A nonexterior Hopf algebra and loop spaces

Yutaka Hemmi ${ }^{1}$
Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780, Japan
Reccived 3 April 1995; revised 8 February 1996

Abstract

Let A be the Hopf algebra over \mathbb{Z} / p for a prime p given by $A=\Lambda\left(x_{i}, y_{i} \mid 0 \leqslant i \leqslant\right.$ $p-2) \otimes\left(\mathbb{Z} / p[z] /\left(z^{p}\right)\right)\left(\operatorname{deg} x_{i}=2(p+1) i+3, \operatorname{deg} y_{i}=2(p+1)(i+1)-1, \operatorname{deg} z=2(p+1)\right)$. Kane showed that A is a minimum candidate for the $\bmod p$ cohomology of a simply connected $\bmod p$ finite loop space with p-torsion. In fact, if $p=2,3,5$, then for $X=G_{2}, F_{4}, E_{8}$, we have $H^{*}(X ; \mathbb{Z} / p) \cong A$. We prove that if $p \geqslant 7$, then there are no such loop spaces X.

Keywords: Finite loop space; Nonexterior Hopf algebra; Cohomology
AMS classification: Primary 55P35; 57T25, Secondary 55R35; 57T05

1. Introduction

Let X be a simply connected loop space with finite $\bmod p$ cohomology $H^{*}(X ; \mathbb{Z} / p)$ for a prime p. Then, $H^{*}(X ; \mathbb{Z} / p)$ is isomorphic as an algebra to a tensor product of monogenic Hopf algebras [1, Theorem 3.2]. If $H^{*}(X ; \mathbb{Z} / p)$ is an exterior algebra, then for a space $B X$ with $\Omega(B X) \simeq X, H^{*}(B X ; \mathbb{Z} / p)$ is a polynomial algebra. Lots of facts are known about the realization problem of polynomial algebras over the $\bmod p$ Steenrod algebra, and hence about loop spaces with exterior $\bmod p$ cohomologies. On the other hand, very little is known for the case that $H^{*}(X ; \mathbb{Z} / p)$ is not an exterior algebra. Kane [2, Theorem 1.3] showed that if the number of odd degree generators of $H^{*}(X ; \mathbb{Z} / p)$ is less than $2(p-1)$, then $H^{*}(X ; \mathbb{Z} / p)$ is an exterior algebra, while if it is just $2(p-1)$ and $H^{*}(X ; \mathbb{Z} / p)$ is not an exterior algebra, then, as a Hopf algebra over the $\bmod p$ Steenrod algebra, $H^{*}(X ; \mathbb{Z} / p)$ is isomorphic to a Hopf algebra

$$
A=\Lambda\left(x_{i}, y_{i} \mid 0 \leqslant i \leqslant p-2\right) \otimes\left(\mathbb{Z} / p[z] /\left(z^{p}\right)\right)
$$

[^0]Here $\operatorname{deg} x_{i}=2(p+1) i+3, \operatorname{deg} y_{i}=2(p+1)(i+1)-1, \operatorname{deg} z=2(p+1)$, and for the coproduct $\mu^{*}: A \rightarrow A \otimes A$,

$$
\begin{aligned}
& \mu^{*}\left(x_{i}\right)=x_{i} \otimes 1+1 \otimes x_{i}+\sum_{j=0}^{i-1} \frac{1}{(i-j)!} x_{j} \otimes z^{i-j} \\
& \mu^{*}\left(y_{i}\right)=y_{i} \otimes 1+1 \otimes y_{i}+\sum_{j=0}^{i-1} \frac{1}{(i-j)!} y_{j} \otimes z^{i-j} \\
& \mu^{*}(z)=z \otimes 1+1 \otimes z
\end{aligned}
$$

Furthermore, the action of the $\bmod p$ Steenrod algebra is given by

$$
\mathscr{P}^{1} x_{i}=y_{i}, \quad \beta y_{0}=z
$$

We notice that if $p=2$, then \mathscr{P}^{1} is considered as Sq^{2}, and so we have $z=\mathrm{Sq}^{1} \mathrm{Sq}^{2}\left(x_{0}\right)=$ $\mathrm{Sq}^{3}\left(x_{0}\right)=x_{0}^{2}$. Thus, A is considered as

$$
A=\mathbb{Z} / 2\left[x_{0}\right] /\left(x_{0}^{4}\right) \otimes \Lambda\left(y_{0}\right)
$$

Recently, Yagita [3] showed that even if the number of odd generators is greater than $2(p-1), H^{*}(X ; \mathbb{Z} / p)$ has A as a sub-Hopf algebra over \mathbb{Z} / p on the condition that $H^{*}(X ; \mathbb{Z} / p)$ has only one even degree generator in degree $2(p+1)$.

