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Abstract

The capacity of FasL molecules expressed on mela-

noma cells to induce lymphocyte apoptosis contrib-

utes to either antitumor immune response or escape

depending on their expression level. Little is known,

however, about the mechanisms regulating FasL pro-

tein expression. Using the murine B16F10 melanoma

model weakly positive for FasL, we demonstrated that

in vitro treatment with statins, inhibitors of 3-hydroxy-

3-methylgutaryl CoA reductase, enhances membrane

FasL expression. C3 exotoxin and the geranylgeranyl

transferase I inhibitor GGTI-298, but not the farnesyl

transferase inhibitor FTI-277, mimic this effect. The ca-

pacity of GGTI-298 and C3 exotoxin to inhibit RhoA

activity prompted us to investigate the implication of

RhoA in FasL expression. Inhibition of RhoA expres-

sion by small interfering RNA (siRNA) increased mem-

brane FasL expression, whereas overexpression of

constitutively active RhoA following transfection of

RhoAV14 plasmid decreased it. Moreover, the inhibi-

tion of a RhoA downstream effector p160ROCK also

induced this FasL overexpression. We conclude that

the RhoA/ROCK pathway negatively regulates mem-

brane FasL expression in these melanoma cells. Fur-

thermore, we have shown that B16F10 cells, through

the RhoA/ROCK pathway, promote in vitro apoptosis

of Fas-sensitive A20 lymphoma cells. Our results sug-

gest that RhoA/ROCK inhibition could be an interest-

ing target to control FasL expression and lymphocyte

apoptosis induced by melanoma cells.
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Introduction

APO-1/Fas, now called CD95, triggers apoptosis on binding

of its ligand (CD95L/FasL) or specific agonist antibodies [1,2].

Fas have three cysteine-rich extracellular domains and an

intracellular death domain essential for signaling. Two differ-

ent CD95 receptor–induced apoptotic pathways are known

to exist, both leading to subsequent caspase-3 activation

[3]. Widely expressed in both normal and neoplastic cells

[2,4–6], the expression of Fas does not necessarily predict sus-

ceptibility to FasL-induced apoptosis. Fas–FasL interaction is

involved in normal immune development and homeostasis [7,8]

and also in the maintenance of immune privilege in certain or-

gans such as the eye, the central nervous system, and the

testis [9]. Although expressing Fas, cells in these organs show

resistance to Fas-mediated apoptosis. This Fas-resistancemech-

anism has also been described in several tumor models contrib-

uting to the formation and growth of neoplasia [10].

In cancer patients, clinical morbidity and mortality is often

associated with the acquired insensitivity of tumor cells to im-

munologic detection or elimination [11]. FasL expression by

tumor cells represents one possible mechanism responsible for

this immunologic escape, allowing cells to counterattack and

induce apoptosis in Fas-expressing cytotoxic T lymphocytes

and natural killer cells, infiltrating the tumor or the tumor micro-

environment. The expression of FasL on many human tumors,

generally associated with poor prognosis supports this hypoth-

esis. However, the apoptosis-inducing capacity of the FasL

molecules expressed on melanoma cells and, more generally,

the biologic significance of the Fas–FasL implication in human

tumors remains a complex matter of debate [12,13]. In-

deed, conflicting findings have suggested that tumors use

FasL either to counterattack tumor-infiltrating cytotoxic cells

or to trigger a neutrophil-mediated inflammatory response and

tumor rejection [14,15]. Recently, it has been shown that the

effect of FasL may depend on its expression level [14]. At

high levels, FasL triggers tumor rejection by both a potent

neutrophil-mediated local inflammation response and the start

of a T-cell–dependent tumor-specific memory. In contrast, at

low levels, FasL enhances tumor growth by counterattacking
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antitumor effector lymphocytes. Altogether, these observa-

tions suggest that the increase of FasL expression on tumor

cells could be an interesting goal in cancer immune therapy.

However, in all these tumor models, little is known about the

mechanisms regulating FasL protein expression.

In the present study, we have investigated the capacity of

statins and other Rho protein inhibitors to modulate in vitro

membrane FasL expression. Statins seemed suitable phar-

macological agents with their common use in cardiovascular

disease prevention and recent potential as new anticancer

agents. Based on preclinical studies on several animal tumor

models, such as melanoma, mammary carcinoma, pancre-

atic adenocarcinoma, fibrosarcoma, glioma, neuroblastoma,

and lymphoma, statins have demonstrated antiprolifera-

tive, proapoptotic, antiinvasive, and radiosensitizing proper-

ties [16,17]. However, as we previously reported in the

B16F10murine melanomamodel, statins inhibit Rho GTPases

and modify protein expression on tumor membranes in

a manner favoring a T-cell–dependent tumor-specific im-

mune response. Indeed, statins induced an overexpression

of interferon-g– induced major histocompatibility complex

class I antigens and expression of CD80 and CD86 cos-

timulatory molecules [18]. We chose the B16F10 melanoma

model for its spontaneous weak expression of membrane

FasL [19] to study the effect of statins and other inhibitors of

Rho proteins on FasL expression.

