provided by Elsevier -

Available at www.ElsevierMathematics.com

FOWERED BY SCIENCE $\vec{\omega}$ direct'

TER Computers and Mathematics with Applications 46 (2003) 1183-1193

www.elsevier.com/locate/camwa

Discrete Numerical Solution of Coupled Mixed Hyperbolic Problems

J. CAMACHO, E. DEFEZ, L. JÓDAR AND J. V. ROMERO

Instituto de Matematica Multidisciplinar Universidad Politécnica de Valencia Valencia 46071, Spain

 \langle fcamacho \rangle \langle edefez \rangle \langle ljodar \rangle \langle jvromero \rangle @mat.upv.es

(Received February 2002; revised and accepted April 2003)

Abstract—This paper deals with the construction of stable discrete numerical solutions of strongly coupled mixed hyperbolic problems using difference schemes. By means of a discrete separation of variables method and solving the underlying discrete Sturm-Liouville type problem, the numerical solution of the discretized mixed problem is constructed.@ 2003 Elsevier Ltd. All rights reserved.

Keywords-Coupled hyperbolic system, Difference schemes

1. INTRODUCTION

Coupled hyperbolic partial differential differential systems arise in microwave heating processes \mathcal{I}_1 Coupled hyperbolic partial differential systems arise in microwave heating processes $[1,2]$, optics [3], cardiology [4], soil flows [5,6], and others. Uncoupling techniques [5] have well-known drawbacks such as assuming unnecessary hypotheses, the increase of the order of differentiation of the system, and others [7]. In this paper, we use matrix finite difference schemes to construct discrete numerical solutions of mixed problems of hyperbolic type modeled by

$$
Au_{xx}(x,t) - u_{tt}(x,t) = 0, \t 0 < x < 1, \t t > 0,
$$
\t(1)

$$
u(0,t) = 0, \qquad t > 0,
$$
\n⁽²⁾

$$
Bu(1,t) + Cu_x(1,t) = 0, \qquad t > 0,
$$
\n(3)

$$
u(x,0) = f(x), \qquad 0 \le x \le 1,
$$
 (4)

$$
u_t(x,0) = v(x), \qquad 0 \le x \le 1,\tag{5}
$$

where A, B, C are $m \times m$ complex matrices, elements of $\mathbb{C}^{m \times m}$, and the unknown u and f, v are \mathbb{C}^m -valued functions.

We assume that

$$
C \t{is invertible}, \t(6)
$$

all the eigenvalues of A are positive. (7) This work has been partially supported by the Spanish D.G.I.C.Y.T. Grant BMF 200

This work has been partially supported by the Spanish D.G.I.C.Y.T. Grant BMF 2000-206-CO4-04 and Grant 08981221/03/\$ - see front matter and matter \sim

 $0898-1221/03/$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. Typeset by AMS-TFX doi: 10.1016/S0898-1221(03)00351-1

It is important to note that even in the case where A is a diagonalizable matrix, the problem remains coupled if matrices B and C are not simultaneously diagonalizable with A . For the coupled parabolic case, matrix difference schemes have been recently used in [8,9].

Throughout this paper, the set of all the eigenvalues of a matrix P in $\mathbb{C}^{m \times m}$ is denoted by $\sigma(P)$ and its 2-norm, denoted by ||P|| is defined by [10, p. 56]

$$
||P|| = \sup_{v \neq 0} \frac{||Pv||_2}{||v||_2},
$$

where for a vector z in \mathbb{C}^m , $n||zn||_2$ is the usual Euclidean norm of z. The maximum of the set $\{|\lambda|; \lambda \in \sigma(P)\}\$ is called the spectral radius of P and is denoted by $\rho(P)$. If P is Hermitian, i.e., $P = P^H$, where P^H is the conjugate transpose of P, then $||P|| = \rho(P)$ [11, p. 23]. If P is diagonalizable and Q is an invertible matrix such that $Q^{-1}PQ$ is a diagonal matrix, then $||P|| \leq ||Q^{-1}|| \, ||Q|| \rho(P).$

If S is a matrix in $\mathbb{C}^{n \times m}$, we denote by S^{\dagger} its Moore-Penrose pseudoinverse. An account of properties and applications of this concept may be found in [12,13]. The kernel of S , denoted by Ker S, coincides with the matrix $I - S^{\dagger}S$, denoted by Im($I - S^{\dagger}S$). We say that a subspace E of \mathbb{C}^m is invariant by the matrix $A \in \mathbb{C}^{m \times m}$ if $A(E) \subset E$. The property $A(\text{Ker }G) \subset \text{Ker }G$ is equivalent to the condition $GA(I - G^{\dagger}G) = 0$ [14].

