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Abstract—This paper deals with the construction of stable discrete numerical solutions of strongly
coupled mixed hyperbolic problems using difference schemes. By means of a discrete separation of
variables method and solving the underlying discrete Sturm-Liouville type problem, the numerical
solution of the discretized mixed problem is constructed.© 2003 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Coupled hyperbolic partial differential systems arise in microwave heating processes [1,2],
optics [3], cardiology [4], soil flows [5,6], and others. Uncoupling techniques [5] have well-known
drawbacks such as assuming unnecessary hypotheses, the increase of the order of differentiation
of the system, and others [7]. In this paper, we use matrix finite difference schemes to construct
discrete numerical solutions of mixed problems of hyperbolic type modeled by

Aug,(z,t) — un(z,t) =0, 0<z<l, t>0, (1)
w(0,1) = 0, t>0, @)
Bu(1,t) + Cua(1,t) = 0, £ 0, 3)
u(z,0) = f(z), 0<z<l, (4)
uy(z,0) =v(z), 0<z<l, (5)

where A, B, C are m x m complex matrices, elements of C™*™ and the unknown u and f,v are
C™-valued functions.
We assume that
C is invertible, (6)

all the eigenvalues of A are positive. )
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It is important to note that even in the case where A is a diagonalizable matrix, the problem
remains coupled if matrices B and C are not simultaneously diagonalizable with A. For the
coupled parabolic case, matrix difference schemes have been recently used in [8,9].

Throughout this paper, the set of all the eigenvalues of a matrix P in C™*™ is denoted by
o(P) and its 2-norm, denoted by || P|| is defined by [10, p. 56]

17} = sup 12002,
vzo |[vll
where for a vector z in C™, n| 2zn||; is the usual Euclidean norm of z. The maximum of the set
{|Al; A € o(P)} is called the spectral radius of P and is denoted by p(P). If P is Hermitian,
ie., P = PH where P¥ is the conjugate transpose of P, then ||P|| = p(P) [11, p. 23]. If P
is diagonalizable and @ is an invertible matrix such that Q~!PQ is a diagonal matrix, then
IP1 < 1@~ IQlle(P).

If S is a matrix in C**™, we denote by St its Moore-Penrose pseudoinverse. An account of
properties and applications of this concept may be found in {12,13]. The kernel of S, denoted by
Ker S, coincides with the matrix I — S'S, denoted by Im(I — STS). We say that a subspace E
of C™ is invariant by the matrix A € C™*™ if A(E) C E. The property A(KerG) C Ker G is
equivalent to the condition GA(I — G'G) = 0 [14].

If P e C™*™, f(w) is a holomorphic function defined on an open set §) of the complex plane
and o(P) lies in 2, the holomorphic matrix functional calculus defines f(P) as a matrix that may
be computed as a polynomial in P of degree smaller than the minimal polynomial of P, see [15,
p. 567]. In particular, if P is invertible, then o(P) lies in Dy = C ~ H,, H, = {—rei®*;r > 0}
and considering f(w) = log,(w) a branch of the complex logarithm, holomorphic in D, [16,
p. 76], then for w € D,, the function w = exp((1/2)log,(w)) is holomorphic and vP =
exp ((1/2) log, (P)) is the square root of P. Note that if Jp is the Jordan canonical form of P,
P = SJpS~! and /Jp is the square root of Jp, then Q = S1/JpS~1! is a square root of P. The
real line is represented by R.

This paper is organized as follows. Section 2 deals with the discretization of problem (1)-
(5) using central difference approximations for the second derivatives w,y,us;, forward difference
approximations for u; and backward difference for u,. Section 3 deals with the construction
of nontrivial solutions of the boundary value problem resulting from the discretization of prob-
lem (1)-(3). Section 4 deals with the construction of stable solutions of the discretized mixed
problem using a discrete separation of the variables method. Finally, Section 5 includes a pro-
jection method that permits us to extend the results of Section 4 to a wider class of initial value
functions f(z) and v(z).

