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SUMMARY

We report the identification and characterization of
a five-carbon protein posttranslational modification
(PTM) called lysine glutarylation (Kglu). This protein
modification was detected by immunoblot and mass
spectrometry (MS), and then comprehensively vali-
dated by chemical and biochemical methods. We
demonstrated that the previously annotateddeacety-
lase, sirtuin 5 (SIRT5), is a lysine deglutarylase. Pro-
teome-wide analysis identified 683 Kglu sites in 191
proteins and showed that Kglu is highly enriched on
metabolic enzymes and mitochondrial proteins. We
validated carbamoyl phosphate synthase 1 (CPS1),
the rate-limiting enzyme in urea cycle, as a glutary-
lated protein and demonstrated that CPS1 is targeted
by SIRT5 for deglutarylation. We further showed that
glutarylation suppresses CPS1 enzymatic activity in
cell lines, mice, and a model of glutaric acidemia
type I disease, the last of which has elevated glutaric
acid and glutaryl-CoA. This study expands the land-
scape of lysine acyl modifications and increases our
understanding of the deacylase SIRT5.

INTRODUCTION

Under physiological conditions, cells are constantly exposed

to diverse stressors and variations in energy supply, leading to

fluctuations in cellular energy status. Therefore, cells require
C

adaptive strategies to respond to these dynamic changes in

the extracellular environment in order to maintain metabolic ho-

meostasis, including regulation of energy-producing pathways.

Indeed, several mechanisms have been described bywhich cells

adapt to such environmental changes, such as transcriptional

regulation by alterations of epigenetic marks, modulation of

metabolic enzyme activities by cellular metabolites, and protein

posttranslational modifications (PTMs) (Furuya and Uyeda,

1980; Lu and Thompson, 2012). Cellular metabolites play a key

role in the regulation of epigenetic modifications. For example,

acetyl-CoA, SAM, NAD+, and a-ketoglutarate are donors/sub-

strates or cofactors for histone lysine-modifying enzymes, i.e.,

those modulating levels of acetylation and methylation (Imai

et al., 2000; Takahashi et al., 2006; Tsukada et al., 2006; Wellen

et al., 2009). These PTM enzymes have important roles in mod-

ulation of chromatin structure and transcriptional regulation

(Berger, 2007; Chi et al., 2010).

In addition to histones, PTM-regulatory enzymes, such as

AMP-activated protein kinase (AMPK) and lysine deacetylases

(KDACs or HDACs), can control activity of their substrates (Chal-

kiadaki and Guarente, 2012; Hardie et al., 2012), many of which

are metabolic enzymes. Importantly, the activity of these PTM

enzymes can be modified depending on cellular energy status.

For example, sirtuin family HDACs (or class III HDACs) can be

regulated by the cellular NAD+ levels (Imai et al., 2000; Schmidt

et al., 2004). SIRT1 is the homolog to Sir2, the founding member

of this deacetylase subfamily, and has been shown to play an

important role in cellular metabolism (Chalkiadaki and Guarente,

2012). Lysine acetylation levels are coupled to metabolism and

play key roles in regulating mitochondrial enzymes, chromatin

biology, and other cellular processes (Chalkiadaki andGuarente,

2012; Verdin et al., 2010; Xiong and Guan, 2012). Recently, we
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Figure 1. Lysine Deglutarylation and Glutaryl-CoA Pathways

(A) Structures of glutaryl-lysine, succinyl-lysine, and malonyl-lysine.

(B) Illustration of glutaryl-CoA synthetic pathways.
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identified lysine succinylation (Ksucc) and malonylation (Kmal) as

protein PTMs (Peng et al., 2011; Xie et al., 2012; Zhang et al.,

2011). We and others showed that SIRT5, a sirtuin family

HDAC, has potent desuccinylase and demalonylase activities

(Du et al., 2011; Peng et al., 2011). A recent study using quanti-

tative proteomics demonstrated that SIRT5 ablation in MEFs in-

duces a dramatic increase of lysine succinylation, demonstrating

that SIRT5 is the major enzyme for lysine desuccinylation in the

cells (Park et al., 2013). In addition, lysine succinylation is an

abundant protein PTM in diverse model organisms (Weinert

et al., 2013). While little is known about the mechanisms of acyl-

ation, succinyl-CoA and malonyl-CoA could serve as the donors

for these two PTM reactions (Du et al., 2011; Peng et al., 2011;

Wagner and Payne, 2013). In addition to these metabolites,

NAD+ is required for SIRT5-dependent desuccinylation and de-

malonylation reactions (Du et al., 2011; Peng et al., 2011).

Together, association of three key cellular metabolites in these

pathways strongly suggests that succinylation and malonylation

PTMs have roles in metabolism (Park et al., 2013). It remains un-

known if additional PTMs exist that could control cellular meta-

bolic circuits.

In this study, we report a type of lysine modification called

lysine glutarylation (Kglu). First, we identified and comprehen-

sively validated Kglu as an evolutionarily conserved PTM. We

then showed that SIRT5 catalyzes lysine deglutarylation both

in vitro and in vivo. We further validated CPS1, the rate-limiting

enzyme important for ammonia detoxification in urea cycle, as

a glutarylated substrate. Glutarylation of CPS1 inhibits its activity

but can be reversed by SIRT5. We further showed that in a glu-

taric acidemia type I (glutaryl-CoA dehydrogenase deficiency)

disease model of elevated glutaryl-CoA, mice have elevated

glutarylation of mitochondrial proteins, including CPS1, and
606 Cell Metabolism 19, 605–617, April 1, 2014 ª2014 Elsevier Inc.
reduced CPS1 enzymatic activity, suggesting protein glutaryla-

tion as one possible alternative fate of elevated glutaryl-CoA

in this disease. We demonstrate that Kglu is a SIRT5- and

nutrient-regulated PTM, which impacts metabolic processes

and other mitochondrial functions.

RESULTS

We recently described two acyl modifications, lysine succinyla-

tion and malonylation (Peng et al., 2011; Xie et al., 2012; Zhang

et al., 2011). Succinyl-CoA and malonyl-CoA can be cofactors

for lysine succinylation and lysine malonylation, respectively

(Du et al., 2011; Peng et al., 2011;Wagner and Payne, 2013). Glu-

taryl-CoA is structurally similar to succinyl-CoA and malonyl-

CoA (Figure 1A) and is an important metabolite of amino acid

metabolism (Figure 1B and see Figure S1 available online). We

predicted that glutaryl-CoA could serve as the donor molecule

for the Kglu reaction (Koeppen et al., 1979; Mitzen and Koeppen,

1984), analogous to a role for acetyl-CoA in lysine acetylation.