If $P \in \mathbb{C}^{m \times m}$, $f(w)$ is a holomorphic function defined on an open set Ω of the complex plane and $\sigma(P)$ lies in Ω , the holomorphic matrix functional calculus defines $f(P)$ as a matrix that may $\frac{1}{2}$ and $\frac{1}{2}$ are an experimental in P of degree smaller than the minimal polynomial of P, see a latter than the minimal polynomial polynomial polynomial polynomial polynomial polynomial polynomial polynomial po $\frac{1}{2}$ is in particular, if $\frac{1}{2}$ is invertible, then generally defined by $\frac{1}{2}$ is $\frac{1}{2}$ 0) P_1 borst considering for a b ranch of the complex logarithm $L_{\alpha} = 0$, L_{α} , $L_{\alpha} = 0$, $L_{\alpha} = 0$, $L_{\alpha} = 0$ p_{α} and considering $p(x) = \log_{\alpha}(x)$ is station of the complex regardently, notified from E_{α} [5] p. 76, then for $w \in D_\alpha$, the function $\sqrt{w} = \exp((1/2) \log_\alpha(w))$ is holomorphic and $\sqrt{P} =$ $\exp((1/2)\log_{\alpha}(P))$ is the square root of P. Note that if J_P is the Jordan canonical form of P. $P = SJ_PS^{-1}$ and $\sqrt{J_P}$ is the square root of J_P , then $Q = S\sqrt{J_P}S^{-1}$ is a square root of P. The real line is represented by $\mathbb R$.

This paper is organized as follows. Section 2 deals with the discretization of problem (1) -(5) using central difference approximations for the second derivatives u_{xx} , u_{tt} , forward difference approximations for u_t and backward difference for u_x . Section 3 deals with the construction of nontrivial solutions of the boundary value problem resulting from the discretization of problem $(1)-(3)$. Section 4 deals with the construction of stable solutions of the discretized mixed problem using a discrete separation of the variables method. Finally, Section 5 includes a projection method that permits us to extend the results of Section 4 to a wider class of initial value functions $f(x)$ and $v(x)$.

2. ON THE DISCRETIZATION PARTIAL

Let us divide the domain $[0,1] \times [0, +\infty]$ into equal rectangles of sides $\Delta x = h$, $\Delta t = k$, and introduce coordinates of a typical mesh point (ih, jk) with $U(i,j) = u(ih, jk)$. Using central difference approximations for both u_{tt} and u_{xx} [17,18] forward differences for u_t and backward for u_x :

$$
u_t(ih, jk) \simeq \frac{U(i, j + 1) - U(i, j)}{k}, \qquad u_{tt}(ih, jk) \simeq \frac{U(i, j + 1) - 2U(i, j) + U(i, j - 1)}{k^2},
$$

$$
u_x(ih, jk) \simeq \frac{U(i, j) - U(i - 1, j)}{h}, \qquad u_{xx}(ih, jk) \simeq \frac{U(i + 1, j) - 2U(i, j) + U(i - 1, j)}{h^2};
$$

discretization of problem (1) – (5) yields

$$
r^{2}A\left[U(i+1,j)+U(i-1,j)\right]+2\left(I-r^{2}A\right)U(i,j)-\left[U(i,j+1)+U(i,j-1)\right]=0,
$$

0 < i < N, j > 0, (8)

$$
U(0,j) = 0, \t j > 0,
$$
\t(9)

$$
BU(N,j) + NC [U(N,j) - U(N-1,j)] = 0, \qquad j > 0,
$$
\n(10)

$$
U(i,0) = F(i) = f\left(\frac{i}{N}\right), \qquad 0 \le i \le N,\tag{11}
$$

$$
\frac{U(i,1) - U(i,0)}{k} = V(i) = v\left(\frac{i}{N}\right), \qquad 0 \le i \le N,
$$
 (12)

where

$$
r = \frac{k}{h}, \qquad Nh = 1. \tag{13}
$$

3. THE DISCRETIZED BOUNDARY DIFFERENCE PROBLEM

Let us seek solutions of problem (8) - (10) of the form

$$
U(i,j) = T(j)H(i), \qquad T(j) \in \mathbb{C}^{m \times m}, \qquad H(i) \in \mathbb{C}^m.
$$
 (14)

Equation (8) for sequences of form (14) gives

$$
r^{2}AT(j)[H(i+1) + H(i-1)] + 2(I - r^{2}A)T(j)H(i) - [T(j+1) - T(j-1)]H(i) = 0.
$$
 (15)

