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Abstract- -Different  space marching implementations of the Mollification Method are introduced 
to numerically recover the temperature and heat flux histories at interior points of bounded sub- 
domains of a finite two-dimensional rectangular body when the temperature and heat flux functions 
are approximately measured at one boundary side. 
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1. I N T R O D U C T I O N  

Theoretical concepts and computational implementation related to the inverse heat conduction 
problem (IHCP) have been mostly restricted to one-dimensional models. The difficulties of the 
two-dimensional IHCP are more pronounced and very few results are available in this case. 

The first analytical solution--requiring exact da t a - - t ha t  is applicable to two-dimensional con- 
duction systems for geometries of arbitrary shape was introduced by Imber [1]. Most of the 
literature related to the numerical t reatment of the two-dimensional IHCP is based on different 
ways of combining finite elements realizations with the Future Temperatures Method of Beck [2]. 
For some of the early applications of these ideas, see [3]. More numerical experimentation can be 
found in [4]. An elaborated and comprehensive exposition of the method was presented later by 
Baumeister and Reinhardt [5], and, more recently, by Zabaras and Liu [6]. See [7] for a historical 
perspective. 

In Section 2 of this paper, we review the space marching implementation of the Mollification 
Method for the two-dimensional inverse heat conduction problem in a slab--including the numer- 
ical procedure and the corresponding numerical analysis--as introduced by Guo and Murio [8]. 
In Section 3, we concentrate our attention on the actual application of the space-marching fully 
explicit algorithm to the more realistic situation related with a bounded rectangular space do- 
main in the (x, y)-plane. We study the task of recovering transient temperatures and heat fluxes 
at "interior" space domains for times greater than a certain train > 0. Section 4 is devoted to 
the analysis of other techniques, such as singular perturbation schemes, to enhance the stabil- 
ity and consistency of the numerical method. The question of at tempting to recover the initial 
temperature  distribution on the interior domains and the testing of numerical strategies for the 
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16 Y. LIu AND D. A. Muruo 

approximate reconstruction of the temperature functions at the boundaries of the whole origi- 
nal bounded domaln--a much more difficult task--will be reported in a subsequent publication, 
Part II: The "Lost Boundary" Problem. In all cases, we provide several model examples to 
generously illustrate the results of the numerical experiments. 

We assume all the functions involved to be L2 functions in R 2 suitably extended--when nec- 
essary for the analysis--as being zero everywhere if t < 0 or y _< 0. 

2. T W O - D  I H C P  I N  A S E M I - I N F I N I T E  S L A B  

We consider a two-dimensional IHCP in a semi-infinite slab, in which the temperature and heat 
flux histories f ( y , t )  and q(y,t) on the right-hand side (x = Xl) are desired and unknown and the 
temperature and heat flux on the left-hand surface (x = O) axe approximately measurable. 

The normalized linear problem can be described mathematically as follows. The unknown 
temperature u( x, y, t) satisfies: 

ut = uxx + uu~, O < X < Xl, y > O, 

u(O, y, t) = F(y,  t), y > O, t > O, 

with corresponding approximate data function Fra(y, t), 

ux(O,y,t) = Q(y, t) ,  y > 0, t > 0, 

with corresponding approximate data function Qm(y, t), 

U(X,y ,O)  = O, 0 < X < Xl ,  y > O, 

U (Xl,  y,  t)  = f (y ,  t), y > O, t > O, 

the desired but unknown temperature function, 

ux (xl, y, t) = q(y, t), y > O, t > O, 

the desired but unknown heat flux function, 

u(x ,O , t )=O,  O < x < x l ,  t > O .  

t > 0, (la) 
(lb) 

(ic) 

(ld) 

(le) 

(10 

(lg) 

We hypothesize that the exact data functions F(y,  t) and Q(y, t) and the measured data func- 
tions Frn(y, t) and Qm(y, t) satisfy the L2 data error bounds 

I IF  - Frail ~ ~ and IIQ - Qmll  _< ~. (2) 

The Fourier analysis of system (1), presented in [8], demonstrates that if s and w represent 
the Fourier transform variables associated with y and t, respectively, attempting to solve prob- 
lem (1)--obtaining f ( y , t )  and q(y,t) from F(y , t )  and Q(y,t)--ampli f ies the error in a high 
frequency component by the factor 

Thus, the inverse problem is highly ill-posed in the high frequency components. 