Indeed, we have shown that a few other short-chain acyl-CoAs

can serve as precursors of lysine acylation, such as lysine pro-

pionylation, lysine butyrylation, and lysine crotonylation (Chen

et al., 2007; Tan et al., 2011).

To test whether Kglu could be detected in vivo, we generated a

pan-anti-Kglu antibody. This anti-Kglu antibody detected its anti-

gen peptide bearing a fixed glutarylated lysine (Kglu), but not pep-

tide libraries bearing a fixed unmodified lysine (K), acetyl-lysine

(Kac), malonyl-lysine (Kmal), or succinyl-lysine (Ksucc) (Figure 2A).

This result demonstrated high specificity of the antibody for

lysine-glutarylated peptides.

To examine whether Kglu is evolutionarily conserved, we per-

formed immunoblot analysis using the anti-Kglu antibody with

whole-cell lysates from different species: E. coli, S. cerevisiae,

Drosophila melanogaster (S2), mouse (MEFs), and human cells

(HeLa). Multiple bands were detected in all species, and these

signals could be efficiently competed away by the tryptic pep-

tides of glutarylated bovine serum albumin (BSA), but not the

corresponding tryptic peptides of unmodified BSA (Figures 2B

and S2A). These results suggest that Kglu is a broadly conserved

PTM and is present in both eukaryotic and prokaryotic cells.

Identification of E. coli and Human Kglu Substrates
To identify potential Kglu substrates in E. coli and HeLa cells, we

used an affinity enrichment-based proteomics approach as pre-

viously described (Chen et al., 2012; Kim et al., 2006). Glutary-

lated peptides were first enriched using the pan-anti-Kglu

antibody from tryptic digest of E. coli, and then analyzed by

HPLC-mass spectrometry (MS)/MS. The acquired MS/MS

spectra were analyzed by Mascot software to identify potential

Kglu peptides. We used strict manual verification criteria to filter

out false positives, as previously described (Chen et al., 2005),

to ensure bona fide identification of glutarylated lysines (Table

S1). In this pilot experiment, we detected 23 and 10 Kglu peptides

from E. coli and HeLa cells, respectively.

Verification of Kglu Using Synthetic Peptides
Because lysine-glutarylated peptides have not been described

in the past and affinity enrichment of Kglu peptides may identify

some structural isomers, it is therefore important to confirm the
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identified peptides. To this end, we carried out MS/MS (or tan-

dem mass spectrometry) and HPLC coelution experiments for

the in vivo-derived peptides and their synthetic counterparts.

Peptides with identical primary sequences and modifications

at the same residues should exhibit the same HPLC retention

times and MS/MS fragmentation patterns. Therefore, compara-

tive analysis of in vivo-derived peptides bearing the PTM of inter-

est with their corresponding synthetic standards is an ideal

approach to validate a PTM. We chemically synthesized two

Kglu peptides, SKgluATNLLYTR and NFSTVDIQKgluNGVK, based

on Kglu peptide candidates originally identified from E. coli and

HeLa cell, respectively. We performed MS/MS and HPLC coelu-

tion experiments to verify the chemical identity of the in vivo-

derived peptides. The MS/MS spectrum of a tryptic peptide

from E. coli DNA protection during starvation protein

(SK+114.0281DaATNLLYTR) with a mass shift of +114.0281Da at

the lysine residue has the same MS/MS spectrum as that of

the synthetic peptide with a glutaryl group on lysine residue

(SKgluATNLLYTR) (Figure 2C). In addition, the in vivo-derived

peptide coeluted with the synthetic one by the reverse-phase

HPLC/MS analysis (Figure 2D), further confirming that the de-

tected mass shift of + 114.0281Da in the in vivo-derived peptide

is caused by Kglu. Similarly, we also confirmed Kglu in a tryptic

peptide of the DNA mismatch repair protein Msh2 from HeLa

cells, NFSTVDIQK+114.0311DaNGVK (Figures S2B and S2C).

Validation of Kglu by Isotopic D4-Glutarate Labeling
Isotopic labeling is a method of choice to investigate the origin of

the carbon backbones of PTMs. Succinate and malonate can be

used by cells to generate lysine succinylation and malonylation,

respectively, presumably by generating succinyl-CoA and ma-

lonyl-CoA intermediary metabolites (Peng et al., 2011; Zhang

et al., 2011). Therefore, we hypothesized that Kglu may also be

labeled with isotopically labeled glutarate via the in vivo conver-

sion of D4-glutarate to D4-glutaryl-CoA. To test this hypothesis,

we first treated HeLa cells with nonisotopic glutarate. Our result

showed that glutarate can slightly enhance levels of global

glutarylation but has no influence on lysine acetylation and suc-

cinylation (Figure S2D). We then treated the cells with 20 mM

isotopically labeled D4-glutarate for 24 hr. Proteins’ whole-cell

lysates were isolated and digested with trypsin. Kglu peptides

were enriched by immunoprecipitation using the anti-Kglu anti-

body and analyzed by HPLC-MS/MS for peptide identification.

Isotopically (D4) labeled Kglu peptides (with an additional +4 Da

mass shift) can be distinguished from the regular Kglu on the

MS spectrum. This analysis revealed that the Kglu peptide iden-

tified from HeLa cells, NFSTVDIQKgluNGVK, was indeed labeled

with D4-glutarate (Figure S2E). These results further confirmed

the structure of this modification, and identified glutarate as

one metabolite that can be a precursor to Kglu. Together, four in-

dependent approaches, western blotting analysis, MS/MS and

HPLC coelution with synthetic peptides, and isotopic labeling,

identified and validated Kglu as a PTM and its presence in spe-

cies ranging from bacteria to mammals.

Screening of HDAC Lysine Deglutarylation Activity
In Vitro
Based on the structural similarity between lysine malonylation

and lysine succinylation (Figure 1A), we hypothesized Kglu could
C

be removed by SIRT5. To test this hypothesis, we first used a

fluorescence-based assay to screen all HDACs (including

HDAC 1–11 and sirtuin 1–7) for lysine deglutarylation activity,

as described previously (Peng et al., 2011) and as illustrated in

Figure S3A. Using this assay, we found SIRT5 is the only

HDAC exhibiting significant lysine deglutarylase activity in vitro

(Figures 3A and S3B).

