

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The proof is by contradiction.

Assume that $p \ge 7$, and that X is a simply connected loop space with the homotopy type of a CW-complex of finite type so that

$$H^*(X) \cong A.$$

Then we have an unstable A algebra

$$H^*ig(BX\langle 3
angleig)/I=C=\mathbb{Z}/p[lpha,eta,\gamma,\delta]/(\deg\geqslant 2p^3-1)$$

by Lemma 2.4.

Lemma 3.1. Let J be the ideal of C generated by $\{\beta, \gamma, \delta\}$. Then $\mathscr{P}^1(\delta)$ does not belong to J.

Proof. Suppose contrarily that $\mathscr{P}^1 \delta \in J$. Since $p \ge 7$, we have $\mathscr{P}^1 \beta \in J$ for dimensional reason. So we have $\mathscr{P}^1(J) \subset J$. Here $\alpha^p = \mathscr{P}^n \alpha = \mathscr{P}^1(n^{-1}\mathscr{P}^{n-1}\alpha)$. Since $\mathscr{P}^{n-1}\alpha \in J$ for dimensional reason, we have a contradiction. \Box

Lemma 3.2. p = 7 and $\mathscr{P}^1(\delta) = \alpha$.

Proof. First we note that deg $\mathscr{P}^1 \delta = \deg \alpha^t$ for some t by Lemma 3.1. Since deg $\mathscr{P}^1 \delta = 2p^2 - 2 + 2(p-1)$ and deg $\alpha^t = t(p^2 - 2p + 1)$, we have $t \equiv -4 \mod p$. Thus t = p - 4,

and we have $2p^2 - 2 + 2(p-1) = (p-4)(p^2 - 2p + 1)$, which implies that p = 7 and $\mathscr{P}^1 \delta = e\alpha^3$ for some $e \neq 0$. By substituting $e^{-1}\gamma, e^{-1}\delta$ for γ, δ , if necessary, we have $\mathscr{P}^1 \delta = \alpha^3$. \Box

Now

$$\alpha^{7} = \mathscr{P}^{18}\alpha = \mathscr{P}^{4}\mathscr{P}^{14}\alpha = \mathscr{P}^{4}(a\alpha^{3}\beta^{2} + b\alpha^{3}\delta + c\alpha^{2}\beta\gamma + d\alpha\gamma^{2}),$$

for some $a, b, c, d \in \mathbb{Z}/p$. Then, by comparing the coefficients of α^7 and $\alpha^3\beta\delta$ in the above equation, we have two contradictory equations $d \neq 0$ and d = 0. Thus, for $p \ge 7$, there is no such loop space X, and Theorem 1.1 is proved.

References

- [1] A. Borel, Topics in the Homology Theory of Fibre Bundles, Lecture Notes in Mathematics 36 (Springer, Berlin, 1967).
- [2] R.M. Kane, Torsion in homotopy associative H-spaces, Illinois J. Math. 20 (1976) 476-485.
- [3] N. Yagita, Pontrjagin rings of the Morave K-theory for finite H-spaces, Preprint.