2.1. Stabilized Problem 

Introducing the two-dimensional Ganssian kernel 

1 exp - + p (y, t, 61,6~) = 7r6162 
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and denoting p(y,t ,  61,62) by p6(y,t) if 61 = 62 = 6, the two-dimensional convolution of any 
locally integrable function g(y, t) with the Ganssian kernel P6(Y, t ) - - the  mollification of the func- 
tion g(y, t )-- is  written as 

J6g(y, t) = (p6 * g) (y, t) = P8 (Y', t') g (y - y ', t - t') dy' dr'. 
oo oo 

Mollifying system (1), we obtain the following associated problem: attempt to find J~fm(y , t )  = 
J~U(Xl,y,t)  and J~qm(y,t) = J6%(Xl ,  y , t )  at some point (y, t)  of interest and for some radius 
5 > 0 given that  J~u(x, y, t) satisfies 

(&u)~ = (J8%x + (J6u)~y, 
J6u(O,y,t) = J~Fm(y,t) ,  

J~%(O,y, t )  = J~Qm(y,t) ,  

J~u(z, v, o) = o, 

Jsu(x,  O, t) = O, 

0 < X < Xl, y > 0, 

y > 0, t > 0, 

y > 0, t > 0, 

0 < X < X l ,  y > 0 ,  

0 < X < X l ,  t > 0 .  

t > 0 ,  

(3) 

This problem and its solutions satisfy the following theorem. 

THEOREM 1. Suppose that IIF -Fm[[ ~_ e and [[Q - Qm[[ ~_ e. Then: 

1. Problem (3) is a formally stable problem with respect to perturbations in the data. 
2. I f  the exact boundary temperature f (y ,  t) and heat flux q(y, t) have ,,niformly bounded 

first order partial derivatives on the bounded domain D = [0, Y] x [0, T], then J6fm 
and J~qm verify 

and 

II/- Jd~ll~ < o(e) + 2~exp [u -~] 

IIq - Jsqmll. _< o(5) + 2~exp [u-: ] .  

The proof of this statement can be found in [8]. 

2.2. N u m e r i c a l  P r o c e d u r e  a n d  E r r o r  Ana lys i s  

With v = J6u and w = vx, system (1) is equivalent to 

V t = W x Jr V y y ,  0 < X < X l ,  y > O, t > O, 

w = v x ,  O < x < x l ,  y > O ,  t > O ,  

v(O,y,t) = J~Fm(y,t),  y > O, t > O, 

w(O, y, t) = J6Qm(Y, t), y > O, t > O, 
(4) 

v (x , y ,O)=O,  0 < x < x l ,  y>_0, 

v (xl,  y, t) = J~fm(y, t), y > 0, t > 0, unknown, 

w (xl,  y, t) = J~qm(Y, t), y > 0, t > 0, unknown, 

v (x ,O , t )=O,  O < x < x l ,  t > O .  

Without loss of generality, we will seek to reconstruct the unknown mollified boundary tern- 

perature function J~fm and mollified boundary heat flux function J6qm in the unit square 
D = [0, 1] x [0, 1] of the (y, t)-plane x = Xl. Consider a uniform grid in the (x, y, t)-space: 

{(~i = ih, yj = is ,  tn = = O, 1 , . . . ,  = xl; nk) , i N, N h  

j = 0 , 1 , . . . , M ,  M s = L ;  n = O ,  1 , . . . , P ,  P k - - C } ,  

3h1-C 



18 Y. Liu AND D. A. M u m o  

where L and C depend on h, s, and k in a way to be specified later, L, C > 1. Let the grid 
functions V and W be defined by 

V~n' , W.'~'=(~i,Yj,t~) 0 < i < N ,  0 _ < j < M ,  0 < n < P .  w = v (~ i ,  Yj, tn) * , 3  ' - 

W e  notice that  

Vonj = J~Fm (y j , tn ) ,  O < j < M, 0 < n < P ,  

W~, j=J~Q, ,~(y j , tn ) ,  O<_j<_M, 0 < n < P ,  

Vi,n0 = 0, 0 < i < N ,  0 < n < P ,  

Vi°j = 0, 0 < i < N ,  O < j < M .  