In a second fluorescence-independent assay, we further

tested the ability of the sirtuins to deglutarylate peptide or protein

substrates. We used an assay that monitors the consumption

of 32P radio-labeled NAD+ by the sirtuins using two different sub-

strates. First, acylated histone 4 (H4) peptide was generated

enzymatically by incubating a peptide derived from H4 1–21

with recombinant p300 in the presence of acetyl-CoA, succi-

nyl-CoA, or glutaryl-CoA. We observed NAD+ hydrolysis,

coupled with the generation of O-acyl-ADP-ribose (OA-ADPR),

indicating sirtuin catalyzed deacylation (Figure S3C). As ex-

pected, SIRT3 effectively deacetylated the acetylated peptide

and SIRT5 effectively desuccinylated the succinylated peptide

(Figure S3C). SIRT5 also deglutarylated the glutarylated pep-

tide (Figure S3C). SIRT4 showed no activity against any of these

modifications (Figure S3C). To test a more physiological and

more complex substrate in this assay, we chemically acylated

BSA. Similar to the previous assay, we found SIRT3 deacety-

lated the acetyl-BSA substrate, while SIRT5 desuccinylated

and deglutarylated these acylated BSA substrates (Figure 3B).

These data further confirmed the deglutarylase activity for

SIRT5.

The fluorescent sirtuin deacylation assay and other assays

using pseudosubstrates have presented challenges to the sirtuin

field. Questions about the ability of sirtuins to faithfully deacylate

native peptides are often raised. Therefore, we performed a third

enzymatic activity assay on known SIRT5-targeted peptides. We

carried out an in vitro lysine deglutarylation reaction using the

synthetic Kglu peptide, VKSKgluATNLWW, whose sequence is

from DNA starvation/stationary phase protection (Dps) protein

identified in our proteomic data described above. We used

HPLC-MS to evaluate SIRT5-mediated lysine deglutarylation.

Our data showed that SIRT5 could catalyze efficient lysine de-

glutarylation (Figures 3C and S3D–S3G). The reaction required

NAD+ as cofactor and could be inhibited by nicotinamide

(NAM) (a class III HDAC inhibitor); however, the reaction could

not be inhibited using other HDAC inhibitors including trichosta-

tin A (TSA), sodium butyrate (NaBu) (class I/II/IV HDAC inhibitors)

or sirtinol (a selective SIRT1 and SIRT2 inhibitor) (Figure 3C).

Additionally, the enzymatically inactive mutant of SIRT5

(H158Y) showed no lysine deglutarylase activity (Figure 3C).

Further, SIRT5 is only one of the 18 recombinant HDACs that

showed significant deglutarylation activity (Figure S3G). These

results demonstrate that SIRT5 can catalyze NAD+-dependent

lysine deglutarylation using peptides with sites of glutarylation

we identified in vivo.

Kinetic Studies on SIRT5 Deglutarylase Activity
To define the kinetics of the deglutarylase reaction of SIRT5, we

returned to the fluorescent substrates, which can be used to

quantify the amount of deglutarylation over time. We first tested

for its ability to process lysine side chains derivatized with dicar-

boxylic acids of varying lengths ranging from three to six carbon
ell Metabolism 19, 605–617, April 1, 2014 ª2014 Elsevier Inc. 607



Figure 2. Detection and Verification of Lysine Glutarylation

(A) Specificity of the anti-Kglu antibody. Dot blot assay was carried out using anti-Kglu antibody by incubation of the peptide libraries bearing a fixed unmodified K,

Kac, Kmal, Ksucc, and Kglu, respectively. Each peptide library contains 10 residues, CXXXXKXXXX, where X is a mixture of 19 amino acids (excluding cysteine), C is

(legend continued on next page)
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atoms (i.e., ε-N-malonyl-, ε-N-succinyl-, ε-N-glutaryl-, and ε-N-

adipoyllysine). Two series of fluorogenic peptide substrates con-

taining 7-amino-4-methylcoumarin (AMC) were evaluated: one

series based on a simple a-N-acetylated lysine (Figure 4A) and

one containing the tripeptide sequence, Ac-Leu-Gly-Lys(acyl),

which is based on H4K12—a common substrate for deacylation

(Bradner et al., 2010) (Figure S4A). Similar results were obtained

for both series with high potencies of both human and murine

SIRT5 recorded against succinylated and glutarylated sub-

strates, while activities were lower against malonylated sub-

strates (�1.3-fold relative to control wells without sirtuin), and

the enzymes exhibited no measurable deacetylase or deadipoy-

lase activity. We furthermore included an inactive histidine to

tyrosine mutant of the human SIRT5, which expectedly exhibited

low activity (Figure 4A). To compare the enzymatic efficiencies

against different acyl groups, we then performed detailed kinetic

studies using the tripeptide substrates containing malonyl-

lysine (Kmal), succinyl-lysine (Ksucc), and glutaryl-lysine (Kglu) by

measuring initial rate velocities as a function of substrate con-

centration and fitting the data to the Michaelis-Menten equation

as previously described (Madsen and Olsen, 2012) (Figure S4B;

Table S2A). The turnover numbers (kcat) and catalytic efficiencies

(kcat 3 Km
�1) were significantly higher for desuccinylation and

deglutarylation compared to the demalonylase activity, in agree-

ment with our endpoint data, and desuccinylase activity ap-

peared �2-fold more efficient than deglutarylase activity, albeit

at lower Km values for the glutarylated substrate.

To determine if the deglutarylase activity of SIRT5 was depen-

dent on the peptide sequence of the substrate, we measured

differences in lysine deacetylation, desuccinylation, and deglu-

tarylation activities of SIRT5 using two peptide sequences we

identified in our proteomics screen (Table S2B). For both of these

two peptide substrates, the catalytic efficiencies for deglutaryla-

tion and desuccinylation were comparable, and significantly

higher than that for deacetylation (Table S2B), which is in agree-

ment with previous reports (Du et al., 2011; Peng et al., 2011).

Together, these experiments demonstrate the major activity of

SIRT5 is to remove lysine malonylation, succinylation, and gluta-

rylation, but not acetylation.