Rho GTPases form a subgroup of the Ras superfamily of

GTP binding proteins that regulate a wide spectrum of cel-

lular functions. Activated Rho GTPases interact with intra-

cellular target proteins or effectors to trigger a wide variety of

cellular responses, including the reorganization of the actin

cytoskeleton, cell cycle progression, cell death, adhesion,

metastasis, and gene transcription [20–28]. Rho proteins

are posttranslationally prenylated by mevalonate-derived

isoprenoid compounds, such as farnesylpyrophosphate

and geranylgeranylpyrophosphate on the C-terminal end of

the protein. The attachment of such isoprenoid residues is

necessary for their anchorage to cell membranes and full

functionality [29]. This isoprenylation can be inhibited by

several inhibitors of the mevalonate pathway such as the

statins or by isoprenyl transferase inhibitors such as farnesyl

transferase inhibitor (FTI) or geranylgeranyl transferase

inhibitor (GGTI).

Here we demonstrate, in the B16F10 tumor model, that

RhoA proteins downregulate membrane FasL expression

and, consequently, the possibility of increasing in vitro this

expression by pharmacological treatments with RhoA inhib-

itors such as statins. Moreover, B16F10 melanoma cells

overexpressing membrane FasL after such treatments were

able to induce in vitro the apoptosis of cocultivated Fas-

sensitive B lymphocytes.

Materials and Methods

Cell Lines

The murine melanoma cell line B16F10 and the murine

B cell lymphoma A20 were maintained by serial passages

in complete culture medium composed of RPMI 1640,

1% L-glutamine, 1% penicillin/streptomycin, and 10% heat-

inactivated fetal calf serum (Gibco BRL, Invitrogen, Cergy-

Pontoise, France).

In Vitro Treatment of Tumor Cells

Tumor cells were treated in vitro by addition of different

components to the complete culture medium. C3 exotoxin

was produced in the laboratory and used at 10 or 20 mg/ml.

FTI-277 was used at 10 or 20 mM (Calbiochem, San Diego,

CA). GGTI-298 was used at 10 or 20 mM (Calbiochem). We

used 5 mM atorvastatin and 5 mM mevalonolactone (Sigma,

St. Louis, MO), 0.5 mM of the p160ROCK inhibitor H1152

(Alexis, Lausen, Switzerland), and 100 mM of the caspase

inhibitor Z-VAD-Fmk (Alexis). Anti-Fas (Jo-2) (50 mg/ml) (BD

Biosciences, San Jose, CA) was used to induce A20 lym-

phoma apoptosis and an Armenian hamster IgG2 (50 mg/ml)

(BD Biosciences) was used as a control. Anti-FasL antibody

(50 mg/ml) (c178) (Santa Cruz Biotechnology, Santa Cruz,

CA) was used to block Fas/FasL interaction and a rabbit IgG

(50 mg/ml) was used as a control.

Flow Cytometry Analysis

FasL and Fas membrane expressions were analyzed us-

ing phycoerythrin- or fluorescein isothiocyanate-conjugated

specific antibodies (BD Biosciences). Apoptosis of Fas-

sensitive A20 lymphoma cells was detected by cell

cycle analysis, according to the protocol of Vindelov and

Christensen [30], and with a fluorescein isothiocyanate-

conjugated anti–active caspase-3 antibody (BD Bioscien-

ces) after permeabilization and fixation of the tumor cells

with the Fix and Perm kit (BD Biosciences). All stainings

were performed according to the manufacturer’s instructions

and were analyzed on a FACS Calibur (Becton-Dickinson,

Franklin Lakes, NJ).

RhoAV14 Overexpression

The coding region of RhoAV14 was subcloned into a

pSG5 vector. An empty pSG5 vector was used as a control.

B16F10 cells, 1 � 105, were transfected with 2 mg of pSG5-

RhoAV14 (B16F10RhoAV14) construct or empty vector

(B16F10Mock) using Jet PEI (Qbiogen, Illkirch, France).

Small Interfering RNA (siRNA) Treatment

SiRNA against RhoA were designed using the criteria de-

veloped by Simpson et al. [31], synthesized as synthetic oli-

gonucleotides (Eurogentec, Angers, France), and annealed

to form a short double-stranded RNA with a 3V-dithymidine

overhang: siRNA RhoA, 5V–GAA GUC AAG CAU UUC

UGU CdTdT–3. As a siRNA control, we used a nonspecific

control provided by Pharmacon Research (Attica, Greece).

Transfections of siRNA (20 nM) were performed using

Oligofectamine and Opti-MEM media (Invitrogen) according

to the manufacturer’s instructions on cells at 30% to 50%

confluency in 60-mm cell culture dishes followed by a

72-hour incubation period before experiments.
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Immunoblot Analysis of Proteins

Cells were lysed in radioimmune precipitation buffer

(50mMTris, pH 8, 150mMNaCl, 1%Triton X-100, 1%sodium

deoxycholate, 0.1% SDS, 5 mM EDTA, 1 mM dithiothreitol,

10 mM p-nitrophenyl phosphate, 2 mM Na3VO4, 20 mM NaF,

and 1� protease inhibitor mixture) for 30 minutes on ice, and

cleared by centrifugation (14,000 rpm for 10 minutes). Protein

concentration was determined using the bicinchoninic acid

assay (Pierce, Rockford, IL). Proteins were resolved on

SDS-PAGE with the appropriate acrylamide concentration

(10%). Detections were made using antibodies against FasL

(c178), RhoA (119), Rap1a (121), and unprenylated Rap1a

(C-17) (Santa Cruz Biotechnology); Hdj2 antibody (KA2A5.6)

was obtained from NeoMarkers (Interchim, Montluçon,

France) and antiactin was from Chemicon (Billerica, MA).