Let ρ be a real number and let us write equation (15) in the form

$$
r^{2}AT(j)\left[H(i+1)-\left(2+\frac{\rho}{r^{2}}\right)H(i)+H(i-1)\right]
$$

-
$$
\left[T(j+1)-(2I+\rho A)T(j)+T(j-1)\right]H(i)=0.
$$
 (16)

Note that equation (16) is satisfied in $\{H(i)\}, \{T(j)\}$ satisfy

$$
H(i+1) - \left(2 + \frac{\rho}{r^2}\right)H(i) + H(i-1) = 0, \qquad 0 < i < N,
$$
\n(17)

$$
T(j+1) - (2I + \rho A) T(j) + T(j-1) = 0, \qquad j > 0.
$$
 (18)

Let us take $\rho \in \mathbb{R}$ such that

$$
-4r^2 < \rho < 0. \tag{19}
$$

Then $-1 < (\rho + 2r^2)/2r^2 < 1$ and there exists $\theta \in]0, 2\pi[\sim {\pi} \}$ such that

$$
\cos \theta = \frac{2r^2 + \rho}{2r^2}, \qquad \rho = 2r^2 (\cos \theta - 1) = -4r^2 \sin^2 \left(\frac{\theta}{2}\right).
$$
 (20)

Let

$$
z_0 = \frac{2r^2 + \rho}{2r^2} + i\sqrt{1 - \left(\frac{2r^2 + \rho}{2r^2}\right)^2} = e^{i\theta} \quad \text{and} \quad z_1 = \frac{2r^2 + \rho}{2r^2} - i\sqrt{1 - \left(\frac{2r^2 + \rho}{2r^2}\right)^2} = e^{-i\theta}
$$

be the solutions of the scalar equation

$$
z^{2} - \left(2 + \frac{\rho}{r^{2}}\right)z + 1 = 0,
$$
\n(21)

and note that

$$
z_0^n = \cos(n\theta) + i\sin(n\theta), \qquad z_1^n = \cos(n\theta) - i\sin(n\theta). \tag{22}
$$

The general solution of equation (17) satisfying $H(0) = 0$ takes the form

$$
H(i) = \sin(i\theta)E, \qquad E \in \mathbb{C}^m. \tag{23}
$$

Thus, the boundary condition (9) is satisfied and condition (10) holds if

$$
M(\theta)T(j)E=0, \qquad j>0,
$$
\n(24)

where $\{T(j)\}\$ is a solution of (18) and

$$
M(\theta) = C^{-1}B\sin(N\theta) + N\left[\cos(N\theta) - \sin((N-1)\theta)\right]I.
$$
 (25)

In order to solve (18), let us consider the algebraic matrix equation

$$
W^2 - (2I + \rho A)W + I = 0, \qquad W \in \mathbb{C}^{m \times m}.
$$
 (26)

If A has positive eigenvalues, taking

$$
r < \frac{1}{\sqrt{\rho(A)}} = \min\left\{a^{-1/2}; \ a \in \sigma(A)\right\} \tag{27}
$$

and using that $\rho = -4r^2 \sin^2(\theta/2)$, it follows that matrices

$$
W_0 = I + \frac{\rho A}{2} + \sqrt{\left(I + \frac{\rho A}{2}\right)^2 - I}, \qquad W_1 = I + \frac{\rho A}{2} - \sqrt{\left(I + \frac{\rho A}{2}\right)^2 - I} \tag{28}
$$

are solutions of (20) such that

$$
W_0 - W_1 = 2\sqrt{\left(I + \frac{\rho A}{2}\right)^2 - I}
$$
 is invertible. (29)

In fact, by the spectral mapping theorem $[15, p. 524]$, one gets

$$
\sigma(W_0 - W_1) = \left\{ 2\sqrt{\left(1 + \frac{\rho a}{2}\right)^2 - 1}; \ a \in \sigma(A) \right\}
$$
 (30)

and
$$
\left(1 + \frac{\rho a}{2}\right)^2 - 1 = \frac{\rho^2 a^2}{4} + \rho a = \rho a \left(1 + \frac{\rho a}{4}\right) \neq 0.
$$
 (31)

By $[19,20]$, condition (29) inequis that the pair

$$
T(j) = W_0^j P + W_1^j Q, \qquad P, Q \in \mathbb{C}^{m \times m}.
$$
 (32)

 $B_{\rm eff}$ the matrix functional calculus, both matrix functional calculus, both matrices W By the properties of the matrix function

Hence, condition (24) is equivalent to the condition

$$
M(\theta)A^j(P,Q) = 0, \qquad 0 \le j < p, \quad P,Q \in \mathbb{C}^m. \tag{34}
$$