We approximate the system of partial differential equations (4) with the consistent finite difference 
schemes 

= W.n" h ( v n + l  _ v . n _ l ~  _ h V~ n V, n w , ~ l , j  ~,~ + ~ .  ,,j .,~ . ~ ( ,,~-1 - 2v,.3 + ,,;+1) 
Vin+lj = Vi~ + hW~+l,j, 

i = O ,  1 , . . . , N - 1 ;  j = l , 2 , . . . , M - i - 1 ;  

Vonj = (J~Fm)~., j = 1 ,2 , . . .  , M - l ;  n = 1 ,2 , . . .  , P - l ,  

j W,~j -- ( 6Qm)j , j = 1 , 2 , . . . , M - l ;  n = 1 , 2 , . . . , P - 1 ,  

V~n,o =O, i = 0 , 1 , . . . , N - 1 ;  n =  l , 2 , . . . , P - i ,  

Vi°j=O, i =  l , 2 , . . . , N ;  j =  l , 2 , . . . , U .  

n = 1 , 2 , . . . ,  P - i - l ,  
(s) 

and 

Q.~ (y#, t . )  = Q (y#, t . )  + e Q J ,n '  

where eFn and con are independent Gaussian random variables with variance a 2 = e 2 and 
zero mean. 

Notice that  as we march forward in the x-direction in space, we must drop the estimation of the 
interior temperature from the highest previous point in time and the associated right-most point 
in the y-direction. Since we want to evaluate {V~,j} and {W~j}  at the grid points of the unit 
square D = [0, 1] x [0, 1J--in the (y, t)-plane at x = xl - -af ter  N iterations, the minimum initial 
length C of the data  sample interval in the time axis needs to satisfy the condition C = P m  = 
1 - k + k /h .  Similarly, the minimum initial length L of the data  sample interval in the y-direction 
satisfies L = M s  = 1 - s + s /h .  

The stability of the finite difference scheme (5) and the convergence of the numerical solution 
to the solution of the mollified problem (3) are shown in [8]. 

REMARKS. 

1. The radius of mollification, 5, can be selected automatically as a function of the level of 

noise in the data. In fact, for a given e > 0, there is a unique 5 > 0, such that 

JJ&Fm - FmJJD = e. (6) 

2. It is also possible to replace the discrete two-dimensional mollification of the data  functions 
by two successive one-dimensional mollifications in time and y-space. In this manner, the 
data  filtering task can be executed as a parallel process. 

3. If F (y, t) and Q (y, t) denote the exact temperature and heat flux functions, respectively, 
the noisy data  is obtained by adding different random errors to F(yj ,  tn) and Q(yj,  tn) at 
each grid point. That  is, 

Fm (y~,t~) = F (y~,t . )  + ~F 3 , n '  
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We investigate now the two-dimensional IHCP when the space domain in the (x, y)-plane is 
restricted to the bounded prototype rectangle R = [0, xl] x [0,1]. We must add the boundary 
condition 

u(x,  1, t) = c~(x, t), 0 < x < Xl, t > O, 

and, at the same time, we shall not require the homogeneity of the boundary conditions (ld) 
and (lg) that now should read, respectively, 

u(x ,  u, 0) y),  0 < z < 0 < y < 1, 

and 

u(x, 0, t) = 7(z, t), 0 < x < xl, t > 0. 