Reverse Transcription–Polymerase Chain Reaction

(RT-PCR) Detection of FasL mRNA Transcripts

The expression of FasL mRNA was analyzed by RT-

PCR. Total RNA was isolated using RNA easy kit (Qiagen,

Courtaboeuf, France) according to the manufacturer’s in-

structions. One microgram of total RNA was used for first-

strand cDNA synthesis in iScript cDNA Synthesis Kit

(Bio-Rad, Marnes la Coquette, France). Then, RT-PCR

was conducted as previously described [19]; briefly, FasL

cDNA were amplified by 35 cycles of PCR using the intron-

spanning primers described by Ryan et al. [19]: forward

5V–CGGTG-GTATITITCATGGTTCTGG–3V and reverse 5V–
CTTGTGGTTTAGGGGCTGGTT-GTT–3V (380) and com-

pared to b-actin. PCR products were resolved on a 2%

agarose gel and visualized by ethidium bromide staining.

RhoA Activity Assay

RhoA activity was assayed using the RhoA activation

assay of Ren and Schwartz [32]. Briefly, the Rho binding

domain of rothekin (TRBD), an effector of Rho proteins that

selectively binds to the GTP-loaded form, was expressed as

a recombinant fusion with glutathione S-transferase (GST) in

Escherichia coli and purified through binding to glutathione–

Sepharose beads. At various times after exposure, cells were

lysed by scraping on ice and by vigorous mixing in lysis buffer

(50 mM Tris–HCl, pH 7.5, 500 mM NaCl, 10 mM MgCl2, 1%

Triton X-100, 10 mM dithiothreitol, 10 mM p-nitrophenyl phos-

phate, 2 mM Na3VO4, 20 mM NaF, and 1� protease inhibi-

tor mixture (Sigma)). After preclearing by centrifugation

(12,500 rpm for 5 minutes), the lysates were combined with

30 ml GST–TRBD beads and rotated for 45 minutes at 4jC.
An aliquot from each lysate was removed as a control for

equivalent input into the assay. Beads were washed twice

with ice-cold wash buffer (50 mM Tris–HCl, pH 7.5, 500 mM

NaCl, 10 mM MgCl2, and 1% Triton X-100). Bound proteins

were eluted from the beads with SDS-PAGE sample buffer at

95jC. RhoA proteins were analyzed by immunoblot.

Visualization of Actin Cytoskeleton By

Fluorescence Microscopy

At day 0, B16F10 cells were seeded onto glass cover-

slips in six-well plates to obtain 60% confluence on day 2. On

day 1, the cells were treated for 24 hours with 0.5 mM H1152.

On day 2, cells were fixed with 3% paraformaldehyde/PBS

for 20 minutes and then permeabilized with 0.1% Triton

X-100/PBS for 5 minutes. To visualize the actin fibers,

the coverslips were incubated with tetramethylrhodamine

isothiocyanate-labeled phalloidin (Molecular Probes, Invitro-

gen) for 30 minutes at room temperature. The cells were

viewed on a Zeiss Axiophot microscope (Zeiss, New York, NY)

and pictures were taken with a Princeton Camera (Princeton,

Scientific Instruments, Monmouth Junction, NJ).

Cocultures

A20 cells, 1 � 105, were cocultivated in complete culture

mediumwith 1 to 3� 105 B16F10 melanoma cells or with 1�
105 B16F10-transfected or inhibitor-treated cells. The per-

centage (%) of A20 cells in the sub–G1-peak (% subG1) and

the percentage of A20 cells expressing the caspase-3 active

form (% active caspase-3) was analyzed by flow cytometry

after 24 and 72 hours of coculture, respectively.

Statistical Analysis

All experiments were performed three or six times.

Results are expressed as mean ± SEM and were analyzed

by Student’s t test (differences were considered significant at

a P value of < .05).

Results

Atorvastatin Upregulates FasL Expression on the B16F10

Cell Membrane

We previously described that several pharmacological

inhibitors of protein prenylation could modulate melanoma

membrane expression of molecules implicated in the im-

mune response [18]. In the mevalonate pathway, statins are

inhibitors of 3-hydroxy-3-methylgutaryl CoA (HMG-CoA) re-

ductase and thus of protein prenylation. We tested the role of

atorvastatin on FasL expression in melanoma cells using the

weakly FasL-positive murine melanoma cell line B16F10

[19]. Membrane and total FasL expressions were measured

by cytofluorometric and Western blot analysis, respectively.

Treatment of B16F10 cells for 48 hours with atorvastatin

(5 mM) enhanced the percentage of melanoma cells express-

ing FasL on the membrane (Figure 1 A) compared to the

untreated control. This effect was completely reversed by

mevalonate (5 mM), the first product of HMG-CoA reductase

(Figure 1 A). The analysis of three independent experiments

confirmed that statin treatment statistically increases the

percentage of FasL+ B16F10 cells (P < .05) (Figure 1 B).