For $p=2,3,5$, the Lie groups G_{2}, F_{4}, E_{8} realize A. On the other hand, if $p \geqslant 7$, there are no known simply connected loop spaces realizing A.

In this paper, we show the following fact.
Theorem 1.1. If $p \geqslant 7$, then there is no simply connected loop space X with the homotopy type of a $C W$-complex of finite type, so that $H^{*}(X ; \mathbb{Z} / p) \cong A$ as a Hopf algebra over the $\bmod p$ Steenrod algebra.

Our method can also be applied to prove that A is not realized by an A_{p}-space.
The results by Kane [2] and Yagita [3] are not for loop spaces but for homotopy associative H-spaces. The author does not know if A is realized by a homotopy associative H-space.

2. 3-connected covering

In the rest of this paper, the cohomology is assumed to have coefficients in \mathbb{Z} / p for a fixed odd prime p unless otherwise stated.

In this section we assume that X is a simply connected loop space with the homotopy type of a CW-complex of finite type, so that

$$
H^{*}(X) \simeq A
$$

as a Hopf algebra over the $\bmod p$ Steenrod algebra \mathscr{A}. Let $r: X\langle 3\rangle \rightarrow X$ be the 3 connected cover of X. Then we can prove the following:

Lemma 2.1. We have

$$
H^{*}(X\langle 3\rangle) \cong \Lambda\left(r^{*} x_{i}, r^{*} y_{i}, v, w \mid 1 \leqslant i \leqslant p-2\right) \otimes \mathbb{Z} / p[u]
$$

where $\operatorname{deg} r^{*} x_{i}=2(p+1) i+3, \operatorname{deg} r^{*} y_{i}=2(p+1)(i+1)-1, \operatorname{deg} v=2 p^{2}+1$, $\operatorname{deg} w=2 p^{2}+2 p-1, \operatorname{deg} u-2 p^{2}$, and

$$
\mathscr{P}^{1} r^{*} x_{i}=r^{*} y_{i}, \quad \beta u=v, \quad \mathscr{P}^{\mathbf{l}} v=w .
$$

Furthermore, $r^{*} x_{i}, r^{*} y_{i}, v, w \in H^{*}(X\langle 3\rangle)$ are all primitive, and $r^{*} x_{0}=r^{*} y_{0}=r^{*} z=0$.
The above lemma can be proved by using the Serre spectral sequence, and we omit the proof.

Let $B X\langle 3\rangle$ be a space with $\Omega(B X\langle 3\rangle) \simeq X\langle 3\rangle$. Then we have the cobar spectral sequence $\left\{E_{r}^{s, t}, d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t-r+1}\right\}$ converging to $H^{*}(B X\langle 3\rangle)$. The E_{1}-term is the cobar complex of $\widetilde{H}^{*}(X\langle 3\rangle)$, i.e.,

$$
\begin{aligned}
& E_{1}^{s, *}=\widetilde{H^{*}}(X\langle 3\rangle)^{\otimes s}, \\
& d_{1} \mid E_{1}^{s, *}=\sum_{j=1}^{s}(-1)^{j} \mathrm{id}^{\otimes j-1} \otimes \widetilde{\mu} \otimes \mathrm{id}^{\otimes s-j}
\end{aligned}
$$

where we use the notation $\Phi^{\otimes t}$ for the t-fold tensor product of Φ for any module or map Φ. Then, we have

$$
E_{2}^{*, *}=\operatorname{Cotor}_{H^{*}(X\langle 3\rangle)}^{*, *}(\mathbb{Z} / p, \mathbb{Z} / p) .
$$

We can prove the following fact.
Lemma 2.2. If u is primitive, then for total degree less than or equal to $2 p^{3}$, we have

$$
E_{2}^{*, *} \cong \mathbb{Z} / p\left[X_{i}, Y_{i}, V, W \mid 1 \leqslant i \leqslant p-2\right] \otimes \Lambda(U)
$$