Thus, the boundary value problem $(8)-(10)$ admits nontrivial solutions of the form (14) if there are vectors P, Q nonsimultaneously zero, satisfying (34). A necessary condition to have eigenfunctions is that matrix $M(\theta)$ be singular and, by (25), this occurs if the matrix

Thus, the boundary value problem (8)-(10) admits nontrivial solutions of the form (14) if there are

$$
C^{-1}B + \frac{N\left[\sin\left(N\theta\right) - \sin\left(\left(N-1\right)\theta\right)\right]}{\sin\left(N\theta\right)}I
$$
 is singular. (35)

 \mathcal{L}^{\pm}

 $\sim 10^{10}$

Let us assume that

there exists
$$
\mu \in \sigma(-C^{-1}B) \cap \mathbb{R}
$$
. (36)

Note that condition (35) holds if there are solutions θ of the scalar equation

$$
\frac{N\left[\sin\left(N\theta\right) - \sin\left(\left(N-1\right)\theta\right)\right]}{\sin\left(N\theta\right)} = \mu.
$$
\n(37)

Equation (37) is equivalent to

$$
(2N - \mu) \, tg\left(\frac{\theta}{2}\right) = \mu t g\left(\left(N - \frac{1}{2}\right)\theta\right). \tag{38}
$$

If $\mu \neq 0$, it is easy to show that there exists a root θ_l of (38) in the interval $I(l) = |(2l-1)\pi|$ $(2N-1), (2l+1)\pi/(2N-1)$ for $1 \leq l \leq N-1$. If $\mu = 0$, then B is singular and equation (37) is equivalent to the equation $\sin(N\theta) = \sin((N-1)\theta)$, having solutions $\theta_l = (2l-1)\pi/(2N-1)$ for $l = 1, 2, \ldots, N - 1$. Let $G(\mu) = C^{-1}B + \mu I$ and note that condition (34) is equivalent to

$$
G(\mu)A^j(P,Q) = 0, \qquad 0 \le j < p. \tag{39}
$$

If we define the block matrix $\tilde{G}(\mu)$ by

$$
\tilde{G}(\mu) = \begin{bmatrix} G(\mu) \\ G(\mu)A \\ \vdots \\ G(\mu)A^{p-1} \end{bmatrix},
$$
\n(40)

then (39) can be written in the form

$$
\tilde{G}(\mu)(P,Q) = 0.\t\t(41)
$$

 \mathbb{R}^n (12, p. 241, the algebraic system (41) admits nonzero solutions (P, \mathbb{R}^n if rank \mathbb{R}^n by $[12, p, 24]$, the algebraic system (41) admits not

$$
(P,Q) = \left(I - \tilde{G}(\mu)^{\dagger} \tilde{G}(\mu)\right) (P_0, Q_0), \qquad P_0, Q_0 \in \mathbb{C}^m.
$$

Summarizing, the following result has been established. T_{max} , $\frac{1}{2}$ be a real number satisfying (36).

THEOREM 1. Let A, C be matrices satisfying (6),(7) and let μ be a real number satisfying (36). Let $r > 0$ satisfy (27) and let θ_l be solutions of (38) in $I(l) = |(2l - 1)\pi/(2N - 1), (2l + 1)\pi/(2N - 1)$ $p-1$, for $1 \leq l \leq N-1$, if $\mu \neq 0$; and $\theta_l = (2l-1)\pi/(2N-1)$, for $1 \leq l \leq N-1$, if $\mu = 0$. Let $\rho_l = -4r^2 \sin^2(\theta_l/2)$, $M(\theta_l)$ be defined by (25), $G(\mu) = C^{-1}B + \mu I$, and $\tilde{G}(\mu)$ defined by (40). If rank $\tilde{G}(\mu) < m$, then the boundary problem (8)–(10) admits nonzero solutions defined by

$$
U_l(i,j) = \left(W_0^j P_l + W_1^j Q_l\right) \sin(i\theta_l), \qquad 1 \le i \le N-1, \quad j > 0,
$$
 (42)

where $1 \leq l \leq N-1$,

$$
W_0 = I - 2Ar^2 \sin^2\left(\frac{\theta_l}{2}\right) + \sqrt{\left(I - 2Ar^2 \sin^2\left(\frac{\theta_l}{2}\right)\right)^2 - I},
$$

\n
$$
W_1 = I - 2Ar^2 \sin^2\left(\frac{\theta_l}{2}\right) - \sqrt{\left(I - 2Ar^2 \sin^2\left(\frac{\theta_l}{2}\right)\right)^2 - I},
$$
\n(43)

$$
(P_l, Q_l) = \left(I - \tilde{G}(\mu)^\dagger \tilde{G}(\mu)\right)(P, Q), \qquad P, Q \in \mathbb{C}^m.
$$
 (44)

4. THE MIXED PROBLEM

Let us assume the hypotheses and the notation of Section 3. By superposition, we seek a candidate solution of problem $(8)-(12)$ of the form

$$
U(i,j) = \sum_{l=1}^{N-1} \left(W_0^j P_l + W_1^j Q_l \right) \sin(i\theta_l), \qquad 1 \le i \le N-1, \quad j > 0,
$$
 (45)

where vectors P_l, Q_l lie in Ker $\tilde{G}(\mu)$ and must be chosen so that conditions (11) and (12) hold.