To determine whether total FasL protein is also altered by

statin treatment, we treated B16F10 cells for 48 hours with

atorvastatin and/or mevalonate and analyzed whole cell ly-

sates for FasL expression usingWestern blot. Results showed

no difference in total FasL expression between statin-treated

and control cells (Figure 1 C), showing that statin activity is

restricted to membrane FasL localization.
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Overall, these results show that statin increases membrane

FasL expression in the murine B16F10 melanoma model.

Inhibition of Protein Geranylgeranylation by GGTI-298

Increases FasL Expression on the B16F10 Cell Membrane

The mevalonate-derived isoprenoid compounds farne-

sylpyrophosphate and geranylgeranylpyrophosphate are

transferred on target proteins such as Rho by the specific en-

zymes farnesyl transferase and geranylgeranyl transferase.

These posttranslational modifications enable the functional

activity of isoprenylated Rho proteins. However, this isopren-

ylation can be inhibited by the specific inhibitors FTI and

GGTI, leading to loss of anchorage and activity of the Rho

proteins. We therefore used either FTI-277 or GGTI-298 to

test whether inhibition of protein isoprenylation also induces

an increase in membrane FasL expression. Firstly, we en-

sured that these two prenyl transferase inhibitors prevented

protein isoprenylation with weak toxicity using our culture

conditions. Indeed as expected, FTI-277 treatment at 10 mM
inhibited the exclusive farnesylation of Hdj2 (Figure 2 C),

but had no effect on the exclusive geranylgeranylation of

Rap1a [34]. On the contrary, GGTI-298 at 10 mM prevented

the prenylation of Rap1a but not of Hdj2 (Figure 2 F). We

then treated the B16F10 cells for 48 hours with FTI-277 or

GGTI-298 at 10 or 20 mM before cytofluorometry analysis of

membrane FasL expression. As shown in Figure 2, D and E,

GGTI-298, but not FTI-277 (Figure 2, A and B), increased the

percentage of B16F10 cells expressing membrane FasL to a

similar extent as that noted with atorvastatin (Figure 1 A). We

obtained similar results in three independent experiments

(Figure 2, B and E ), confirming a statistical increase in FasL+

B16F10 cells after GGTI-298 treatment (P < .01).

Together, these results show that geranylgeranyl trans-

ferase inhibition enhances membrane FasL expression in

B16F10 melanoma cells.

RhoA/ROCK Pathway Negatively Regulates Membrane

FasL Expression in B16F10 Melanoma Cells

As indicated previously, GGTI-298 efficiently prevents

geranylgeranylation of several proteins, including the Rho

GTPases [34,35]. We therefore tested the hypothesis that

RhoA, the most characterized Rho GTPase, is involved in

the regulation of FasL. We firstly ensured that GGTI-298

treatment impaired RhoA activation in the B16F10 cells in

our culture conditions. Indeed, using a GST Rho binding do-

main pull-down assay [36], we detected a strong inhibition of

the GTP-bound RhoA in the B16F10 cells treated with 10 mM
GGTI-298 compared to untreated cells (Figure 3 A). This re-

sult suggests that GGTI-298 could enhance membrane FasL

expression through the inhibition of Rho protein activation.

The ADP-ribosyl transferase C3 toxin of Clostridium botuli-

num can also inhibit the activation of Rho proteins [37]. We

therefore checked the occurrence of ADP ribosylation of RhoA

proteins in our culture conditions (Figure 3 B) and tested the

effects of this toxin on membrane FasL expression. As shown

in Figure 3 C, treatment of B16F10 cells with C3 exotoxin

significantly increased (P < .01) the percentage of membrane

FasL+ cells in a dose-dependent manner. Together, these re-

sults suggest that Rho proteins negatively regulatemembrane

FasL expression in these melanoma cells. To confirm the in-

volvement of RhoA proteins in the regulation of FasL expres-

sion, we analyzed the effect of both RhoA-specific siRNA

and an expression vector for constitutively active RhoA

(RhoAV14). As shown in Figure 3 D, the transfection of

RhoA-specific siRNA simultaneously resulted in a strong inhi-

bition of RhoA expression as detected by Western blot and an

upregulation of membrane FasL expression as detected by

cytofluorometry. Both detections were made 72 hours after the

transfection. This increase in FasL+ melanoma cells was

statistically significant with a P < .01. Furthermore, these trans-

fected cells were simultaneously used to detect the total FasL

expression by Western blot and the FasL mRNA level by

RT-PCR. As also illustrated in Figure 3 D, the transfection of

RhoA-specific siRNA affected neither total FasL protein ex-

pression nor FasL mRNA level. Conversely, transfection of the

pSG5-RhoAV14 vector led to a simultaneous increase in RhoA

expression and a statistically significant (P < .05) decrease in

B16F10 cells expressing membrane FasL.

Together, results from these two experiments show that

RhoA negatively regulates membrane FasL expression on

these melanoma cells. The critical role of RhoA in the reg-

ulation of FasL expression prompted us to investigate down-

stream effectors of RhoA with possible involvement in this

regulation. One such candidate effector molecule is the mul-

tidomain protein p160ROCK containing a serine/threonine

kinase domain, a pleckstrin homology domain, cysteine-rich

regions, and an amphipathic alpha-helical region. The ki-

nase activity of p160ROCK is required to regulate events

downstream of RhoA and particularly actin polymerization.