To better understand how SIRT5 can catalyze these deacyla-

tion reactions, we performed in silico molecular modeling and

simulation experiments to compare the binding interaction be-

tween SIRT5 and various acylated peptide substrates (Figures

4B, 4C, S4C–S4E; Table S2C; detailed analyses are included in

the Supplemental Experimental Procedures). The predicted

energy of the interaction was essentially identical between the

malonyl-, succinyl-, or glutaryl-modified histone peptides and

SIRT5, but was substantially less favorable involving either the

acetyl or the adipoyl modifications (Figure 4C). Differences in

interaction energy were almost entirely due to changes in pre-
cysteine, and the sixth residue is a fixed lysine residue: unmodified lysine (K),

lysine (Kglu).

(B) Western blot of the whole-cell lysates from bacteria E. coli, yeast S. cerev

performed using the whole-cell lysates from different cells.

(C) High-resolution MS/MS spectra of an E. coli tryptic peptide (SK+114.0281DaATN

shift of +114.0281 Da at the lysine residue (bottom) and the synthetic SKgluATNL

(D) Extracted ion chromatograms (XICs) of the synthetic peptide SKgluATNLLY

(bottom) by reverse-phase HPLC analysis.

C

dicted electrostatic interactions (Figure 4C). These results sup-

port our enzymatic activity data and demonstrate how glutaryl

groups can be preferably removed by SIRT5, in a similar manner

as lysine succinylation and malonylation, but not acetylation or

adipoylation.

SIRT5 Can Catalyze Protein Lysine Deglutarylation
In Vivo
To validate the results of the in vitro studies, we examined Kglu

and lysine succinylation in Sirt5+/+ (WT) and Sirt5�/� (KO) mouse

tissues. Usingmitochondrial protein lysates from tissues derived

from WT and KO mice, we found that SIRT5 has a significant

impact on the global Kglu state (Figures 5A and S5A–S5D). In

contrast, SIRT5 has little influence on global lysine acetylation

(Lombard et al., 2007). These experiments suggest that SIRT5

regulates the global mitochondrial Kglu status. Taken together,

these biochemical studies reveal that SIRT5 is the only HDAC

capable of acting as a lysine deglutarylase, both in vitro and

in vivo. These findings also position SIRT5 to efficiently remove

carboxyacyl-modifications including malonyl-lysine, succinyl-

lysine, and now glutaryl-lysine.

Proteome-wide Screening of Kglu Substrates in Sirt5–/–

Mouse Liver
To characterize the landscape of Kglu, we performed proteomic

screening using livers from Sirt5�/�mice, which showed marked

protein hyperglutarylation (Figures 5A and S5A). Using the glu-

taryl-peptide enrichment and MS strategy described above,

we identified 911 Kglu sites on 229 proteins with less than 1%

false discovery rate (FDR) using MaxQuant software. In addition,

we further filtered out those Kglu peptides with Mascot ion score

lower than 20 to increase the reliability of the results. Based on

these stringent criteria, 683 lysine sites in 191 proteins were

identified as glutarylated and used for further bioinformatics an-

alyses (Table S3). While approximately half of the Kglu proteins

contained only one or two Kglu sites (Figure 5B), some proteins

were heavily glutarylated, including carbamoyl-phosphate syn-

thetase 1 (CPS1, 33 Kglu sites), long-chain enoyl-CoA hydratase

(HADHA, 15 Kglu sites), and aspartate aminotransferase (GOT2,

14 Kglu sites) (Table S3). We realized that some Kglu sites overlap

with those Kac and Ksucc sites published previously (Chen et al.,

2012; Du et al., 2011; Park et al., 2013).

Bioinformatic Analyses of Kglu Substrates
To identify the possible association of Kglu substrates with

cellular functions, we carried out gene ontology (GO) enrichment

analysis using DAVID bioinformatics resources (Huang et al.,

2009). The results of GO biological process analysis showed

that Kglu was significantly enriched in many cellular metabolic

processes, including oxidation reduction (p = 2.6 3 10�39),
acetyl-lysine (Kac), malonyl-lysine (Kmal), succinyl-lysine (Ksucc), and glutaryl-

isiae, Drosophila S2, mouse MEF, and human HeLa cells. Western blot was

LLYTR) from DNA starvation/stationary phase protection protein with a mass

LYTR (top). Inset shows the mass-to-charge ratios (m/z) of the precursor ions.

TR (top), the in vivo-derived peptide (middle, from E. coli), and their mixture

ell Metabolism 19, 605–617, April 1, 2014 ª2014 Elsevier Inc. 609



Figure 3. SIRT5 Catalyzes Lysine Deglutarylation Reactions In Vitro

and In Vivo

(A) Screening of HDAC lysine deglutarylation activity in vitro. Fluorometric

assay to detect in vitro lysine deglutarylation activities using recombinant

SIRT1-7.

(B) 32P-NAD+ consumption monitored by thin-layer chromatography after an

in vitro SIRT3, SIRT4, or SIRT5 enzymatic assay using chemically acylated

BSA as a substrate; o-glutaryl-ADP ribose, OG-ADPR; o-succinyl-ADP ribose,

OS-ADPR; o-acetyl-ADP ribose, OA-ADPR.

(C) HPLC trace of a glutarylated peptide, VKSKgluATNLWW, before and after

in vitro deglutarylation reaction. The assays were carried out without hSIRT5,

with hSIRT5, with enzymatically inactive mutant of hSIRT5 (H158Y), without

NAD+, with SIRT5 in the presence of nicotinamide (25 mM), sirtinol (200 mM),

TSA (2 mM), or sodium butyrate (NaBu) (25 mM). A triangle and a diamond

indicate modified (HRMS, m/z, 673.8588 Da) and unmodified (HRMS, m/z,

616.8439 Da) peptides, respectively.
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generation of precursor metabolites and energy (p = 9.2 3

10�27), fatty acid metabolism (p = 5.03 10�20), coenzyme meta-

bolism (p = 8.43 10�18), and aerobic respiration (p = 1.23 10�13)

(Figure 5C; Table S4A). The enriched GO molecular functions

(GOMFs) are associated with various cofactor binding pro-

cesses, such as coenzyme (p = 8.6 3 10�21), FAD (p = 1.8 3

10�11), and vitamin (p = 2.2 3 10�9) binding, as well as oxida-

tion-reduction-related functions, including acyl-CoA dehydroge-

nase activity (p = 8.1 3 10�12), NAD+/NADP+-related aldehyde/

oxo group oxidoreductase activity (p = 3.13 10�9), and electron

carrier activity (p = 3.6 3 10�8) (Figure S5E; Table S4B). These

data reveal that protein glutarylation could be involved in regu-

lating diverse cellular mechanisms and enzymatic processes.