If u is not primitive, then for total degree less than $2 p^{3}$, we have

$$
E_{2}^{*, *} \cong \mathbb{Z} / p\left[X_{i}, Y_{i}, V, W \mid 1 \leqslant i \leqslant p-2\right] /\left(U^{\prime}\right)
$$

Here $X_{i}=\left[r^{*} x_{i}\right], Y_{i}=\left[r^{*} y_{i}\right], U=[u], V=[v], W-[w]$, and $\left(U^{\prime}\right)$ is an ideal generated by some class U^{\prime} of degree $\left(2,2 p^{2}\right)$.

Proof. The first half is clear.
Suppose that u is not primitive. We define a filtration $\left\{F_{n}\right\}$ of $H^{*}(X\langle 3\rangle)$ by

$$
\begin{aligned}
& F_{0}=\Lambda\left(r^{*} x_{i}, r^{*} y_{i}, v, w\right) \\
& F_{n}=F_{n-1}+u \cdot F_{n-1} \quad(n \geqslant 1)
\end{aligned}
$$

Then the filtration $\left\{F_{n}\right\}$ is compatible with the coalgebra structure on $H^{*}(X\langle 3\rangle)$, that is, if μ^{*} is the coproduct on $H^{*}(X\langle 3\rangle)$, then $\mu^{*}\left(F_{n}\right) \subset \sum_{\mathcal{E}} F_{i} \otimes F_{n-i}$. Thus, we have a filtration on the cobar complex of $H^{*}(X\langle 3\rangle)$ I et $\left\{\widetilde{E}_{r}^{*, *}, \widetilde{d}_{r}\right\}$ be the spectral sequence associated to the above filtration. Then, $\widetilde{E}_{\infty}^{*, *}$ is the graded associated algebra of Cotor $H_{H^{*}(X(3))}^{*, *}(\mathbb{Z} / p, \mathbb{Z} / p)$, and

$$
\widetilde{E}_{2}^{*, *} \cong \operatorname{Cotor}_{B}^{*, *}(\mathbb{Z} / p, \mathbb{Z} / p)
$$

where $B=\sum F_{n} / F_{n-1}$. By definition, B is isomorphic to $\Lambda\left(r^{*} x_{i}, r^{*} y_{i}, v, w\right) \otimes \mathbb{Z} / p[u]$ with all generators primitive. Thus we have

$$
\widetilde{E}_{2}^{*, *} \cong \mathbb{Z} / p\left[\tilde{X}_{i}, \widetilde{Y}_{i}, \widetilde{V}, \widetilde{W}\right] \otimes A(\widetilde{U})
$$

for total degree $\leqslant 2 p^{3}$, where $\widetilde{X}_{i}=\left[r^{*} x_{i}\right], \widetilde{Y}_{i}=\left[r^{*} y_{i}\right], \widetilde{U}=[u], \widetilde{V}=[v]$, and $\widetilde{W}=[w]$.

Now $\widetilde{X}_{i}, \widetilde{Y}_{i}, \widetilde{V}, \widetilde{W}$ are all infinite cycles. Let \widetilde{d}_{r} be the first nontrivial differential for total degree $\leqslant 2 p^{3}$. Put $\widetilde{U}^{\prime}=\widetilde{d}_{r}(\widetilde{U}) \neq 0$. Then we have

$$
\widetilde{E}_{r+1}^{*, *} \cong \mathbb{Z} / p\left[\widetilde{X}_{i}, \widetilde{Y}_{i}, \widetilde{V}, \widetilde{W}\right] /\left(\widetilde{U}^{\prime}\right)
$$

for total degree $\leqslant 2 p^{3}$. Since $\widetilde{E}_{r+1}^{s, t}$ has no nontrivial classes of odd total degree for $s+t \leqslant 2 p^{3}$, we have $\widetilde{E}_{\infty}^{s, t}=\widetilde{E}_{r+1}^{s, t}$ for $s+t<2 p^{3}$. This shows that there is an epimorphism

$$
\mathbb{Z} / p\left[X_{i}, Y_{i}, V, W\right] \rightarrow \operatorname{Cotor}_{H^{*}(X\langle 3\rangle)}^{* *}(\mathbb{Z} / p, \mathbb{Z} / p)
$$