2. ON THE DISCRETIZATION PARTIAL
DIFFERENCE PROBLEM

Let us divide the domain [0,1] x [0, +o0o[ into equal rectangles of sides Az = h, At = k, and
introduce coordinates of a typical mesh point (ih,jk) with U(3,5) = u(ih,jk). Using central
difference approximations for both uy and wu,, [17,18] forward differences for u; and backward

for u,:
L Ui +1)—UG,j o U(i,j+1)—2UG,5) + UG, -1
ug (ih, jk) = (3,5 ]1 (J), ugt (h, jk) = (i+1) Ing) (1,7 ),
o rre o . N oUG )+ Uli — 1 i
(i, j) = 2(0d) g(’ L) (ih gy ~ ZEE L) }512,1)+ (i=14).

discretization of problem (1)-(5) yields

rPAUG+1,)+ UG- 1L +2I -r?A)UG,5) ~ UG, +1)+U(i,5 —1)] =0,
0<i<N, i >0,

(®)
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U(0,5) =0, j>0, (9)
U(i,0) = F(i) = f (-]’V) 0<i<N, (11)
W=V(i)=v<%>, 0<i<N, (12)
where L

3. THE DISCRETIZED BOUNDARY DIFFERENCE PROBLEM
Let us seek solutions of problem (8)—(10) of the form

UG =THH(E, T@EeC™™,  H@EeC™ (14)
Equation (8) for sequences of form (14) gives
r?ATG)[HGE+ 1)+ H(GE - )] +2(I - r?A) TG HE) - [T +1) - TG - 1) HGE) =0. (15)
Let p be a real number and let us write equation (15) in the form

r2AT(j) [H(i +1) - (2 + T—‘;) H()+ H(i - 1)]

(16)
—[T(G+1) = QI+ pA)T() +T(5 - )] H(E) = 0.

Note that equation (16) is satisfied in {H(:)},{T(j)} satisfy
H(i+1)—(2+T£2)H(i)+H(i—1)=0, 0<i<N, a7
T(j+1)— QI+ pA) TG +TG-1)=0, j>0. (18)

Let us take p € R such that

-4t < p<0. (19)

Then —1 < (p+2r?)/2r? < 1 and there exists 8 €]0, 2w[~ {r} such that

2 4 p 2 220
cosf = 5 p=2r°(cosf —1) = —4r°sin (5) (20)
Let
2rltp 22 +p\* _ 2ritp 22 +p\* _
20 = o2 +1 1—( 53 ) =e and zl_T—z 1—( 572 > =e
be the solutions of the scalar equation
z2—(2+-7%)z+1=0, (21)
and note that
2y = cos (nf) + isin (nd), 27 = cos (nf) — isin (nb). (22)

The general solution of equation (17) satisfying H(0) = 0 takes the form

H(i) =sin(i)E, EecC™ (23)
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Thus, the boundary condition (9) is satisfied and condition (10) holds if
M@T{HE =0, >0, (24)
where {T(])} is a solution of (18) and
M(8) = C~'Bsin (N6) 4 N [cos (N6) —sin (N —1)6)] I. (25)
In order to solve (18), let us consider the algebraic matrix equation
W2 @I +pA)W+T1=0, WeC™™ (26)

If A has positive eigenvalues, taking

v r(4)

and using that p = —4r?sin? (8/2), it follows that matrices

A 2 2
WO=I+-”2—+ (I+ﬁ24) -1, WFH%“,/(H%“) -1 (%)

are solutions of (20) such that

< L min {a_l/z; a€ O'(A)} | (27)

2
Wo-W1 =2 (I + %) — I is invertible. (29)

In fact, by the spectral mapping theorem {15, p. 524], one gets

a(Wo—Wl)={2 (1+£’29)2—1;aea(A)} (30)
and a\ 2 242 ay
(1+-p2—) —1=pT+pa=pa(1+pz)7éO. - (31)

By [19,20], condition (29) means that the pair {Wo, W1} is a complete set of solutions of (26).
Hence, the general solution of (18) is given by

T(j)=W{P+W]Q, P,QeC™™ (32)

By the properties of the matrix functional calculus, both matrices Wy and W) are polynomials
in the matrix A of degree p — 1, where

p is the degree of the minimal polynomial of A. (33)
Hence, condition (24) is equivalent to the condition
M@)A’ (P,Q)=0, 0<j<p, PQeC™ (34)

Thus, the boundary value problem (8)—(10) admits nontrivial solutions of the form (14) if there are
vectors P, Q nonsimultaneously zero, satisfying (34). A necessary condition to have eigenfunctions
is that matrix M (6) be singular and, by (25), this occurs if the matrix