We investigated the implication of p160ROCK in FasL mem-

brane expression using the specific p160ROCK inhibitor

H1152. As shown in Figure 4 A, a 24-hour treatment with

0.5 mM H1152 decreased stress–fiber formation, suggesting

that, in our culture conditions, this treatment efficiently in-

hibited p160ROCK activity. In these same conditions, we

therefore tested the effect of H1152 on membrane FasL ex-

pression. As shown in Figure 4 B, B16F10 cells treated with

0.5 mMH1152 showed an overexpression of membrane FasL

compared to untreated cells. This indicates an implication of

the RhoA effector protein p160ROCK in the RhoA-dependent

regulation of membrane FasL expression.

Altogether, these data support the proposition that the

RhoA/ROCK pathway is specifically involved in the control of

FasL expression on B16F10 cell membranes.

Figure 1. Statins upregulate FasL expression on B16F10 cell membrane. B16F10 melanoma cells were incubated with atorvastatin (5 �M), mevalonate (5 mM), or

both for 48 hours. Cells were harvested and FasL was immunodetected by flow cytometry using a phycoerythrin-conjugated murine FasL monoclonal antibody. The

percentage of FasL-positive cells (FasL+ cells (%)) is indicated (A). This percentage of FasL-positive cells was also analyzed in three independent experiments (B).

A statistically significant increase (P < .05) is illustrated by an asterisk (*). Similarly treated B16F10 cells were lysed and immunoblotted with murine anti-FasL

antibody for total FasL protein detection. Data from one representative of three independent experiments are shown (C).
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Apoptosis of A20 Lymphoma Cells Induced by Coculture

with B16F10 Melanoma Cells

To study the in vitro biologic function of membrane-

expressed FasL, we tested the capacity of B16F10 cells to

induce the apoptosis of Fas-positive murine A20 lymphoma

cells. First, we checked the sensitivity of A20 cells to apop-

tosis by the Fas/FasL pathway in our culture conditions. We

treated the A20 cells with an anti-Fas antibody (clone Jo-2)

(50 mg/ml) and measured the occurrence of apoptosis by

cytofluorometric analysis of the cell cycle and expression of

active caspase-3. As expected, treatment of A20 cells with

anti-Fas antibody increased the percentage of cells express-

ing the active caspase-3 form and the percentage of cells in

the sub–G1-peak, compared to cells treated with the IgG2

Figure 2. Inhibition of protein geranylgeranylation by GGTI-298 increases FasL expression on B16F10 cell membrane. B16F10 cells were incubated with FTI-277

(10 and 20 �M) or GGTI-298 (10 and 20 �M) for 48 hours. Cells were harvested and FasL was immunodetected by flow cytometry. The percentage of FasL-positive

cells is indicated (A and D). Histograms illustrating this percentage of FasL+ cells analyzed by flow cytometry from three independent experiments, using increasing

doses of FTI-277 (0, 10, and 20 �M) (B) or GGTI-298 (0, 10, and 20 �M) (E). A statistically significant increase (P < .01) is illustrated by double asterisks (**).

Similarly treated B16F10 cells were also analyzed and immunoblotted with Rap1a or Hdj2 antibody to confirm farnesyl transferase inhibition (C) and geranylgeranyl

transferase inhibition (F) obtained by FTI-277 (10 �M) or GGTI-298 (10 �M) treatment, respectively.
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control antibody (Figure W1). To test the ability of B16F10

cells to induce lymphocyte apoptosis, we cocultured A20

lymphoma cells with a growing number of B16F10 cells for

72 hours and measured the occurrence of apoptosis as pre-

viously described. We detected a B16F10 dose-dependent

increase in A20 cells in the sub–G1-peak (Figure W2).

Moreover, as shown in Figure 5 A, the percentage of A20

cells expressing the active form of caspase-3 strongly in-

creased (8-fold increase) following 24 hours of A20 and

B16F10 coculture. We obtained similar results in three

Figure 3. RhoA negatively regulates membrane FasL expression on B16F10 melanoma cells. (A) B16F10 cells were incubated with GGTI-298 (10 �M) for 48 hours

and RhoA activity was analyzed by TRBD assay as described in the Materials and Methods section. (B) B16F10 cells were incubated with C3 exoenzyme (10 �g/

ml) for 48 hours. Untreated and treated cells were lysed and immunoblotted with anti-RhoA antibody to test RhoA-ADP ribosylation as described in the Materials

and Methods section. (C) B16F10 cells were treated with C3 exoenzyme (10 and 20 �g/ml). Cells were harvested and FasL was immunodetected by flow

cytometry. The percentage of FasL-positive cells (FasL+ cells (%)) was analyzed; data shown are mean values of three independent and reproducible experiments.