However, since the functions f ,  a, 13, 7, u(x,  y, 0), and F uniquely determine the solution of the 
direct problem--including the heat fluxes q and Q at x = Xl and x = 0, respectively--it is clear 
that, for the inverse problem, the data functions F and Q together with the initial temperature 
distribution possess all the necessary information for the recovery of the temperature and heat 
flux functions f and q at x = Xl and the boundary conditions a, t3, and 7. Consequently, the 
functions u(x,  O, t) = 7(x, t), u(z ,  1, t) = a(x ,  t), and u(x,  y, O) = ~(z ,  y) will be treated as un- 
knowns and their recovery becomes a natural task for the two-dimensional IHCP. Mathematically, 
the new inverse problem can be stated as follows. 

The temperature function u(x,  y, t) satisfies: 

u t ( x , y , t )  = Uxx(X,y, t)  + vy~(x ,y , t ) ,  0 < x < x l ,  

u(O, y, t) = F(y ,  t), 0 < y < 1, 

with corresponding approximate data function Fro(y, t), 

ux(O,y , t )  = Q(y , t ) ,  0 < y < 1, 

with corresponding approximate data function Qm(y,  t), 

u( x, y, O) = j3( x, y ), unknown, 

u(x,  O, t) = 7(x,  t), unknown, 

u(x,  1, t) = a(x ,  t), unknown, 

u (Xl, y, t) = f ( y ,  t), unknown, 

u (Xl, y, t) = q(y, t), unknown, 

0 < y < l ,  t > 0 ,  (Ta) 

t > 0, (75) 

t > 0, (7c) 

0 < x < x l ,  0 < y < l ,  (7d) 

0 < X < X l ,  t > 0 ,  (Te) 

0 < x < x l ,  t > 0 ,  (70 

0 < y <_ 1, t > 0, (Tg) 

0 < y _< 1, t > 0. (75) 

For a discussion of the uniqueness of the solution of this problem, the reader is referred to [7]. 

3.1 .  "Inter ior"  C u b e  

In this section, we begin the numerical testing of the space marching implementation of the 
mollification method. The numerical process, as well as the results of the recovery, depends 
on a set of parameters that includes the sample step-sizes, the radii of mollification and some 
others. One of the major tasks of this numerical study is to show practical stability, and to find an 
optimal set of parameters for the fully explicit algorithm. Accordingly, we test the method on five 
different model examples. The overall performance of our algorithm is "problem independent." 
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3.1.1. The  list o f  examples  

Here we list the five examples that  are used to illustrate the results of our numerical experi- 
ments. As mentioned before, the general conclusions do not depend on any particular example 
and, most of the time, we will present the numerical results associated with the prototype Ex -  
a m p l e  1. 

EXAMPLE 1. 

u(x, y, t) = e 5-2~ sin x sin y 

ux (x, y, t) = e 5-2t cos x sin y. 

EXAMPLE 2. 

u( x, y, t) = e 5-4"25t sin l x  sin 2y 

1 1 _5-4.25t ~x sin 2y. u~(x, y, t) = ~ cos 

EXAMPLE 3. 

u(x, y, t) = e t+(1/v~)(x+u) 

u~(x, y, t) = ~/~e t+(1/'/Sl(x+y) 

EXAMPLE 4. 

1 3 u(x, y,t) = x3y + 3txy + -~xy 

1 3 uz(x, y,t) = x2y + 3ty + -~y . 

EXAMPLE 5. 

u(x ,y , t )  = 50x - 100x 2 + 50y 2 - 100t 

ux(x ,y , t )  = 50 - 200x. 

All these functions satisfy the heat-conduction equation (la).  

We study now the two-dimensional IHCP when the space domain in the (x, y)-plane is the 
rectangle R = [0,Xl] x [0,1] with initial data  temperature and heat flux functions Fm(y, t)  
and Qm(y, t)  measured at the discrete grid points of the domain Ddata ~-[0, 1] × [0, T] in the 
(y, t)-space at x = 0, with sample step sizes s and k in the y and t directions, respectively. 
Once the radii of mollification 6E and 6Q have been obtained--af ter  solving the discrete version 
of equation (6)--sett ing 6 = max(6F,6Q), 6 a multiple of s and k, the discrete mollified data  
functions J~Fm and J~Qm--computed using a rectangular quadrature rule in the original g r id - -  
are evaluated on a coarser grid with step sizes Ay = nys and At  = ntk (n~,nt > 1), in the 
domain D6 = [36, 1 - 36] x [36, T - 36] of the (y, t)-plane at x = 0. The numbers n v and nt are 
the refine constants of the algorithm. 