C™'B

+ N [sin (N8) —sin (N — 1) §)]

s (N9) I is singular. (35)
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Let us assume that ,
there exists € o (~C~'B) NR. (36)

Note that condition (35) holds if there are solutions € of the scalar equation

Nsin (N6) —sin ((N — 1) 6)]
sin (N6)

= U (37)

Equation (37) is equivalent to

(2N = ) tg (g) — utg ((N - %) 9) . (38)

If o # 0, it is easy to show that there exists a root ; of (38) in the interval I(l) =|(2l — 1)x/
(2N -1),(2l+1)m/(2N —1)[for 1 €I < N —1. If u = 0, then B is singular and equation (37)
is equivalent to the equation sin (N) = sin ((N — 1)8), having solutions 6; = (2l — 1)7/(2N - 1)
forl=1,2,...,N — 1. Let G(u) = C™1B + puI and note that condition (34) is equivalent to

GWA(P,Q)=0, 0<j<p (39)

If we define the block matrix G(u) by

G(p)
G(p) = G(lf)A , (40)
G () 471
then (39) can be written in the form
G)(P,Q) =0. (1)

By [12, p. 24], the algebraic system (41) admits nonzero solutions (P, Q) if rank G(u) < m, and
in this case, the solution set of (41) is expressed by

(P,Q) = (I-CW)'G() (Po, @), Po,QoeC™

Summarizing, the following result has been established.

THEOREM 1. Let A,C be matrices satisfying (6),(7) and let u be a real number satisfying (36).
Let r > 0 satisfy (27) and let 8; be solutions of (38) in I(l) =}(2l — 1)z /(2N — 1), (2l + 1)7 /(2N
—1), for 1<I<N-1,ifp#0;and = (2l - 1)w/(2N — 1), for 1 <I< N -1, if y=0. Let
pr = —4r2sin® (8;/2), M(6;) be defined by (25), G() = C~'B + pl, and G() defined by (40).
If rank G(p) < m, then the boundary problem (8)-(10) admits nonzero solutions defined by
Uy, 5) = (wgp, + W{Q,) sin(i9;), 1<i<N—1, j>0, (42)

where 1 <l <N —1,

2

Wy = I — 2Ar?sin? (gl—) + \/(I — 2Ar?sin® (%)) -1,
2

W, = I — 2Ar?sin? (%) — \/(I—QAT2 sin? (%)) -1,

(P, Q1) = (I _ é(u)fé(u)) (P,Q), PQeC™ (44)

3]

(43)
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4. THE MIXED PROBLEM

Let us assume the hypotheses and the notation of Section 3. By superposition, we seek a
candidate solution of problem (8)—(12) of the form

b4

-1

U(i,j) = (Wg}’erWsz)Sin(wz), 1<i<N-1,

i>0, (45)
I=1

where vectors P}, Q; lie in Ker G(u1) and must be chosen so that conditions (11) and (12) hold

In order to identify vectors P, Ql appearing in (45), let us consider the scalar discrete Sturm-
Liouville problem

h(i+1)~(2+;’%)h(i)+h(i—1)=0, 0<i<N,
' (46)
h0)=0,  ph(N)—N[h(N)—h(N —1)] =0,

whose eigenfunctions set is {sin(i&l)}fi 7!. By imposing the initial conditions (11) and (12) to
the sequence {U(z,7)} defined by (45), it follows that

N-—

=Y (P +Qu)sin(if), (47)

=1

—

=
L

EV(i)+ F@3) = {WoP, + W1Q} sin (i6;).

