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Abstract

Let A be the Hopf algebra over Z/p for a prime p given by A = Az, | 0 < i <
p—2)® (2/pl2]/(2")) (dega = 2Ap+ 1)i+3, degys = 2p+ 1)(i+1)— 1, deg z = 2(p+ 1)).
Kane showed that A is a minimum candidate for the modp cohomology of a simply connected
mod p finite loop space with p-torsion. In fact, if p = 2,3, 5, then for X = G, Fy, Es, we have
H*(X;Z/p) = A. We prove that if p > 7, then there are no such loop spaces X.
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1. Introduction

Let X be a simply connected loop space with finite modp cohomology H*(X;Z/p)
for a prime p. Then, H*(X;Z/p) is isomorphic as an algebra to a tensor product of
monogenic Hopf algebras [1, Theorem 3.2]. If H*(X;Z/p) is an exterior algebra, then
for a space BX with 2(BX) ~ X, H*(BX,;Z/p) is a polynomial algebra. Lots of
facts are known about the realization problem of polynomial algebras over the mod p
Steenrod algebra, and hence about loop spaces with exterior mod p cohomologies. On
the other hand, very little is known for the case that H*(X;Z/p) is not an exterior
algebra. Kane [2, Theorem 1.3] showed that if the number of odd degree generators of
H*(X;Z/p) is less than 2(p — 1), then H*(X;Z/p) is an exterior algebra, while if it is
just 2(p — 1) and H*(X;Z/p) is not an exterior algebra, then, as a Hopf algebra over
the mod p Steenrod algebra, H*(X;Z/p) is isomorphic to a Hopf algebra

A= Axi,y: | 0<i <p-2)© (Z/pl2]/(z)).
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Here degz; = 2(p+ 1)i +3, degy; =2(p+1)(i + 1) — 1, degz = 2(p + 1), and for
the coproduct p*: A — A ® A,

i—1
1
7 (961)—m1®1+1®.'cz+z:—:n]®zz 7,
— (i = j)!
j=
1—1

u(y1)—yz®l+1®yz+z Y ® 2,

1
)l
pz)=201+1®z.

Furthermore, the action of the mod p Steenrod algebra is given by
Pz =y, Byo = z.

We notice that if p = 2, then &' is considered as Sq?, and so we have z = Sq' qu(xo) =
Sq* () = x3. Thus, A is considered as
A= 2/2[x]/(a8) © Alwo).
Recently, Yagita [3] showed that even if the number of odd generators is greater than
2(p— 1), H*(X;Z/p) has A as a sub-Hopf algebra over Z/p on the condition that
H*(X;Z/p) has only one even degree generator in degree 2(p + 1).
For p = 2,3, 5, the Lie groups G, Fy, Eg realize A. On the other hand, if p > 7, there

are no known simply connected loop spaces realizing A.
In this paper, we show the following fact.

Theorem 1.1. If p > 7, then there is no simply connected loop space X with the homo-
topy type of a CW-complex of finite type, so that H*(X,Z/p) = A as a Hopf algebra
over the mod p Steenrod algebra. '

Our method can also be applied to prove that A is not realized by an A,-space.

The results by Kane [2] and Yagita {3] are not for loop spaces but for homotopy asso-
ciative H-spaces. The author does not know if A is realized by a homotopy associative
H-space.

2. 3-connected covering

In the rest of this paper, the cohomology is assumed to have coefficients in Z/p for a
fixed odd prime p unless otherwise stated.

In this section we assume that X is a simply connected loop space with the homotopy
type of a CW-complex of finite type, so that

H*(X)= A

as a Hopf algebra over the modp Steenrod algebra <7 Let r: X{(3) — X be the 3-
connected cover of X. Then we can prove the following:
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Lemma 2.1. We have

H*(X(3)) = A(r*zs, 7" yi,v,w | 1 <1< p—2) @ Z/plul,
where degr*z; = 2(p+ 1)i + 3, degr*y; = 2(p+ 1)(i + 1) — 1, degv = 2p* + 1,
degw = 2p* +2p — 1, degu = 2p?, and

Prre, =y, Pu=v, Pv=w.

Furthermore, r*x;, m*y;,v,w € H*(X (3)) are all primitive, and r*zq = 7™*yo = 7*z = 0.

The above lemma can be proved by using the Serre spectral sequence, and we omit
the proof.

Let BX(3) be a space with 2(BX (3)) ~ X (3). Then we have the cobar spectral
sequence {E3t d,: ESt — ESTi=TH1Y converging to H*(BX(3)). The Ej-term is
the cobar complex of H*(X(3)), i.e.,

EPT = H(X(3))%",

8
ABY = (~1Yid® 7 g eid®
j=1
where we use the notation $®* for the ¢-fold tensor product of ¢ for any module or map
@. Then, we have

E;’* = COtOI‘;}: (X(3)) (Z/pa Z/p)

We can prove the following fact.

Lemma 2.2. If u is primitive, then for total degree less than or equal to 2p®, we have
EX* 2 Z/pX:, Y, VW |1<i<p~2]®AU).
If w is not primitive, then for total degree less than 2p’, we have
E}" =Z/p[X:,Yi,V,W |1 <i<p-2]/(U).
Here X; = [r*xz;], Yi = [r*y, U = [u], V = [v], W = [w], and (U’) is an ideal
generated by some class U’ of degree (2,2p?).