A statistically significant increase (P < .01) is illustrated by double asterisks (**). (D) B16F10 cells were transfected either with scramble siRNA or with RhoA-

specific siRNA (SiRhoA) and analyzed after 72 hours to evaluate by cytofluorometry the percentage of FasL-positive cells. The scramble siRNA contains a

disorganized sequence of the same nucleotides and is therefore unable to cut the target RNA sequence. Again, data shown are mean values of three independent

and reproducible experiments. A statistically significant increase (P < .01) is illustrated by double asterisks (**). Similarly transfected cells were also lysed and

immunoblotted with either anti-RhoA antibody or anti-FasL antibody and compared to actin expression to check the efficiency of the RhoA-specific siRNA and the

total FasL protein expression. RNA of these transfected cells were also used to compare their FasL mRNA levels by RT-PCR, as described in the Materials and

Methods section. (E) B16F10 cells were also transfected with a pSG5 empty vector (Mock) or with a pSG5-RhoAV14 vector encoding for the active form of RhoA

(RhoAV14). After 72 hours, membrane-expressed FasL was immunodetected by flow cytometry. The percentages of FasL-positive cells are shown as mean values

of three independent and reproducible experiments. A statistically significant decrease (P < .05) is illustrated by an asterisk (*). These cells were also lysed and

immunoblotted with anti-RhoA antibody to test the efficiency of the transfected pSG5-RhoAV14 vector to increase RhoA expression in B16F10 cells.
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independent experiments (Figure 5 B ), confirming statisti-

cally significant increases in A20 cells expressing the active

form of caspase-3 after coculture with growing ratios of

B16F10 to A20 cells. To confirm the implication of the Fas

signaling pathway and Fas/FasL interaction in these events,

we added either a caspase inhibitor (Z-VAD-Fmk) or a block-

ing anti-FasL antibody (c178) to the coculture medium. The

results presented on Figure 5 C show that both the caspase

inhibitor and the FasL blocking antibody inhibited A20 apop-

tosis induced by B16F10 coculture, as illustrated by the

decrease in the active form of caspase-3, not observed in

the control culture conditions.

Collectively, these results show that membrane FasL on

B16F10 melanoma cells induces apoptosis of A20 lymphoma

cells by the Fas signaling pathway in coculture experiments.

Transfection of B16F10 Cells with RhoA-Specific siRNA

or Activated RhoA Modifies Their Efficiency to Induce

Apoptosis of Cocultivated Cells

Having shown that RhoA protein negatively regulates

membrane FasL expression in B16F10 cells and that in

coculture these cells induce apoptosis of Fas-sensitive A20

cells by the Fas signaling pathway, we now wished to check if

modulating the level of membrane FasL on B16F10 cells

could modify the induction of apoptosis in cocultivated A20

cells. We therefore cocultivated A20 cells with B16F10

melanoma cells previously transfected with either the

pSG5 empty vector (B16F10Mock) or the RhoAV14 pSG5

vector (B16F10RhoAV14), which decrease FasL expression

as shown in Figure 3 E. We then analyzed apoptosis through

caspase-3 activity. As shown in Figure 6 A, the level of A20

apoptosis significantly decreased (P < .01) when A20 cells

were cocultivated with B16F10RhoAV14 cells compared to

B16F10Mock. Conversely, A20 cells were also cocultivated

with B16F10 cells previously transfected with control (scram-

ble) or RhoA-specific siRNA and the level of the active form

of caspase-3 was evaluated. As shown in Figure 6 B, we

observed an increase in the level of apoptosis in A20 cells on

cocultivation with SiRhoA-transfected B16F10 melanoma

cells (B16F10SiRhoA) as compared with B16F10 cells trans-

fected with the scramble plasmid (B16F10Sc). Moreover, the

addition of a blocking anti-FasL antibody (c178) in the culture

medium inhibited the increase in caspase-3 activity observed

in these A20 cells compared to control culture conditions

(IgG control). These data suggest that the increase in A20

apoptosis is associated with an increase in available mem-

brane FasL molecules.

Finally, we tested the implication of p160ROCKmolecules

in this apoptosis induction mechanism. We cocultivated A20

cells with B16F10 cells either untreated or previously pre-

treated with the p160ROCK inhibitor (H1152, 0.5 mM). As

shown in Figure 6 C, H1152 pretreatment significantly (P <

.05) enhanced the capacity of B16F10 cells to induce apop-

tosis, as illustrated by the increase in the active form of

caspase-3. Moreover, addition of the blocking anti-FasL anti-

body (c178) in the culture medium significantly (P < .01) in-

hibited this effect.

Figure 4. Inhibition of p160ROCK increases FasL expression on B16F10 cell

membrane. (A) B16F10 cells were seeded onto glass coverslips in six-well

plates to obtain 60% confluence on day 2. On day 1, cells were treated with

0.5 �M H1152 for 24 hours. After treatment, actin fibers were visualized by

tetramethylrhodamine isothiocyanate-labeled phaloidin. Cells were viewed

under a Zeiss Axiophot microscope (� 630), and pictures taken with a

Princeton Camera. (B) B16F10 cells were incubated with 0.5 �M H1152 for

24 hours. Cells were harvested and FasL was immunodetected by flow

cytometry. Histograms illustrating the percentage of FasL+ cells analyzed by

flow cytometry from three independent experiments. A statistically significant

increase (P < .01) is illustrated by double asterisks (**).
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Altogether, these data demonstrate that membrane FasL

molecules are responsible for the apoptosis induced by

B16F10 melanoma cells in A20 lymphoma target cells.