GO cellular compartment (GOCC) analysis showed that Kglu pro-

teins were highly enriched in mitochondria (Figure S5F; Table

S4C). Strikingly, 148 Kglu proteins in mouse liver were mainly or

partially localized to mitochondria, accounting for more than

three-quarters of all identified lysine-glutarylated proteins in

this study. Taken together, these lines of evidence suggest a

strong link between Kglu and mitochondrial metabolism. Sub-

sequent KEGG and Pfam enrichment analyses suggested a

potential impact of protein glutarylation on metabolic pathways

(Figures S5G–S5L; Tables S4D and S4E) involving glutaryl-CoA

and oxidative metabolism. In addition, we also carried out

analysis of protein complexes and interaction networks, using

CORUM and STRING databases, identifying protein complexes

whose components are enriched with Kglu (Figures S5M–S5O;

Tables S4F and S4G; analyses are included in the Supplemental

Experimental Procedures).

SIRT5Deglutarylates CPS1 and Regulates Its Enzymatic
Activity
To begin to identify the physiological consequence of protein

glutarylation, we looked to the proteins with the highest number

of glutarylation sites in SIRT5KO mouse livers. We found CPS1,

33 sites; HADHA, 15; GOT2, 14; MDH2, 13; SDHA, 13; ACAA2,

11; ACAT1, 11; HADH, 11; SCP2, 11; and OTC, 10 (Table S3).

Because CPS1 was the protein identified with the highest level

of glutarylation, and SIRT5 has been previously described to

regulate CPS1 (Nakagawa et al., 2009), we sought to determine

if glutarylation had a functional effect on CPS1 enzymatic activity

and was regulated by SIRT5. We found CPS1 was hyperglutary-

lated in SIRT5KO mice during fed and fasted (48 hr) conditions,

consistent with our proteomic findings above (Figure 6A).



Figure 4. Enzymology Studies on SIRT5-Catalyzed Deglutarylation

(A) Endpoint deacylation assay of mouse or human wild-type SIRT5 or human

mutant SIRT5 (HY mutant) against acylated monolysine-AMC substrates; Kac,

acetyl; Kmal, malonyl; Ksucc, succinyl; Kglu, glutaryl; Kadi, adipoyl. Error bars in

this figure and subsequent ones represent standard error of the mean (SEM).

(B) Crystal structure of SIRT5 with a glutarylated peptide superimposed in the

catalytic pocket.

(C) Summary of total interaction energy comprising the sum of Van der Waals

and electrostatic interaction energies between SIRT5 and acylated histone

peptides (shown in Figure S4D).
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Hyperglutarylation was associated with reduced hepatic CPS1

enzymatic activity in SIRT5KO mouse liver (Figure 6B), which

leads to an increase in blood ammonia levels (Nakagawa et al.,

2009).

Because we observed basal levels of protein glutarylation in

HeLa cells, we generated stable cells lines containing SIRT5 or

Scramble (Scr) control shRNAs (Figure S6A). HeLa cells contain

high levels of CPS1 protein (EMBL-EBI, http://www.ebi.ac.uk).

Thus we attempted to immunoprecipitate endogenous CPS1

from both shSIRT5 and shScr control cell lines to determine its

level of protein glutarylation. We observed CPS1 hyperglutaryla-

tion after SIRT5 knockdown compared to control (Figure 6C).

Interestingly, we observed toxicity in the shSIRT5 cell culture

model upon prolonged time in culture media, suggesting the

shSIRT5 cells could be producing a toxic metabolite. We

measured ammonia in this model after 24 hr of serum starvation,

and observed significant increases in ammonia in the cell culture

media (Figure 6D), consisted with CPS1 protein hyperglutaryla-

tion and reduced CPS1 enzymatic activity. Furthermore, we

observed increased ornithine in shSIRT5 HeLa cells, supporting

reduced urea/ornithine cycle flux (Figure 6E).

To further test the role of SIRT5 in deglutarylating and regu-

lating CPS1, we generated a HEK293T containing a stable

shSIRT5 or shScramble control, which do not contain endoge-

nous CPS1. Cell lines containing the shSIRT5 had increased

global protein glutarylation, but only modest increases in protein

succinylation (Figure S6B). CPS1 was overexpressed in shSIRT5

and scramble control cells, and found to be hyperglutarylated

(Figure 6F). Because the increases in glutarylation in these

models were only associated with reduced SIRT5, we tested

for the ability of SIRT5 to directly deglutarylate CPS1. To do

so, we overexpressed recombinant CPS1 protein in HEK293T

cells and chemically glutarylated this protein using glutaric anhy-

dride. We then incubated glutarylated CPS1 with wild-type

SIRT5, or a catalytically inactive SIRT5H158Y (SIRT5HY) mutant.

We observed significant deglutarylation of CPS1 by SIRT5, but

not SIRT5HY, supporting the idea that SIRT5 deglutarylates

CPS1 and the absence of SIRT5 directly leads to elevated pro-

tein glutarylation (Figure 6G).

To gain insight into which Kglu sites could be targeted by SIRT5

for removal, we chemically glutarylated CPS1 and then per-

formed an in vitro SIRT5 deglutarylation assay. We then sub-

jected these preparations to HPLC-MS/MS analysis. We used

this strategy based on the rationale that chemical glutarylation

would lead to nearly complete coverage of lysine residues with

the glutaryl modification, and SIRT5 would deglutarylate only

specific sites, leading to a comprehensive map of deglutarylated

lysines. We found 44 sites of glutarylation on chemically treated

recombinant CPS1, and 31 sites of glutarylation after incubation
ell Metabolism 19, 605–617, April 1, 2014 ª2014 Elsevier Inc. 611
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Figure 5. Proteomic and Bioinformatic Analyses of Kglu Substrates

in WT and SIRT5KO Mouse Liver

(A) Western blotting analysis of mitochondria from Sirt5+/+ (WT) and Sirt5�/�

(KO) mouse livers.

(B) Distribution of Kglu sites per protein identified by proteomic analysis.

(C) Gene ontology (GO) of biological processes (BP) of proteins identified as

glutarylated by proteomics.
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with SIRT5 (Table S5). By comparing the change in the number of

modified to unmodified CPS1 peptides after SIRT5 treatment,

we identified 14 candidate lysine residues that could be effi-

ciently deglutarylated by SIRT5 (Table S5). Finally, we compared

these 14 sites to glutarylated lysines found in SIRT5KO liver, to

ensure that these sites are found in a physiological setting and

not an artifact of chemical acylation. In sum, we identified eight

candidate Kglu sites on CPS1 that are targeted for removal

by SIRT5 (K55, K219, K412, K889, K892, K915, K1360, and

K1486; Table S5).