(48)
1=1

By the theory of discrete Fourier series [21, Chapter 11], working component by component
from (47), it follows that

N

z ' sin (16,) F' (i)
P+Qi=

L= (49)
sin® (i;)

z,'L

Nil {kV (i) + F(i)} sin (i6;)
WoP, + WiQi = =— : (50)
3 sin? (i6;)

=1

Premultiplying (49) by W and subtracting (50), one gets

g ((Wo — I) F(i) — kV (i)} sin (i6))

(Wo —W1) Qi = (51)
Z sin” (i6;)
i=1
Premultiplying (49) by (—W;) and adding (50), it follows that
N-1
S (kY Q) — (W) — I) F(5)} sin (i61)
(Wo — W) P, = == : (52)

N-1
3 sin® (i6;)
i=1
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Since Wy — W1 is invertible, from (51),(52), one gets

(Wo — Wy)™! 1:/2_: {(kV (i) — (Wy — I} F(i)} sin (i6)

P = T : (53)
S sin® (i6;)
i=1

N—
(W — Wy) ™ 21 {(Wo — I) F(i) ~ kV (i)} sin (i0))

Q= Bl - (54)
3 sin’ (i6;) '
i=1

Since by (28),(29), matrices Wy, Wi, and (Wy — W;)~! are polynomials in the matrix A of degree
p— 1, by (40), (53), and (54), vectors P, Q; satisfy (41) if

{F(),V(i), 1 <i < N ~1} C Ker G(u) (55)
and
Ker G(11) is an invariant subspace of A. (56)

Condition (56) can be expressed in the form

(WA (I - C(w)'Gu)) = 0. (57)

THEOREM 2. Under hypotheses (55) and (57), together with those of Theorem 1, the sequence
{U(i, )} given by (45) defines a solution of the mixed problem (8)-(12).

By the spectral mapping theorem [15, p. 569], the spectrum of matrices Wy and Wi defined
by (43) are given by

2
1 — 2ar?sin® (%) + \/(1 — 2ar?sin® (%)) -1, a€o(A).

Note that |1—2ar?sin® (6 /2):b\/(1 — 9ar?sin? (8,/2))? — 1| = 1, because 1 —2ar?sin® (6;/2) < 1.
Hence, p(Wp) = p(W7) = 1.

We are now concerned with the stability of the solution given by (45), (563), and (54). This
means that given (X,T), where X = i/N = ihg, ho = 1/N fixed, T = Jk finite, we are concerned
with the behaviour of {U(7,5)} as k — 0, i.e., J — oo, but with Jk =T fixed. By (7) and (43),
it follows that

IWoll < 1+0(), Wo-11=00),  |Wa=-w0)™|=0(),  r—o,

(58)
W1l <1+0(r), [Wh—I||=0(r), r— 0.
Fixed hg = 1/N, since r = k/h, (58) means
[Woll < 1+0(8), IWo T =0®), [0¥o-wi =0, k=0,
Wil <1+0(k), [Wi—I|=O0(k), k—0.
By (53), (54), and (59), it follows that
[Pl =0Q1), |Qdl=0(@1), k-0 (60)

By (60), it follows that {U(%,5)} remains bounded as j increases, if the numbers (see [18,
p. 106])

ng remains bounded as j — o0, k — 0, 0< j < J, Jk=T.

1k
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Note that since |Wy|| < 1+ O(k), let ||Wy| < 1+ kS, for some positive constant, then, for
0<j<J,one gets

[W3]| < 1walf < 1+ 0k < (14 OW)” < 70 < &7#5 = TS,

The same occurs for [|[W7||. Hence, by (60), the solution defined by (45), (53), and (54) is
stable, i.e.,

UG =00), k-0, ko= ;V. fixed,
1<i< N, j — o0, t = jk finite.

(61)

Summarizing, the follbwing result has been established.
THEOREM 3. Under the hypothesis of Theorem 2, the solution {U(%,5)} defined by (45), (53),
and (54) is stable in the sense of (61), for r > 0 satisfying

r < [p(4) 7. (62)

REMARK 1. If matrix A is symmetric, then Wy and W) are also symmetric. Then [|Woi|| =
p(Wo) =1 = p(W,) = ||W1|| and independently of ¢, the solution given by Theorem 3 remains
bounded as j — oo.

ExAMPLE 1. Consider problem (8)-(12) where m = 3 and matrices

2 -1 1 -1 -1 1 1 1 -1
A=(1 1 0}, B= 1 1 =27, C=|1 -1 0].
1 -1 2 1 0 -1 1 0 -1

The matrix C is invertible and —C~1B is given by
10 0
-C7'B=1|2 1 -2|."
2 0 -1

In this case, we have 0(A) = {1,2} and p = 1 € 0(—C~!B). The matrix G(1) = C1B + I and
G(1)! take the form

1 1

0 00 O -3 3
c="!-2 0 2|, cem=|o o 0
-2 0 2 1 1

© 3 B

The subspace Ker G(1) is invariant by A because

G()A[I-G)IG)] =0.