Proof. The first half is clear.
Suppose that v is not primitive. We define a filtration {F),} of H*(X (3)) by

FO = A(T*xiy T*yiv ’U,’LU),

F,.=F,_14+u-F,_ ('I‘LZ 1).
Then the filtration {F),} is compatible with the coalgebra structure on H*(X (3)), that
is, if p* is the coproduct on H*(X (3)), then u*(F,) C 3 F; ® F,,_;. Thus, we have
a filtration on the cobar complex of H*(X(3)). Let {E>",d,} be the spectral se-

quence associated to the above filtration. Then, EX3* is the graded associated algebra
of Cotor’;i”:(x(3>)(Z/p, Z/p), and

E3* = Cotory*(Z/p, Z/p),
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where B = ) F;,/F,, 1. By definition, B is isomorphic to A(r*z;, 7*y;, v, w) @ Z/p|u)
with all generators primitive. Thus we have
Er™ = 7/p[ X, Vi, V, W] @ A(U)
for total degree < 2p’, where X; = [z, Yi = [P, U = [u), V = [v], and
W=. N
Now X, Y, V., W are~all irﬁiniﬁe cycles. Let d,- be the first nontrivial differential for
total degree < 2p*. Put U’ = d,.(U) # 0. Then we have

EXY = 2/p(X Y, V. W)/(0)

for total degree < 2p*. Since Ef_’l] has no nontrivial classes of odd total degree for
s+t < 2p°, we have E3 = E2!, for s + ¢ < 2p’. This shows that there is an
epimorphism

Z/p[X:, Y, V, W] = Cotory™ 2y (Z/p, Z/p)

for total degree < 2p*. Let U’ be a nontrivial class of minimal total degree in the kernel

of the above map. Since U’ is determined by d;(v) = p(u) in the cobar complex of
H*(X(3)), we have degU’ = (2,2p?). It is clear that the induced epimorphism

Z/p|X:,Y;, V,W]/(U') — CotoryZ x 1y (Z/p, Z/p)

is also an isomorphism for total degree < 2p* by considering the rank. Thus the second
half is proved. O

If w is not primitive, the above lemma shows that Ef’t with s +¢ < 2p* has no
nontrivial classes of odd total degree, which shows that the spectral sequence collapses
for total degree less than 2p* — 1. We have the same conclusion in the first case provided
that u is transgressive, for dimensional reasons. If ¢ is primitive and not transgressive,
then we have only one nontrivial differential d, with 0 # d,.(u) € El*"’:"pz_”l. Then,
by the same method as in the proof of the above lemma, we have the following result.

Lemma 2.3. If u is transgressive, then for degree less than 2p’, we have
H*(BX(3)) 2 Z/plX:,Yi, VVW [ 1 <i<p-2]&AU).
If w is not transgressive, then for degree less than 2p° — 1, we have
H*(BX(3)) 2 Z/p[X:,Yi, VW [ 1 <i<p-2]/(U")
for some U" with degU" = 2p*+2. Here deg X; = 4+2(p+1)i, degY; = 2(p+1)(i+1),

deglU = 2p* + 1, degV = 2p* + 2, degW = 2p*> + 2p, and P'X; =Y;, P'V =W,
pU =V.

Let I be the ideal of H*(BX(3)) generated by the following factors:
() Pizop_y H'(BX(3)),
(iti) U if u is transgressive.
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We prove the following:

Lemma 2.4. Let p > 5. Put « = Xp_3y72, B = Yp_3)2, v = Xp2and § = Y,_».
Then

H*(BX(3))/1= Z/plo, B,7,6]/(deg = 2p" — 1).
Furthermore, 1 is closed under the action of «. Thus Z/p|a, 3,7, 6]/(deg > 2p* — 1) is

an unstable algebra over &/ with the following relations:

Pa=p,  Py=3

Proof. For the case that u is transgressive, the first half of the lemma is clear.

For the case that u is not transgressive, H*(BX (3))/1 is clearly a quotient algebra of
C = Z/pla, 8,7, 8] /(deg = 2p* — 1). Here, every element in C has degree congruent to
0 mod2(p — 1). Since degU"” = 2p* +2 # 0 mod2(p — 1), there are no more relations
for H*(BX(3))/1, and we have H*(BX(3))/I = C

Next note that deg X; = degY; # 0 mod2(p — 1) for i # (p — 3)/2, p— 2, and
degV # 0 mod2(p — 1), degW # 0 mod2(p — 1). Thus we have F*(I) c I for
dimensional reasons. Since there are no odd degree elements in H*(BX (3))/1,1 is also
closed under the Backstein operation, and we have the results. O

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The proof is by contradiction.
Assume that p > 7, and that X is a simply connected loop space with the homotopy
type of a CW-complex of finite type so that

H"(X)= A
Then we have an unstable <7 algebra

H*(BX(3))/I =C =Z/pla, B,7,8]/(deg > 2p* — 1)
by Lemma 2.4.

Lemma 3.1. Let J be the ideal of C generated by {3,~,8}. Then Z'(8) does not belong
1o J.

Proof. Suppose contrarily that 2'§ € J. Since p > 7, we have '8 € J for dimensional
reason. So we have 2'(J) C J. Here of = P"a = P'(n~! 2" a). Since 2" la ¢
J for dimensional reason, we have a contradiction. O

Lemma 3.2. p =7 and #'(§) = a.

Proof. First we note that deg #'§ = deg o* for some t by Lemma 3.1. Since deg 2! =
2p? —=2+2(p—1) and degat = t(p? ~2p+ 1), we have t = —4 modp. Thus t = p— 4,
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and we have 2p?> —2+2(p — 1) = (p — 4)(p* — 2p + 1), which implies that p = 7 and
P5 = ea’ for some e # 0. By substituting e~!,e~'4 for v, §, if necessary, we have
Ps=0a'. O

Now

o = PBa = PP = Pad’ B + ba’S + ca’By + dar?),

for some a,b,c,d € Z/p. Then, by comparing the coefficients of o’ and o338 in the
above equation, we have two contradictory equations d # 0 and d = 0. Thus, for p > 7,
there is no such loop space X, and Theorem 1.1 is proved.
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