Our new immediate task is to recover the temperature and heat flux functions at the grid 
points of the three-dimensional "interior" cube ~6 = [0, xl] x [36, 1 - 36] x [36, 1] of the (x, y, t)- 
space with the knowledge of the discrete data  functions Fm and Qm at the grid points of the 
domain D6. 
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3.1.2.  N u m e r i c a l  p r o c e d u r e  

Following Section 2.2, with T = 1 + 35 - At + At~h, we consider the uniform grid in the 

(x, y, t)-space: 

{ ( ~ i = i h ,  = 3 5 + j A y ,  t , ~ = 3 5 + n A t ) ,  i = O ,  1 , . . . , N x ,  N x h = x l ;  Yj 

=O, 1 , . . . , N u ,  N y A y =  l - 6 5 ;  n = O ,  1 , . . . , N t ,  N t A t =  T - 6 5 } .  J 

We define the grid functions 

Y ~ = v ( ~ , y j , t ~ ) ,  W ~ , ~ = ( ~ , y j , t n ) ,  0 < i < g x ,  O < j < Y ~ ,  0 < n < g ~ ,  

and with v -- J~u and w = Vx, we introduce the consistent finite difference scheme 

: wn" -~ ~ (y..n+ 1 _ v.n~_l~ _ h V~ n V~'* 

V/.~_I, j = V/,~ + h W n i , j ,  

i = 0 , 1 , . . . , N x - 1 ;  j =  l , 2 , . . . , N y - 1 ;  n =  l , 2 , . . . , N t - 1 ,  (8) 

V,o~j = (J6Fm)~, j = 0, 1 , . . . ,  Ny; n = 1, 2 , . . . ,  gt ,  
n " ' ,  " ,  W.~,j = ( ~Qm)j , j = 1,2,.  Ny; n = 1,2, . .  Nt. 

As we march forward in the x-direction in space, we must drop the estimation of V~,~ associated 
with the boundary values of j and n. We have already anticipated this behavior for the largest 
t ime index and we have read, accordingly, all the necessary time data  at x = 0. However, we need 
to extrapolate to recover the boundary conditions at y = 35, y = 1 - 35, and t = 35. For example, 
at each step of the marching scheme, the boundary value for j = N u is recovered by extrapolation 
from the corresponding values of the discrete heat flux function at j = N u - 1, N v - 2, Nu - 3, 
and N u - 4, introducing a O(Ay a) error in the process. We recover the discrete temperatures 
at j = 0 and n = 0 in a similar way. The algorithm is continued for i = 1, 2 , . . . ,  Nxl until all 
the required quantities { W ~  1,5} and {U~v~l ,j} are computed. These values are then taken as the 
accepted approximations for the heat flux and temperature functions, respectively, at each point 
of the discrete domain [35, 1 - 35] x [35, 1] of the (y, t)-space at x = xl.  

It  is desirable to make the grids denser in order to get more detailed information about  the 
computed temperature  and heat flux functions. However, there is a trade-off between the step-size 
and the accuracy of the recovery since the IHCP is an ill-posed problem. Keeping the accuracy 
at a certain level, we t ry  to make the sample step-sizes Ay, At and space-marching step-size h as 
small as possible. The performance of the algorithm is mostly justified by the consistency and 
the magnitude of these parameters. 

We would like to test the stability of the algorithm under moderately high levels of noise. 
However, higher noise level means that  a larger mollification constant is required to stabilize the 
numerical process, and, therefore, we have a smaller inner cube to recover. 

The accuracy of a recovery is measured by the 12 error norm of the recovered function o v e r  
t h e  w h o l e  i n t e r i o r  c u b e  f~.  