In order to identify vectors P_l , Q_l appearing in (45), let us consider the scalar discrete Sturm-Liouville problem

$$
h(i + 1) - \left(2 + \frac{\rho}{r^2}\right)h(i) + h(i - 1) = 0, \qquad 0 < i < N,
$$

\n
$$
h(0) = 0, \qquad \mu h(N) - N[h(N) - h(N - 1)] = 0,
$$
\n(46)

whose eigenfunctions set is $\{\sin(i\theta_i)\}_{i=1}^{N-1}$. By imposing the initial conditions (11) and (12) to the sequence $\{U(i, j)\}\)$ defined by (45), it follows that

$$
F(i) = \sum_{l=1}^{N-1} (P_l + Q_l) \sin (i\theta_l),
$$
 (47)

$$
kV(i) + F(i) = \sum_{l=1}^{N-1} \{ W_0 P_l + W_1 Q_l \} \sin(i\theta_l).
$$
 (48)

 $B_{\rm eff}$ theory of discrete $F_{\rm eff}$ series \sim 111, working component by component, \sim E_f and another f or different

$$
P_{l} + Q_{l} = \frac{\sum_{l=1}^{N-1} \sin(i\theta_{l}) F(i)}{\sum_{i=1}^{N-1} \sin^{2}(i\theta_{l})},
$$
\n(49)

$$
W_0 P_l + W_1 Q_l = \frac{\sum_{l=1}^{N-1} \{kV(i) + F(i)\} \sin(i\theta_l)}{\sum_{i=1}^{N-1} \sin^2(i\theta_l)}.
$$
 (50)

Premultiplying (49) by W_0 and subtracting (50), one gets

$$
(W_0 - W_1) Q_l = \frac{\sum_{l=1}^{N-1} \{ (W_0 - I) F(i) - kV(i) \} \sin (i\theta_l)}{\sum_{i=1}^{N-1} \sin^2 (i\theta_l)}.
$$
 (51)

$$
(W_0 - W_1) P_l = \frac{\sum_{l=1}^{N-1} \{kV(i) - (W_1 - I) F(i)\} \sin(i\theta_l)}{\sum_{i=1}^{N-1} \sin^2(i\theta_l)}.
$$
 (52)

Since $W_0 - W_1$ is invertible, from (51),(52), one gets

$$
P_l = \frac{(W_0 - W_1)^{-1} \sum_{l=1}^{N-1} \{kV(i) - (W_1 - I) F(i)\} \sin(i\theta_l)}{\sum_{i=1}^{N-1} \sin^2(i\theta_l)},
$$
(53)

$$
Q_{l} = \frac{(W_{0} - W_{1})^{-1} \sum_{l=1}^{N-1} \{ (W_{0} - I) F(i) - kV(i) \} \sin (i\theta_{l})}{\sum_{i=1}^{N-1} \sin^{2} (i\theta_{l})}.
$$
 (54)

Since by (28),(29), matrices W_0 , W_1 , and $(W_0 - W_1)^{-1}$ are polynomials in the matrix A of degree $p-1$, by (40), (53), and (54), vectors P_l, Q_l satisfy (41) if

$$
\{F(i), V(i), \ 1 \le i \le N - 1\} \subset \text{Ker } G(\mu) \tag{55}
$$

and

$$
Ker G(\mu) \text{ is an invariant subspace of } A. \tag{56}
$$

Condition (56) can be expressed in the form

$$
G(\mu)A\left(I - G(\mu)^{\dagger}G(\mu)\right) = 0. \tag{57}
$$

THEOREM 2. Under hypotheses (55) and (57), together with those of Theorem 1, the sequence ${U(i, j)}$ given by (45) defines a solution of the mixed problem (8)–(12).