Furthermore, as RhoA/ROCK negatively regulates mem-

brane FasL expression on these melanoma cells, their

inhibition increased the apoptosis of A20 cells, whereas the

overexpression of activated RhoA reduced A20 apoptosis.

RhoA or p160ROCK may therefore represent interesting

target molecules to modulate the antitumor immune re-

sponse through membrane FasL expression.

Figure 5. Apoptosis induced by Fas/FasL pathway of A20 lymphoma cocultivated with B16F10 melanoma cells. (A) A total of 1 � 105 A20 cells were cultivated

alone or with 3 � 105 of B16F10 melanoma cells for 24 hours and the expression of the active form of caspase-3 was evaluated by cytofluorometry with a specific

antibody in permeabilized A20 cells. Data shown are from one representative of three independent and reproducible experiments. (B) A total of 1 � 105 A20 cells

were cultivated alone or with increasing numbers of B16F10 melanoma cells (1 � 105; 3 � 105) for 24 hours and expression of the active form caspase-3 was

evaluated by cytofluorometry. Data shown are mean values of three independent experiments. A statistically significant increase (P < .01) is illustrated by double

asterisks (**). (C) A total of 1 � 105 A20 cells were also cultivated for 24 hours alone or with 1 � 105 B16F10 cells, in the absence (medium) or the presence of

100 �M caspase inhibitor Z-VAD-Fmk (Z-VAD-Fmk). Medium corresponds to the normal culture medium containing 1% DMSO to be in the same conditions as

those required by the Z-VAD-Fmk inhibitor. Coculture experiments were also carried out with blocking anti-FasL antibody (c178) at 50 �g/ml (anti-FasL antibody) or

matched isotype control (IgG). IgG corresponds to the normal culture medium containing 50 �g/ml of a rabbit IgG used as control for the anti-FasL antibody. Data

shown are mean values of three independent experiments. Statistically significant decreases (P < .05) induced by the inhibitor or the blocking antibody are

illustrated by an asterisk (*).
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Figure 6. RhoA negatively regulates FasL-induced apoptosis of A20 cells cocultivated with B16F10 melanoma cells. (A) A20 lymphoma cells (1 � 105) were

cultivated for 24 hours, either alone or with 1 � 105 B16F10 cells, transfected with either pSG5 empty vector (B16F10Mock) or pSG5-RhoAV14 vector

(B16F10RhoAV14). The percentage of A20 cells expressing the active form of caspase-3 (% active caspase-3) was analyzed by flow cytometry. (B) A20 lymphoma

cells (1 � 105) were also cocultivated for 24 hours either alone or with 1 � 105 B16F10 cells transfected with a control siRNA (B16F10Sc) or a RhoA-specific siRNA

(B16F10SiRhoA). (C) A20 cells (1 � 105) were also cocultivated for 24 hours either alone or with 1 � 105 B16F10 cells treated or not by ROCK inhibitor (0.5 �M

H1152). These cultures (B) and (C) were made both in a control medium containing an IgG isotype control (IgG) and in a medium containing a blocking anti-FasL

antibody at 50 �g/ml (antibody anti-FasL). The percentage of A20 cells expressing the active form of caspase-3 was analyzed by flow cytometry. Data shown are

from one experiment representative of three. Statistically significant increases or decreases of A20 cells expressing the active form of caspase-3 are illustrated by

an asterisk (*) (P < .05) or double asterisks (**) (P < .01).
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Discussion

Malignant cells possess several strategies to escape im-

mune surveillance such as low-level expression of target

antigens recognized by cytotoxic T lymphocytes [38], a de-

crease or loss of the human leukocyte antigen class I or class

II molecule expression required for antigen presentation

[39,40], and suppression of immune cell function by secret-

ing factors such as IL-10 or transforming growth factor–b
[41]. Interestingly, some tumor cells have also developed an-

other strategy named the Fas-counterattack mechanism

[42], whereby loss of Fas expression or function and the ab-

errant expression of FasL by tumor cells contribute to their

evasion of host immune surveillance by triggering apoptosis

of Fas-positive antitumor effector lymphocytes [43,44].

FasL expression has been described on some tumor

models [19]; however, few studies have focused on the reg-

ulation of expression levels. In this in vitro study, we have

shown that expression of FasL on themembranes of B16F10

murine melanoma cells [19] is strongly increased by treat-

ment with the HMG-CoA reductase inhibitor atorvastatin.

However, we observed no change in the level of total FasL

protein, indicating that atorvastatin interferes with membrane

localization of FasL, either modifying its stability or traffick-

ing to the cell surface. The upregulation of membrane FasL

expression induced by atorvastatin is reversed by coincuba-

tion with mevalonate, suggesting the involvement of isopren-

oid compounds from the cholesterol pathway downstream

of mevalonate. An inhibitor of protein geranylgeranylation

(GGTI-298) but not of protein farnesylation (FTI-277) can

also upregulate FasL expression, supporting the role of a

protein modified by geranylgeranylation in this regulation.