To begin to determine how glutarylation suppresses CPS1

enzymatic activity, we performed a structural analysis on CPS1

protein and identified where these eight Kglu sites were located.

A human CPS1 crystal structure has not been solved, and there-

fore we built a homology model of CPS1 with the MODELER pro-

tocol (Eswar et al., 2008) using the crystal structure of E. coli

carbamoylphosphate synthetase (Thodenetal., 1999) (Figure6H).

On this homology model, we visualized the sites of glutaryla-

tion, in order to determine the possible mechanism(s) of regula-

tion by SIRT5. K55, K219, and K412 are in or nearby the inactive

glutamine amidotransferase domain in the a subunit of CPS1
612 Cell Metabolism 19, 605–617, April 1, 2014 ª2014 Elsevier Inc.
(Figure 6H, green). This region has been predicted to be impor-

tant for CPS1 structure (Lopes-Marques et al., 2012); alterna-

tively, these sites could be important for CPS1-interacting

proteins, such as with glutaminase (Meijer, 1985). K889, K892,

and K915 are all located in the CPS1 oligomerization domain,

based on homology to E. coli carB (Figure 6H, blue). CPS1 is pre-

sent as a homodimer and is active in its monomeric form

(Guthöhrlein and Knappe, 1968). Glutarylation of these sites

could disrupt the regulation of CPS1 by oligomerization. K1360

andK1486both lie in the region of allosteric activation (Figure 6H,

magenta). CPS1 requires N-acetylglutamate (NAG) as an obli-

gate allosteric activator (Hall et al., 1958). Glutarylation of these

sites could influence the activation of CPS1 by NAG, which could

be reversed by SIRT5. Together, a picture emerges for SIRT5 to

regulate CPS1 function by several possible mechanisms.

Protein Hyperglutarylation Is Sensitive to Dietary
Changes
To further explore the physiological role of glutarylation, we

considered possible metabolic states that might lead to altered

protein glutarylation. Wemonitored changes in protein glutaryla-

tion of whole-cell lysate from WT and SIRT5KO mouse liver dur-

ing feeding and fasting (48 hr). Similar to protein succinylation,

protein glutarylation changes in response to dietarymanipulation

(Figures 7A and S7A). We observed, in WT mouse livers, some

bands were increased with fasting, while other bands were

reduced, suggesting SIRT5 could be regulating these sites (Fig-

ures 7A and S7A). Importantly, the banding pattern of protein

glutarylation was different than the patterns of succinylation,

suggesting that different proteins are subject to regulation by

different chemical modifications. We also measured changes

in acyl-CoA concentrations during a fasting time course in whole

mouse liver. We found that fasting induces different changes in

succinyl- and glutaryl-CoA concentrations (Figure S7B), further

supporting different mechanisms of regulation for different

acyl-CoA species.

To determine if other dietary manipulations lead to changes in

protein glutarylation, we performed a tryptophan supplementa-

tion experiment. As described above, tryptophan degradation

leads to glutaryl-CoA, and therefore we predicted that increased

tryptophan would lead to increased protein glutarylation.

Drosophila were fed with 0X, 1X, or 2X tryptophan for 1 week,

and whole-cell lysates were measured for protein glutarylation

by western blot. We observed increases in protein glutarylation

(Figures 7B and S7C), consistent with the idea that excess tryp-

tophan is degraded and generates increased glutaryl-CoA,

which can lead to increased protein glutarylation.

Protein Hyperglutarylation in a Mouse Model of Human
Glutaric Acidemia
We also considered pathophysiological states which might be

associated with altered protein glutarylation. Glutaric Acidemia

I (GA, OMIM 231670) is an autosomal recessive metabolic disor-

der in humans characterized by a progressive movement disor-

der that usually begins during the first year of life. GA is caused

by homozygous or compound heterozygous mutations in the

gene encoding glutaryl-CoA dehydrogenase (GCDH). Because

GCDH catalyzes the oxidative decarboxylation of glutaryl-CoA

into crotonyl-CoA in the lysine and tryptophan degradation



Figure 6. Carbamoyl Phosphate Synthase 1 Is Targeted for Deglu-

tarylation by SIRT5

(A) CPS1 was immunoprecipitated from SIRT5 WT and KO mouse liver under

fed and 48 hr fasted conditions and measured for glutarylation levels using an

anti-Kglu antibody.

(B) CPS1 enzymatic activity was measured in hepatic lysates in SIRT5 WT and

KO mice, and presented relative to WT control mice. Error bars represent

standard error of the mean (SEM).

(C) CPS1 was immunoprecipitated from HeLa cells containing a shScramble

(SCR) or shSIRT5 and measured for glutarylation levels using an anti-Kglu

antibody.

(D) Ammonia levels fromHeLa cells containing a shScramble (SCR) or shSIRT5

after 24 hr of serum starvation. Error bars represent SEM.

(E) Ornithine levels from HeLa cells containing a shScramble (SCR) or shSIRT5

after 24 hr of serum starvation. Error bars represent SEM.

(F) CPS1 was transfected in HEK293 cells containing a shScramble (SCR) or

shSIRT5, immunoprecipitated, and measured for glutarylation levels using an

anti-Kglu antibody.

(G) CPS1 was transfected in HEK293 cells and immunopurified. Glutarylation

levels were measured using an anti-Kglu antibody in four samples: CPS1,

glutarylated CPS1 that was chemically modified with glutaric anhydride (GA),

glutarylated CPS1 after incubation with recombinant human SIRT5, and glu-

tarylated CPS1 after incubation with recombinant human SIRT5 HY mutant.