By the spectral mapping theorem [15, p. 569], the spectrum of matrices W_0 and W_1 defined by (43) are given by

$$
1 - 2ar^{2} \sin^{2}\left(\frac{\theta_{l}}{2}\right) \pm \sqrt{\left(1 - 2ar^{2} \sin^{2}\left(\frac{\theta_{l}}{2}\right)\right)^{2} - 1}, \qquad a \in \sigma(A)
$$

 $\sqrt{1-\frac{2a}{a}}$ Hence, there is $\frac{1}{2}$ and $\frac{1}{2}$ plus $\frac{1}{2}$ Hence, $\rho(W_0) = \rho(W_1) = 1.$

We are now concerned with the stability of the solution given by (45) , (53) , and (54) . This means that given (X, T) , where $X = i/N = ih_0$, $h_0 = 1/N$ fixed, $T = Jk$ finite, we are concerned with the behaviour of $\{U(i,j)\}\$ as $k \to 0$, i.e., $j \to \infty$, but with $Jk = T$ fixed. By (7) and (43), it follows that

$$
||W_0|| \le 1 + O(r), \quad ||W_0 - I|| = O(r), \qquad ||(W_0 - W_1)^{-1}|| = O(r^{-1}), \qquad r \to 0,
$$

$$
||W_1|| \le 1 + O(r), \quad ||W_1 - I|| = O(r), \qquad \qquad |(58)
$$

Fixed ho = l/N, since r = k/h, (58) means Fixed $h_0 = 1/N$, since $r = k/h$, (58) means

$$
||W_0|| \le 1 + O(k), \quad ||W_0 - I|| = O(k), \quad ||(W_0 - W_1)^{-1}|| = O(k^{-1}), \qquad k \to 0,
$$

\n
$$
||W_1|| \le 1 + O(k), \quad ||W_1 - I|| = O(k), \qquad k \to 0.
$$
\n
$$
(59)
$$

$$
||P_l|| = O(1), \quad ||Q_l|| = O(1), \qquad k \to 0.
$$
 (60)

By (60), it follows that $\{U(i,j)\}\$ remains bounded as j increases, if the numbers (see [18, $p. 106]$ $\mathbf{u} = \mathbf{u} \mathbf{u} + \mathbf{u}$

$$
\left\|W_0^j\right\|, \left\|W_l^j\right\| \text{ remains bounded as } j \to \infty, \ k \to 0, \ 0 < j \le J, \ Jk = T.
$$

Note that since $||W_0|| \leq 1 + O(k)$, let $||W_0|| \leq 1 + kS$, for some positive constant, then, for $0 \leq j \leq J$, one gets

$$
\left\|W_0^j\right\| \leq \left\|W_0\right\|^j \leq \left(1 + O(k)\right)^j \leq \left(1 + O(k)\right)^j \leq e^{JO(k)} \leq e^{JkS} = e^{TS}.
$$

The same occurs for $\|W_1^j\|$. Hence, by (60), the solution defined by (45), (53), and (54) is stable, i.e.,

$$
||U(i,j)|| = O(1), \t k \to 0, \t h_0 = \frac{1}{N} \text{ fixed},
$$

1 < i < N, \t j \to \infty, \t t = jk \text{ finite}. (61)

Summarizing, the following result has been established.

THEOREM 3. Under the hypothesis of Theorem 2, the solution $\{U(i,j)\}\$ defined by (45), (53), and (54) is stable in the sense of (61), for $r > 0$ satisfying

$$
r < \left[\rho(A)\right]^{-1/2}.\tag{62}
$$

REMARK 1. If matrix A is symmetric, then W_0 and W_1 are also symmetric. Then $||W_0|| =$ $\rho(W_0) = 1 = \rho(W_1) = ||W_1||$ and independently of t, the solution given by Theorem 3 remains bounded as $j \to \infty$.

EXAMPLE 1. Consider problem (8) - (12) where $m = 3$ and matrices

$$
A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 1 & -2 \\ 1 & 0 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}.
$$

The matrix C is invertible and $-C^{-1}B$ is given by

$$
-C^{-1}B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 2 & 0 & -1 \end{bmatrix}.
$$

In this case, we hav

$$
G(1) = \begin{bmatrix} 0 & 0 & 0 \\ -2 & 0 & 2 \\ -2 & 0 & 2 \end{bmatrix}, \qquad G(1)^{\dagger} = \begin{bmatrix} 0 & -\frac{1}{8} & -\frac{1}{8} \\ 0 & 0 & 0 \\ 0 & \frac{1}{8} & \frac{1}{8} \end{bmatrix}.
$$

The subspace $\text{Ker } G(1)$ is invariant by A because

$$
G(1)A\left[I-G(1)^\dagger G(1)\right] =0.
$$

If we consider problem (8)-(12) with the above data and initial functions $F(i)$, $V(i)$ lying in Ker $G(1)$, then the solution given by (45), (53), and (54) is stable for $r < [\rho(A)]^{-12} = 1/\sqrt{2}$. Let $f = (f_1, f_2, f_3)^{\top}$, $v = (v_1, v_2, v_3)^{\top}$, then

$$
\left\{f\left(\frac{i}{N}\right),\ v\left(\frac{i}{N}\right); 1\leq i\leq N\right\}\subset \text{Ker }G(1)
$$

means that

means that
$$
f_1\left(\frac{i}{N}\right) = f_3\left(\frac{i}{N}\right), \quad v_1\left(\frac{i}{N}\right) = v_3\left(\frac{i}{N}\right), \quad 1 \le i \le N.
$$

Thus, if f and v satisfy the last condition, the solution of problem $(8)-(12)$ given by Theorem 3 is stable for $r < 1/\sqrt{2}$.