The stability of the algorithm is indirectly measured by the size of the working grid, i.e., by the 
sample step-size and the space-marching step-size of the recovery. For the same level of accuracy, 
an algorithm is considered more stable if it allows for a denser working grid, i.e., smaller sample 
step-size and space marching step-size. 

To put  ourselves in a comparable contention, we consider (most of the time) the noise level 
constant, e, up to 0.005 in our experiments. The corresponding mollification constant 5 is 0.0667. 
A recovery is considered "accurate" (acceptable) if the 12 error norm of the recovered temperature  
function is less than 0.01 and that  of the heat flux function is less than 1. An algorithm is "quasi-  
s t ab le"  if it allows an accurate recovery with h, Ay, At <_ 0.1. 

No specific requirements are imposed on the grid refine constants. We will take the smallest 
integers tha t  stabilize the numerical process. In most cases, nu = nt = 10. We also fix xl  = 0.5. 
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3.1.3.  T h e  mol l i f i ca t ion  resul t s  

For the mollification method,  with ~ = 0.005 and & = 0.0667, the optimal combination of 
the parameter  values, according to our numerical experience, are Nx = 10, N~ = Nt = 40, 

ny = nt = 10. 

For this specific choice of the parameter  set, the 12 error norms of the recovered tempera ture  

and heat flux functions on the whole cube ~6 are shown in Table 1. 

Table 1. The  12 error norms. Example 1. Nx = 10, N~ = Nt = 40, e = 0.005, 
& = 0.0667, ny = n t  = 10. 

Example  1 Tempera ture  

0.0079 

Heat Flux 

12 Error  0.4490 

Relative 12 Error  0.0009 0.0153 

Here and in what  follows, 

Relative 12 error norm -- 
12 error norm 

12 norm of the function" 

Table 2 contains the 12 error norms for a list of 2-surfaces for fixed values of x. 

Table 2. The  12 error norms  for 2-surfaces for fixed value of x. Example  1. Nx = 10, 
N~ = Nt = 40, ~ = 0.005, 6 = 0.0667, n~ = n~ = 10. 

x 

0.1 

0.2 

0.3 

0.4 

0.5 

/ 2 fo r  u(x,y , t )  R. 12 ~r u(z ,y , t )  / 2 f o r  ux(x,y , t )  R.l~ ~r ux(x ,y , t )  

0.0153 0.0050 0.1776 0.0058 

0.0573 0.0094 0.2514 0.0084 

0.1295 0.0143 0.3246 0.0111 

0.2310 0.0193 0.4367 0.0154 

0.3612 0.0245 1.0794 0.0400 

Next we take the previous parameter  set values as a reference to test  the performance of the 

algorithm under a different choice of parameters.  At each experience, only one of the parameters  

is changed. 

Table 3 lists the dependency between the two parameters  e and &. All the error norms are for 

the tempera ture  functions. 

Table 3. The  optimal  & for different e. 
ny = n t  = 10. 

0.0005 0.0417 

0.0010 0.0417 

0.002O 0.0500 

0.0030 0.0583 

0.0040 0.0583 

0.0050 0.0667 

Example 1. Nx = 10, Ny = Nt = 40, 

12 error R. 12 error 

0.0061 0.0006 

0.0061 0.0006 

0 . 0 0 6 9  0.0007 

0.0071 0.0008 

0.0071 0.0008 

0.0079 0.0009 
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Table 4. The change of the space marching step-size. Example 1. N~ = Nt = 40, 
= 0.005, 6 = 0.0667, n~ = n~ = 10. 

g z  Z 2 for u(z ,y , t )  R. 12 for u(z,y,t)  12 for u x ( z , y , t )  R. 12 for ux(x ,y , t )  

5 0.0138 0.0015 0.5242 0.0179 

10 0.0079 0.0009 0.4490 0.0153 

15 0.0058 0.0007 1.7076 0.0580 

20 0.0060 0.0007 7.2921 0.2477 

25 0.0093 0.0011 26.6089 0.9035 

Table 5. The change oftheinit ia lsamplestep-s~es .  Example 1. N z =  10, ~ : 0.005, 
5 = 0.0667, n~ = nt = 10. 