(H) A homology model of human CPS1 was built based on an E. coli CarA

homologous region (light gray), encompassing an inactive glutamine amido-

transferase domain (teal), and an E. coli CarB homologous region (dark gray)

containing two ATP grasp domains (cyan), an oligomerization domain (blue),

and a NAG-binding site (magenta). Glutarylated lysine residues targeted for

SIRT5 removal are labeled and highlighted in yellow.
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pathways, and GA patients as well as GCDHKO mice display

increased levels of glutaryl-CoA (Goodman and Frerman, 2001;

Koeller et al., 2002), we predicted loss of GCDH would result

in increased protein glutarylation. We purified hepatic mito-

chondria from wild-type and Gcdh�/� (GCDHKO) mice, and

measured the state of protein acylation. Remarkably, we

observed increased dramatic global protein glutarylation (Fig-

ure 7C). We also tested for succinylation and saw no protein hy-

persuccinylation in the GCDHKO hepatic mitochondrial protein

lysates (Figure 7C), demonstrating that the elevation of protein

glutarylation is specific in this mouse model. Together, these

data suggest that low GCDH activity could lead to elevated pro-

tein glutarylation.

To determine if protein glutarylation has a functional conse-

quence in this mouse model, we assessed the glutarylation

state of CPS1. We immunopurified CPS1 from wild-type and

GCDHKO mice and found that CPS1 was hyperglutarylated in

GCDHKO mouse liver (Figure 7D). We then measured CPS1

enzymatic activity in this model and found hyperglutarylated

CPS1 in GCDHKO mice was less active compared to wild-type

(Figure 7E). Remarkably, GCDHKO mice express more CPS1

protein compared to wild-type (Figure S7D), presumably to over-

come the reduction in protein activity and maintain nitrogen bal-

ance (Thies, 2010). These data suggest that one alternative fate

of increased glutaryl-CoA in the absence of GCDH is protein

glutarylation. To test if glutaryl-CoA could directly lead to nonen-

zymatic protein glutarylation, we incubated heat-inactivated

mitochondrial protein lysates with 50–500 mM glutaryl-CoA. We

observed increases in protein glutarylation with increasing glu-

taryl-CoA concentrations (Figures 7F and S7E), suggesting that

glutaryl-CoA can lead to this protein modification, similar to

acetyl-CoA, crotonyl-CoA, and succinyl-CoA (Tan et al., 2011;
ell Metabolism 19, 605–617, April 1, 2014 ª2014 Elsevier Inc. 613



Figure 7. Physiology and Pathophysiology of Lysine Glutarylation
(A) Protein glutarylation was measured in hepatic whole-tissue lysates

by immunoblotting with an anti-Kglu antibody in two sets (mouse 1 and

mouse 2) of SIRT5 WT and KO mice that were fed or fasted (48 hr),

respectively.

(B) Drosophilia were fed with 03, 13, or 23 tryptophan for 1 week, and whole-

cell lysates were prepared for western blotting analysis.

(C) Hepatic mitochondrial protein glutarylation and succinylation were

measured by immunoblotting with anti-acyl-lysine antibodies in WT and glu-

taryl-CoA dehydrogenase knockout (GCDHKO) mice.

(D) CPS1 was immunoprecipitated from GCDHKO mouse liver and measured

for glutarylation levels using an anti-Kglu antibody.

(E) CPS1 enzymatic activity was measured in hepatic lysates from wild-type

and GCDHKO mice and normalized to total CPS1 protein levels. Error bars

represent SEM.

Cell Metabolism

Lysine Glutarylation Is a PTM Pathway

614 Cell Metabolism 19, 605–617, April 1, 2014 ª2014 Elsevier Inc.
Wagner and Payne, 2013; Zhang et al., 2011). Purified bovine

serum albumin (BSA) can also be nonenzymatically glutary-

lated with glutaryl-CoA (Figure S7F). Importantly, this was not

observed using glutarate as a substrate for acylation (Figure 7F),

which demonstrates the requirement for reactive thioesters in

this pathway.

DISCUSSION

In this study, we identified Kglu as an evolutionally conserved

PTM, which is regulated by SIRT5 in a NAD+-dependent manner.

SIRT5was originally annotated as a deacetylase (Frye, 2000) and

was predicted to have deacetylase activity, but appears to pref-

erentially deacylate negatively charged modifications, including

malonylation, succinylation, and glutarylation. The enzymatic

activity assays, substrate docking studies, and energyminimiza-

tions all indicate that the SIRT5 catalytic pocket can accommo-

date these carboxyacyl-lysines for optimal enzymatic activity.

Together, these findings support the idea that SIRT5 is not a

physiological deacetylase, and instead removes a class of car-

boxyacyl-lysine modifications.

Our proteomic analyses of Kglu in SIRT5KO mouse liver led to

the identification of 683 Kglu sites on 191 proteins. Interestingly,

over three-quarters of the Kglu substrates were mitochondrial.

Because SIRT5 plays an important role in the mitochondria

(Nakagawa et al., 2009; Park et al., 2013), Kglu appears to play

a major role in this organelle. Our bioinformatic analyses showed

that Kglu is highly enriched with metabolic processes, such as

cellular respiration, and fatty acid and amino acid metabolism,

similar to what has been observed for acetylation and succinyla-

tion (Chen et al., 2012; Hebert et al., 2013; Park et al., 2013).

As a first step toward understanding the physiological role of

glutarylation, we turned to the list of proteins with the highest

levels of glutarylation. Not surprisingly, CPS1 was at the top of

the list, which is also heavily succinylated and acetylated. Just

like these other modifications, not all Kglu sites are candidates

for deacylation. On CPS1, eight Kglu sites are candidates to be

regulated by SIRT5, and are predicted to have influences on

CPS1 enzymatic activity. Indeed, in the hyperglutarylated state,

we find CPS1 has reduced enzymatic activity. Future studies will

identify other proteins whose activity could be regulated by

SIRT5-mediated deglutarylation, and the proteomic data sets

in this study will be a rich resource for future discovery.

In addition to the predominant mitochondrial Kglu substrates

revealed by the proteomic analyses, we also identified at least

40 nonmitochondrial substrates, suggesting potential functions

for Kglu outside mitochondria. Of particular interest, we identi-

fied three Kglu sites on core histone H2B (H2BK5, H2BK116,

and H2BK120). Modifications on histones are critical for

chromatin-mediated processes, including regulation of gene

expression. Our previous studies identified new lysine acylation

modifications on histones (Chen et al., 2007; Tan et al., 2011;

Xie et al., 2012), including lysine crotonylation and succinylation,

revealing potential crosstalk between cellular physiology and

gene transcription.
(F) Glutaryl-CoA or glutarate was incubated with heat-inactivated hepatic

mitochondrial lysates and monitored for changes in protein glutarylation using

an anti-Kglu antibody.
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Lysine malonylation, succinylation, and glutarylation likely play

diverse roles in regulating aspects of cellular physiology. Meta-

bolic pathways generating glutaryl-CoA are different from those

generating succinyl-CoA and malonyl-CoA (Figure 1A). For

example, glutaryl-CoA is an important intermediate in lysine and

tryptophan metabolism, whereas succinyl-CoA participates in

the TCA cycle and metabolism of branched-chain amino acids

and odd-numbered fatty acids, and malonyl-CoA participates in

fatty acid andpolyketide biosynthesis. Thus, these differentmod-

ifications are positioned to regulate differentmetabolic pathways.