5. THE PROJECTION METHOD

This section is concerned with the construction of solutions of problem $(8)-(12)$ for functions F, V, satisfying more general conditions than those of Section 4. Suppose that

$$
\{\mu(1),\ldots,\mu(q)\}\subset\sigma\left(-C^{-1}B\right)\cap\mathbb{R},\tag{63}
$$

where $\mu(i) \neq \mu(j)$ for $1 \leq i, j \leq q, i \neq j$, and let $G(\mu(h))$ be the matrix

$$
G(\mu(h)) = (C^{-1}B + \mu(h)I), \qquad 1 \le h \le q. \tag{64}
$$

As polynomials $x - \mu(h)$ are mutually coprime, by the decomposition theorem [22, p. 536], if $R(x)$ is the polynomial

$$
R(x) = (x - \mu(1)) (x - \mu(2)) \cdots (x - \mu(q)), \qquad (65)
$$

then

$$
S = \text{Ker } R\left(-C^{-1}B\right) = \text{ker } G\left(\mu(1)\right) \oplus \cdots \oplus \text{Ker } G\left(\mu(q)\right). \tag{66}
$$

Assume that

$$
\{F(i),\ V(i),\ 1\leq i\leq N-1\}\subset S.\tag{67}
$$

Now we define the projection of functions F, V on the subspace Ker $G(\mu(h))$. Since polynomial

$$
q_h(x) = \prod_{\substack{k=1\\k \neq h}}^q (x - \mu(k))
$$
\n(68)

is coprime, by Bezout's theorem $[22, p. 538]$, taking

$$
\alpha_h = \left(\prod_{\substack{s=1\\s\neq h}}^q (\mu(h) - \mu(s))\right)^{-1}, \qquad 1 \leq h \leq q,\tag{69}
$$

$$
1 = \sum_{k=1}^{q} \alpha_k q_k(x). \tag{70}
$$

 \mathbf{p}

$$
R(\mu(s))=G(\mu(1))\cdots G(\mu(s-1))G(\mu(s+1))\cdots G(\mu(q)), \qquad (71)
$$

$$
I = (-1)^q \sum_{s=1}^q \alpha_s R(\mu(s)).
$$
 (72)

$$
F_s = (-1)^s \alpha_s R(\mu(s)) F(i) \in \text{Ker } G(\mu(s)),
$$

\n
$$
V_s = (-1)^s \alpha_s R(\mu(s)) V(i) \in \text{Ker } G(\mu(s)), \qquad 1 \le s \le q,
$$
\n
$$
(73)
$$

where

$$
F(i) = \sum_{h=1}^{q} F_h(i), \quad V(i) = \sum_{h=1}^{q} V_h(i), \qquad 1 \le i \le N-1.
$$
 (74)

Let us assume that projections $F_s, V_s, 1 \leq s \leq q$, satisfy

$$
\{F_s(i), G_s(i), 1 \le i \le N-1\} \subset \text{Ker } G(\mu(s)),
$$

\n
$$
G(\mu(s)) A \left(I - G(\mu(s))^{\dagger} G(\mu(s)) \right) = 0,
$$
\n(75)

and let $U(\cdot,\cdot,s)$ be the solution of the mixed problem given by Section 4 and associated to the eigenvalue $\mu(s)$ instead of μ ; i.e.,

$$
U(i,j,s) = \sum_{l=1}^{N-1} \left\{ W_{0,s}^{j} P_{l}(s) + W_{1,s}^{j} Q_{l}(s) \right\} \sin(i\theta_{l}(s)),
$$
\n(76)

where $\{\theta_l(s); 1 \leq l \leq N - 1\}$ are solutions of equation

$$
(2N - \mu(s))tg\left(\frac{\theta(s)}{2}\right) = \mu(s)tg\left(\left(N - \frac{1}{2}\right)\theta(s)\right),
$$

$$
\theta(s) \in \left[\frac{(2l - 1)\pi}{2N - 1}, \frac{(2l + 1)\pi}{2N - 1}\right], \qquad 1 \le l \le N - 1,
$$
 (77)