N~ = Nt 12 for u(x ,y , t )  R. 12 for u(x ,y , t )  12 for ux(x ,y , t )  R. 12 for u~(x,y , t )  

10 0.0301 0.0033 0.3188 0.0105 

20 0.0151 0.0017 0.4476 0.0150 

40 0.0079 0.0009 0.4490 0.0153 

60 0.0053 0.0010 0.5186 0.0177 

80 0.0040 0.0005 0.3826 0.0131 

100 0.0032 0.0004 0.5165 0.0177 

Table 6. The 12 error norms, all the examples. Nx = 10, N~ = Nt = 40, e = 0.005, 
& = 0.0667, nv = n t  = 10. 

Example 12 for u(x ,y , t )  R. 12 for u(x,y , t )  12 for ux(x ,y , t )  R. 12 for uz (x , y , t )  

1 0.0079 0.0009 0.4490 0.0153 

2 0.0042 0.0012 0.3857 0.0332 

3 0.0028 0.0009 0.3307 0.1571 

4 0.0017 0.0063 0.3306 0.3569 

5 0.0917 0.0024 0.4842 0.0153 
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Table 4 shows the performance of the algorithm when the space marching step-size h changes. 
Table 5 is for the change of the sample step-sizes Ay and At. 

We recall that all the tables listed above axe for Example 1. The performance of the algorithm 
is the same when applied to other examples. The 12 error norms of the temperature and heat 
flux functions for the other examples are in Table 6. In all cases, we set E = 0.005, 5 -- 0.0667, 
h = 0.05, Ay = At = 0.025, n y  = n t  = 10. 

REMARKS. 

1. As we mentioned earlier, one would like to make the number of steps of the space march- 
ing, Nx, as big as possible to get more detailed information of the temperature and heat 
flux functions on the cube (28. However, due to the ill-posedness of the problem, the accu- 
racy of the recovery is very sensitive to Nx. As illustrated in Table 4, the accuracy drops 
dramatically on every increment of five units in Nx. According to our experience, Nx is 
one of the most important stability measurements. To keep the accuracy at the same level, 
allowing an increment of ten in Nx should be regarded as a substantial improvement on 
the stability of a given algorithm. 

2. As illustrated in Table 5, the accuracy of the recovery seems to be less sensitive to the initial 
sample sizes Nt and N~. However, this is not true in general. If we change Nx from 10 
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Table 7. The change of the initial sample size. Example I. Nx = 15, ~ = 0.005, 
& -- 0.0667. 

nt = ny Nt = N~ t2 for u(x, y, t) 12 for ux (x, y, t) 

10 40 0.0058 1.7076 

10 60 0.0036 1.3039 

8 80 0.0059 4.2234 

6 100 0.0027 32.1356 

to 15, as illustrated in Table 7, the sensitivity of the accuracy on Nt and N u becomes 
clear. 

Hence, the grid sizes Nt and Nu are also important measurements for the stability of the 
algorithm. 

The major objective for a quas i - s t ab le  a l g o r i t h m  is to  m a k e  Nx, as well  as N u 

a n d  Nt~ as la rge  as  poss ib le  whi le  keep ing  the  s a m e  level o f  accuracy .  

1. For our Example 1, the exact temperature function on the initial surface is identically 
zero. Nevertheless, we do add randomly generated noise to the zero  da ta .  The perturbed 
"zero data" causes specific trouble on the stability and accuracy of the recovery. As 
illustrated in Table 6, the accuracy is only related to the magnitude of the noise added 
into the initial data  sample, but not to the individual example model. The performance 
of the mollification method, when applied to different problems, is consistent. 

4. THE STABLE A L G O R I T H M  

In this section, we describe different ways to improve the stability of the mollification algorithm. 
In particular, we will combine the mollification algorithm with a singular perturbation method. 
The addition of a suitably chosen term to the heat conduction equation will greatly improve the 
stability of the mollification algorithm. 