Furthermore, glutarylation could be relevant in some disease

states, such as glutaric acidemia. The GCDHKO mouse model

of this diseasehashigh levels of protein glutarylation,whichcould

reduce the activity of important metabolic enzymes. Importantly,

these findings also show that one alternate fate of unoxidized glu-

taryl-CoA in this disease is protein glutarylation, which could be

either nonenzymaticly or enzymatically catalyzed. It is tempting

to speculate that these findings are broadly applicable to other

diseases associated with mutations in acyl-CoA dehydroge-

nases and could lead to subsequent protein acylation.

While increases in acetylation were previously associated with

reduced sirtuin activity, we are now beginning to appreciate the

complexity of identifying themolecular events leading to changes

in acylation. In this study, for example, we find that reduction or

ablation of the deacylase SIRT5 leads to increases in protein glu-

tarylation; we also find that ablation of a protein that handles

glutaryl-CoA (GCDH) leads to increases in protein glutarylation.

Thus, future studies will need to consider the fate and/or flux of

an acyl-CoA in contributing to the protein acylation balance.

Multiple chemical and biological differences exist among

lysine acetylation, succinylation, and glutarylation. The nega-

tively charged nature of lysine succinylation and glutarylation

has the potential to induce significant structural changes on

target proteins. Furthermore, it is possible that Kglu could have

distinct regulatory role different from lysine succinylation or

malonylation based on the larger size of the modification. Future

studieswill be focusedonunderstanding the full regulatory scope

of protein glutarylation and the interplay between thesemodifica-

tions in the rapidly expanding landscape of protein acylation.

EXPERIMENTAL PROCEDURES

Western Blotting Analysis

Protein extracts were resolved by SDS-PAGE, transferred to polyvinylidene

difluoride or nitrocellulose membrane, and probed with pan-anti-acyl-lysine

modification or protein sequence specific antibodies. See Supplemental

Experimental Procedures for details.

Immunoprecipitation of Kglu Peptides

ThepHof the tryptic peptide solutionwas adjusted to pH8.0 by adding 100mM

NH4HCO3 buffer (pH 8.0) and then incubated with the anti-Kglu antibody (PTM

Biolabs, Inc) immobilized with protein A agarose beads at room temperature

with gentle shaking.After 4 hr of incubation, thebeadswerewashed three times

with precold NETN buffer (50 mM Tris-Cl [pH 8.0], 100 mM NaCl, 1 mM EDTA,

0.5% NP-40), twice with ETN buffer (50 mM Tris-Cl [pH 8.0], 100 mM NaCl,

1 mM EDTA), and once with cold water. The enriched peptides were eluted

from the beads by washing with 0.1% TFA three times.

HPLC-MS/MS and MS Data Analysis

Enriched Kglu peptides were anaylzed by reverse-phase HPLC/MS/MS anal-

ysis by an Eksigent NanoLC-1D plus HPLC system (AB SCIEX) connected

to an LTQ Velos Orbitrap mass spectrometer (Thermo Fisher Scientific). MS/
C

MS data were analyzed by Mascot software (version 2.1) and MaxQuant

software (version 1.0.13.13). All the data were searched against either NCBI

RefSeq E. coli k12 protein database (4,123 sequences), IPI human protein

database (v3.70, 87,069 sequences), or IPI mouse protein database (v3.74,

56,860 sequences). See Supplemental Experimental Procedures for details.

In Vitro Deglutarylation Assays

Reactions were performed in a final volume of 50 ml per well in a 96-well micro-

plate for fluorometric assays and in a final volume of 10 ml for peptides assays

as previously described (Peng et al., 2011). See Supplemental Experimental

Procedures for details.

32P-NAD+ Consumption Assay

Based on the method described by Du et al. (2011), reactions were performed

in a total volume of 10 ml in 50mMTris-HCl (pH 9.0), 4 mMMgCl2, 50mMNaCl,

0.5 mM DTT, and 0.5 mCi 32P-NAD+ (PerkinElmer, NEG023X, 800 Ci/mmol) in

the presence of either 2 mg acylated-BSA or 1 mg acylated-H4 peptide sub-

strate. See Supplemental Experimental Procedures for details.

CPS1-FLAG Immunoprecipitation

Transfected HEK293T cells were washed with PBS and scraped into NP-40

lysis buffer (25 mM Tris HCL [pH 7.5], 50 mM NaCl, 1% NP-40, 2 mM EDTA,

and cocktail of protease inhibitors). After 15 min on ice, the cells were homog-

enized in chilled racks with a TissueLyser bead mill (Invitrogen) for 2 min at

30 Hz. Lysates were centrifuged at 14,000 3 g, 20 min, and the supernatants

were incubated with FLAG M2 antibody resin (Sigma-Aldrich) overnight at

4 �C. The FLAG resin was washed three times with lysis buffer and once

with TBS, and the CPS1-FLAG protein was elutedwith 300 ng/ml FLAG peptide

(Sigma-Aldrich).

CPS1 Activity Assay

CPS1 activity was assessed by measuring converted citrulline by a colori-

metric method with modification (Chan et al., 2009; Pierson, 1980). See Sup-

plemental Experimental Procedures for details.

In Vitro Deglutarylation of CPS1 by SIRT5

Glutarylated and unglutarylated CPS1 were incubated with SIRT5 or the cata-

lytically inactive SIRT5HY mutant in 13 SDAC Buffer (50 mM Tris-HCl [pH 9],

4 mMMgCl2, 50mMNaCl, 0.5mMDTT, 1mMNAD+) for 1 hr at 37�C. Reaction
was stopped by adding SDS sample buffer or by freezing at �20�C.

Animal Experiments

Animal studies were performed according to protocols approved by the Uni-

versity of Michigan or Duke University. See Supplemental Experimental Proce-

dures for details.

See Supplemental Experimental Procedures for other experiments.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, five tables, and Supple-

mental Experimental Procedures and can be found with this article at http://

dx.doi.org/10.1016/j.cmet.2014.03.014.
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