$$
P_{l}(s) = \frac{(W_{0,s} - W_{1,s})^{-1} \sum_{i=1}^{N-1} \{kV_{s}(i) - (W_{1,s} - I) F_{s}(i)\} \sin(i\theta_{l}(s))}{\sum_{i=1}^{N-1} \sin^{2}(i\theta_{l}(s))},
$$
\n(78)

$$
Q_{l}(s) = \frac{(W_{0,s} - W_{1,s})^{-1} \sum_{i=1}^{N-1} \left\{ (W_{0,s} - I) F_{s}(i) - kV_{s}(i) \right\} \sin(i\theta_{l}(s))}{\sum_{i=1}^{N-1} \sin^{2}(i\theta_{l}(s))},
$$

$$
W_{0,s} = I - 2Ar^{2} \sin^{2}\left(\frac{\theta_{l}(s)}{2}\right) + \sqrt{\left(I - 2Ar^{2} \sin^{2}\left(\frac{\theta_{l}(s)}{2}\right)\right)^{2} - I},
$$

$$
W_{1,s} = I - 2Ar^2 \sin^2\left(\frac{\theta_l(s)}{2}\right) - \sqrt{\left(I - 2Ar^2 \sin^2\left(\frac{\theta_l(s)}{2}\right)\right)^2 - I}.
$$
\n(7)

By construction,

$$
U(i,j) = \sum_{s=1}^{q} U(i,j,s)
$$
 (80)

is a solution of (8) - (12) , that is, stable if

$$
r < [\rho(A)]^{-1/2}
$$
, $h_0 = \frac{1}{N}$ fixed, $j \to \infty$, $1 \le i \le N - 1$. (81)

1. A.C. Metaxss and R.J. Meredith, Indwtrial Microwave Heating, Peter Peregrinus, London, (1983).

- 1. A.C. Metaxas and R.J. Meredith, *Industrial Microwave Heating*, Peter Peregrinus, London, (1983).
- 2. A.F. Harvey, Microwave Engineering, Academic Press, New York, (1963).
- 3. P.K. Das, Optical Signal Processing, Springer, New York, (1991).
- 4. A.T. Winfree, When Times Breaks Down, Princeton University, Princeton, NJ, (1987).
- 5. D. Sheng and K. Axelsson, Uncoupling of coupled flows in soil. A finite element method, Int. J. Numer. Anal. Meth. Geomechanics 19, 537-553, (1995). 121-134, (1993).
121-122, (1993).
- 7. H.H. Chiu, Theory of irreducible linear systems, Quad. Appl. Math. XXVII, 87-104, (1969). 121–134, (1993).
7. H.H. Chiu, Theory of irreducible linear systems, *Quant. Appl. Math.* XXVII, 87–104, (1969).
-
- 8. L. Jódar, J.A. Sánchez and M.V. Ferrer, The stable discrete numerical solution of strongly coupled mixed partial differential systems, Computers Math. Applic. 39 (1/2), 169-182, (2000).
- 9. L. Jodar and J.A. Sanchez, Discrete numerical solutions of strongly coupled mixed diffusion problems, Computers Math. Applic. 40 (4/5), 471-489, (2000).
- 10. G. Golub and C.F. Van Loan, Matrix Computation, John Hopkins University Press, Baltimore, MD, (1989).
- 11. J.M. Ortega, Numerical Analysis. A Second Course, Academic Press, New York, (1972).
- 12. C.R. Rao and S.K. Mitra, Generalized Inverse of Matrices and its Applications, John Wiley, New York, (1971).
- 13. S.L. Campbell and C.D. Meyer, Jr., Generalized Inverses of Linear Transfomations, Pitman, London, (1971).
- 14. J.A. Martin, E. Navarro and L. Jodar, Exact and analytic-numerical solutions of strongly coupled mixed diffusion problems, Proc. Edinburgh Math. Soc. 43, 1-25, (2000).
- 15. N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience, New York, (1957).
- 16. S. Saks and A. Zygmund, Analytic Functions, Elsevier, Amsterdam, (1971).
- 17. J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Chapman and Hall, New York, (1990).
- 18. G.D. Smith, Numerical Solution of Partial Differential Equations: Difference Methods, Claredon, Oxford, (1978).
- 19. L. Jodar, Algebraic and differential operator equations, Linear Algebra Appl. 102, 35-53, (1988).
- 20. L. Jódar and E. Navarro, On complete sets of solutions of polynomial matrix equations, Appl. Math. Lett. 3 (l), 15-18, (1990).
- 21. R.P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York, (1992).
- 22. R. Godement, Cours D'Algebre, Hermann, Paris, (1967).