for total degree $<2 p^{3}$. Let U^{\prime} be a nontrivial class of minimal total degree in the kernel of the above map. Since U^{\prime} is determined by $d_{1}(u)=\widetilde{\mu}(u)$ in the cobar complex of $H^{*}(X\langle 3\rangle)$, we have $\operatorname{deg} U^{\prime}=\left(2,2 p^{2}\right)$. It is clear that the induced epimorphism

$$
\mathbb{Z} / p\left[X_{i}, Y_{i}, V, W\right] /\left(U^{\prime}\right) \rightarrow \operatorname{Cotor}_{H^{*}(X\langle\beta\rangle)}^{*, *}(\mathbb{Z} / p, \mathbb{Z} / p)
$$

is also an isomorphism for total degree $<2 p^{3}$ by considering the rank. Thus the second half is proved.

If u is not primitive, the above lemma shows that $E_{2}^{s, t}$ with $s+t<2 p^{3}$ has no nontrivial classes of odd total degree, which shows that the spectral sequence collapses for total degree less than $2 p^{3}-1$. We have the same conclusion in the first case provided that u is transgressive, for dimensional reasons. If u is primitive and not transgressive, then we have only one nontrivial differential d_{r} with $0 \neq d_{r}(u) \in E_{r}^{1+r, 2 p^{2}-r+1}$. Then, by the same method as in the proof of the above lemma, we have the following result.

Lemma 2.3. If u is transgressive, then for degree less than $2 p^{3}$, we have

$$
H^{*}(B X(3)) \cong \mathbb{Z} / p\left[X_{i}, Y_{i}, V, W \mid 1 \leqslant i \leqslant p-2\right] \otimes \Lambda(U)
$$

If u is not transgressive, then for degree less than $2 p^{3}-1$, we have

$$
H^{*}(B X\langle 3\rangle) \cong \mathbb{Z} / p\left[X_{i}, Y_{i}, V, W \mid 1 \leqslant i \leqslant p-2\right] /\left(U^{\prime \prime}\right)
$$

for some $U^{\prime \prime}$ with $\operatorname{deg} U^{\prime \prime}=2 p^{2}+2$. Here $\operatorname{deg} X_{i}=4+2(p+1) i, \operatorname{deg} Y_{i}=2(p+1)(i+1)$, $\operatorname{deg} U=2 p^{2}+1, \operatorname{deg} V=2 p^{2}+2, \operatorname{deg} W=2 p^{2}+2 p$, and $\mathscr{P}^{1} X_{i}=Y_{i}, \mathscr{P}^{l} V=W$, $\beta U=V$.

Let I be the ideal of $H^{*}(B X(3))$ generated by the following factors:
(i) $\sum_{t \geqslant 2 p^{3}-1} H^{t}(B X(3))$,
(ii) $\left\{X_{i}, Y_{i}, V, W \mid i \neq(p-3) / 2, p-2\right\}$,
(iii) U if u is transgressive.

We prove the following:
Lemma 2.4. Let $p \geqslant 5$. Put $\alpha=X_{(p-3) / 2}, \beta=Y_{(p-3) / 2}, \gamma=X_{p-2}$ and $\delta=Y_{p-2}$. Then

$$
H^{*}(B X(3\rangle) / I \cong \mathbb{Z} / p[\alpha, \beta, \gamma, \delta] /\left(\operatorname{deg} \geqslant 2 p^{3}-1\right)
$$

Furthermore, I is closed under the action of \mathscr{A}. Thus $\mathbb{Z} / p[\alpha, \beta, \gamma, \delta] /\left(\operatorname{deg} \geqslant 2 p^{3}-1\right)$ is an unstable algebra over \mathscr{A} with the following relations:

$$
\mathscr{P}^{\prime} \alpha-\beta, \quad \mathscr{P}^{\prime} \gamma=\delta .
$$

Proof. For the case that u is transgressive, the first half of the lemma is clear.
For the case that u is not transgressive, $H^{*}(B X\langle 3\rangle) / I$ is clearly a quotient algebra of $C=\mathbb{Z} / p[\alpha, \beta, \gamma, \delta] /\left(\operatorname{deg} \geqslant 2 p^{3}-1\right)$. Here, every element in C has degree congruent to $0 \bmod 2(p-1)$. Since $\operatorname{deg} U^{\prime \prime}=2 p^{2}+2 \not \equiv 0 \bmod 2(p-1)$, there are no more relations for $H^{*}(B X(3\rangle) / I$, and we have $H^{*}(B X\langle 3\rangle) / I \cong C$.