We also observed an upregulation of membrane FasL in the

presence of C. botulinum C3 exotoxin, a selective inhibitor of

Rho protein activation. Overall, these results indicate a close

relationship between the upregulation of membrane FasL

and the Rho inhibition. Transfection experiments with either

a vector expressing an active form of RhoA (RhoAV14)

or siRNA against RhoA confirmed a role of this small G pro-

tein in the control of FasL expression. Inhibition of RhoA by

siRNA increased FasL expression in B16F10 cells, whereas

constitutively active RhoA decreased it. These data show

that RhoA negatively regulates membrane FasL expression

in B16F10 cells.

Previous studies have shown that the small GTPases

RhoA or Rac1 regulate transcription of FasL in different cell

lines such as Jurkat leukemia cells or NIH-3T3 fibroblast

[45,46]. However, to our knowledge, this study is the first to

implicate RhoA in the negative regulation of membrane FasL

expression, showing no correlation with the total level of FasL

protein. Rho GTPases are involved in different cellular mech-

anisms such as the regulation of transcription, cell motility,

adhesion, or membrane trafficking. Bossi and Griffiths [47]

Figure 7. Schematic representation of the effects of RhoA/ROCK signaling pathway inhibition on membrane FasL expression and lymphocytes apoptosis. In vitro

treatments of B16F10 melanoma cells with inhibitors of the RhoA/ROCK pathway increase the membrane FasL expression on these treated tumor cells. This

(over)expression promoted the apoptosis of Fas-sensitive lymphocytes.
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demonstrated the storage of newly synthesized FasL in

specialized secretory lysosomes in CD4+ and CD8+ T lym-

phocytes and natural killer cells and showed that polarized

degranulation controls the delivery of FasL to the cell surface.

More recently, studies in tumor cells and, more particularly,

melanoma cells have demonstrated the storage of preformed

FasL in lysosomal microvesicles, able to traffic to the cell

surface [48,49]. These observations could explain why RhoA

negatively regulates membrane FasL expression. Indeed,

Nishimura et al. [50] demonstrated that, by regulating both

cytoskeletal microtubule organization and the actin cytoskel-

eton, the RhoA/ROCK–mediated signaling pathway is in-

volved in the intracellular membrane dynamics of lysosomes.

In this model, RhoA/ROCK pathway regulates the traffic and

the localization of lysosomes in the cytoplasm and the cell

membrane, possibly explaining themodulation ofmembrane-

expressed FasL without modification of the total level of this

ligand. The upregulation of membrane FasL expression in

B16F10 cells treated with either the ROCK inhibitor HT115 or

RhoA SiRNA strongly support the hypothesis that an active

RhoA/ROCK pathway disrupts vesicle trafficking to the cell

surface thereby decreasing membrane FasL expression.

The biologic significance of FasL expressed on tumor

cells, still needs to be elucidated. In vitro, membrane-

expressed FasL favor tumor immune evasion through apop-

tosis of cocultivated lymphocytes. Here, we demonstrated

that FasL-expressing B16F10 cells can induce apoptosis of

Fas-sensitive A20 B lymphoma cells. Growing numbers of

B16F10 melanoma cells cocultured with A20 cells induce

increased A20 cell death, associated with an upregulation of

the active form of caspase-3. Hetz et al. [51] demonstrated

the association of upregulated caspase-3 activity and Fas/

FasL–dependent A20 apoptosis and identified this specific

caspase as a marker of apoptosis in this lymphoma cell. The

increased caspase-3 activation seen in A20 cocultivated with

B16F10 must be dependent on the binding of FasL ex-

pressed on B16F10 membrane with the Fas molecule on

A20 cells. This hypothesis is further supported by the fact

that B16F10 cells transfected with constitutively active

RhoA, which decreases membrane FasL expression, induce

A20 apoptosis less efficiently than B16F10 cells transfected

with the empty vector. Conversely, the in vivo significance of

FasL molecules expressed on tumor cells remains ambigu-

ous. On the one hand, downregulation of FasL expression in

colon cancer cells was recently shown to result in an in-

creased antitumor immune response and decreased tumor

formation in vivo, providing functional evidence in favor of the

Fas counterattack as a mechanism of tumor immune evasion

[52,53]. Conversely, several studies have suggested that

FasL expressed on tumor cells did not favor in vivo tumor

evasion [54]. Interestingly, Wada et al. [14] demonstrated

that the level of FasL expression on B16F10 cells is crucial

for their in vivo behavior. Indeed, B16F10 cells expressing a

high level of FasL induce tumor rejection associated with an

inflammatory response, whereas B16F10 expressing a low

level of FasL induce enhanced tumor growth by a counter-

attack mechanism without activating the protective inflam-

matory response.

Our study in B16F10 melanoma cells provides evidence

that in vitro lymphocyte apoptosis, induced throughmembrane-

expressed FasL molecules, may be negatively regulated by

the RhoA/ROCK pathway, as summarized in Figure 7. Ac-

cording to the enhanced tumor rejection of B16F10 cells ex-

pressing high levels of FasL [14], inhibitors of the RhoA/

ROCK pathway could be interesting pharmacological agents

to reduce tumor growth. This work, therefore, provides fur-

ther support for our previous findings suggesting an involve-

ment of Rho GTPases in mechanisms by which tumors either

escape or modulate the antitumor immune response [18]. Our

works identify RhoA protein as a new target for therapeutic

strategies on melanoma treatment.
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