If we consider problem (8)-(12) with the above data and initial functions F (i), V(i) lying in
Ker G(1), then the solution given by (45), (53), and (54) is stable for r <. [p(4)]~*% = 1/v/2. Let

f = (flan, f3)T) v= (’Ul,’Uz,’U3)T’ then

{f (%)w(%);lsl’szv} ¢ Ker G(1)
fl(j%)=f3(%/:>, v1<%>=v3<%), 1<i<N.

Thus, if f and v satisfy the last condition, the solution of problem (8)~(12) given by Theorem 3
is stable for r < 1/+/2.

means that
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5. THE PROJECTION METHOD

This section is concerned with the construction of solutions of problem (8)— (12) for functions
F,V, satisfying more general conditions than those of Section 4. Suppose that

(1), 1)} C o (<CTIB) MR, (63)
where (i) # p(j) for 1 <4, j <.q, i # j, and let G(u(h)) be the matrix
G(u(h)=(C'B+uh)I), 1<h<gq (64)

As polynomials = — p(h) are mutually coprime, by the decomposition theorem [22, p. 536], if
R(z) is the polynomial ‘

R(z) = (z — p(1)) (z — pu(2)) -~ (z — () , (65)
then
S=KerR(~C™'B) =kerG(u(1)) ®--- © Ker G (u(q))- (66)
Assume that
{F(i), Vi), I<i<N-1}CS&. (67)

Now we define the projection of functions F, V on the subspace Ker G(u(h)). Since polynomial

q
an(2) = [] (z - n(k) (68)
k=1
k#h
is coprime, by Bezout’s theorem [22, p. 538], taking

-1
g

Qp = H (,u(h) - /J'(S)) ’ 1<h<yg (69)
Zh
one gets
1= ogqe(z (70)
k=1

By applying the matrix functional calculus on matrix (—C ™! B), by (64), (65), and (70), it follows
that

R(u(s)) = G (u(1)) -G (uls ~ 1) G (u(s +1)) --- G (u(a)), (71)
I=(-19Y auR(u(s)). , (72)

Hence, the projections of F'(i) = f(i/N), V(i) = v(i/N) on Ker G(u(s)) take the form

F, = (~1)°a.R (u(s)) F(i) € Ker G (u(s)),

)
V, = (10 R () V(i) €Ker G (u(s)), 1<s<q, 73

where

F() = iFh(i), V(i) =th(z‘), l<i<N-1, (74)
h=1
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Let us assume that projections F;,V;, 1 < s < g, satisfy
{Fs(3),Gs(i), 1 <i < N —1} C Ker G (u(s)),

G () A (1 - G (u(s))! 6 (u(s))) =0, (75)

and let U(,-,s) be the solution of the mixed problem given by Section 4 and associated to the
eigenvalue u(s) instead of y; i.e.,

N-1

UG,dis) = Y {Wi,Bils) + Wi, Qu(s) } sin (i61(s)), (76)

I=1

where {8;(s); 1 <! < N — 1} are solutions of equation

v = uotg (52) =g ( (- 3) 009

@2 -1)r (20+1) )
- U + Lim
0(5)6[2N-—1’2N—1]’ 1<I<N-1,
(Wo s —Wy,) " A?jl {kV,(5) — (W1, — I) Fy(i)} sin (i6(s))
Py(s) = = ,
> sin® (i6(s))
N-1 = (78)
(Wo,e = Wi,e) ™" T {(Wo,s — I) Fu(3) ~ kV4 (i)} sin (i6,(s))
Qi(s) = ' = ,
S sin® (16i(s))
i=1
2
Wo,s = I — 2Ar? sin® (?l—(;—)> + \/(I — 2Ar2sin? (@)) -1,
(79)
2
Wy = I — 2Ar?sin? (ﬁg—s—)-) - \/(I — 2Ar?sin® (Gl_gsl)) - 1.
By construction, ‘
q : .
U(G,5) = Uli,j,s) (80)
s=1
is a solution of (8)-(12), that is, stable if
r < [p(A)]"Y3, ho=%,—ﬁxeci, jooo, 1<i<N-1. (81)
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