Next note that $\operatorname{deg} X_{i} \equiv \operatorname{deg} Y_{i} \not \equiv 0 \bmod 2(p-1)$ for $i \neq(p-3) / 2, p-2$, and $\operatorname{deg} V \not \equiv 0 \bmod 2(p-1), \operatorname{deg} W \not \equiv 0 \bmod 2(p-1)$. Thus we have $\mathscr{P}^{k}(I) \subset I$ for dimensional reasons. Since there are no odd degree elements in $H^{*}(B X(3)) / I, I$ is also closed under the Backstein operation, and we have the results.

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The proof is by contradiction.
Assume that $p \geqslant 7$, and that X is a simply connected loop space with the homotopy type of a CW-complex of finite type so that

$$
H^{*}(X) \cong A
$$

Then we have an unstable \mathscr{A} algebra

$$
H^{*}(B X\langle 3\rangle) / I=C=\mathbb{Z} / p[\alpha, \beta, \gamma, \delta] /\left(\operatorname{deg} \geqslant 2 p^{3}-1\right)
$$

by Lemma 2.4 .
Lemma 3.1. Let J be the ideal of C generated by $\{\beta, \gamma, \delta\}$. Then $\mathscr{P}^{l}(\delta)$ does not belong to J.

Proof. Suppose contrarily that $\mathscr{P}^{1} \delta \in J$. Since $p \geqslant 7$, we have $\mathscr{P} \beta \in J$ for dimensional reason. So we have $\mathscr{P}^{1}(J) \subset J$. Here $\alpha^{p}=\mathscr{P}^{n} \alpha=\mathscr{P}^{1}\left(n^{-1} \mathscr{P}^{n-1} \alpha\right)$. Since $\mathscr{P}^{n-1} \alpha \in$ J for dimensional reason, we have a contradiction.

Lemma 3.2. $p=7$ and $\mathscr{P}^{1}(\delta)=\alpha$.
Proof. First we note that $\operatorname{deg} \mathscr{P}^{\mathrm{l}} \delta=\operatorname{deg} \alpha^{t}$ for some t by Lemma 3.1. Since $\operatorname{deg} \mathscr{P}^{1} \delta=$ $2 p^{2}-2+2(p-1)$ and $\operatorname{deg} \alpha^{t}=t\left(p^{2}-2 p+1\right)$, we have $t \equiv-4 \bmod p$. Thus $t=p-4$,
and we have $2 p^{2}-2+2(p-1)=(p-4)\left(p^{2}-2 p+1\right)$, which implies that $p=7$ and $\mathscr{P} 1 \delta=e \alpha^{3}$ for some $e \neq 0$. By substituting $e^{-1} \gamma, e^{-1} \delta$ for γ, δ, if necessary, we have $\mathscr{P}^{1} \delta=\alpha^{3}$.

Now

$$
\alpha^{7}=\mathscr{P}^{18} \alpha=\mathscr{P}^{4} \mathscr{P}^{14} \alpha=\mathscr{P}^{4}\left(a \alpha^{3} \beta^{2}+b \alpha^{3} \delta+c \alpha^{2} \beta \gamma+d \alpha \gamma^{2}\right),
$$

for some $a, b, c, d \in \mathbb{Z} / p$. Then, by comparing the coefficients of α^{7} and $\alpha^{3} \beta \delta$ in the above equation, we have two contradictory equations $d \neq 0$ and $d=0$. Thus, for $p \geqslant 7$, there is no such loop space X, and Theorem 1.1 is proved.

References

[1] A. Borel, Topics in the Homology Theory of Fibre Bundles, Lecture Notes in Mathematics 36 (Springer, Berlin, 1967).
[2] R.M. Kane, Torsion in homotopy associative H-spaces, Illinois J. Math. 20 (1976) 476-485.
[3] N. Yagita, Pontriagin rings of the Morave K-theory for finite H-spaces, Preprint.

[^0]: ${ }^{1}$ E-mail: hemmi@math.kochi-u,ac.jp.