4.1, The Singular Perturbation Scheme 

The discussion in this section is motivated by the realization that it is possible to modify 

the previous numerical algorithm in such a way as to allow for some extra filtering of the high 
frequency components of the noise. In particular, we would like to improve the stability related 

with the approximation of the second order partial derivative of the solution temperature with 
respect to the y-variable as we march in the x-direction. What  we have in mind is a potential 
perturbation of the differential operator itself, so that  the finite-difference implementation of the 
algorithm is not substantially changed. 

We recall that  in the frequency space, the relationship 

~ ( x ,  s, w) = (iw + s 2) ~(x, s, w), (9) 

where s and w are the frequency variables corresponding to the real variables y and t, respectively, 
leads to the general solution 

~(x , s ,w)  = A(s ,w)e  ~'SV'~x + B ( s , w ) e  -vTSV'~x. 

We propose to replace the solution of equation (9) by the function 

= (A(s, le + B(s, le (10) 

where A is a small positive constant. We observe that  in real space, the function v is simply 
the convolution of the function u with a Gaussian kernel that acts only in the y-variable and, 
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consequently, the analysis of the high frequency components of Section 2 applies directly to this 
situation. The fundamental task is now reduced to finding the governing differential equation 
for v. 

To this end, we proceed as follows. Introducing a = ~ s 2, taking partial derivatives with 
respect to x and using (10), we have 

~ ( x ,  s, w) = (a - As 2) A(s ,  w)(a-~82) x - (a + As 2) S ( s ,  w)e-(a+x82) x 

= a ( A ( s , w ) e  ~ - B ( s , w ) e  -~x)  e - ~ 8 ~  - As2~(x , s ,w) .  (11) 

Similarly, utilizing (10) and (11), 

v~x(x, s, w) = ~2V(x, s, w) - aAs 2 (A(s ,  w)e ax - B(s ,  w)e - ~ )  e -~82x - )~s2~(x,  s, w) 

= ~ ( z ,  s, w) - ~-yy~(z, s, w) - 2 ~ s 2 ~ ( z ,  s, w) - ~2s4V(z, s, w). 

By the linearity of the Fourier transformations, the function v(x ,  y, t) satisfies the linear partial 
differential equation 

v ~ ( z ,  y, t) = vt(z,  y, t) - v ~ ( z ,  y, t) + 2~v~y~(z, y, t) - ~ 2 v ~ y ( z ,  y, t), 

a singular perturbation of the original diffusion equation, that  depends on the small positive 
parameter A. 

In actual implementations, assuming the solution is sufficiently smooth, we only retain the first 
order term in ),, i.e., numerically we use the approximation 

v ~ ( x ,  y, t) ~- vt(x,  y, t) - v w ( x  , y, t) + 2Avxvv(x, y, t). 

Thus, instead of solving the equation 

Uxx = 72 t - - U y y ,  

we will work with the perturbed equation 

Uxx = U t -- Uyy + 2~Uzyy .  

For the numerical implementation, we use the following consistent finite difference schemes to 
obtain the necessary formulas for the space-marching algorithm: 

n = W n. h ( v . n + l  _ V.n_r~ h V. n V. n 
W~+l,./ ~,3 + ~ - ~ ,  ,,j ',5 , Ay2 ( i j - 1  - 2V~,~ + , j + l )  

-~- 2)~ ( i , j - 1 -  2win, j -~ w:,nj-F1) 

n W n = V~ n. + h ~-l,j" V/+I , J  ~,3 

4.2. Combined Mollification-Singular Perturbation Method 

To add the singular perturbation to the mollification algorithm, we only change the corre- 
sponding space-marching formulas as indicated in (12). Everything else is kept the same as in 
Section 3. We again consider e -- 0.005 and 6 -- 0.0667. 

To see the improvements, we set Ny = Art = 40 and A = 0.010. One can compare Table 8 with 
Table 4 to appreciate the differences made by the singular perturbation term. 

Table 8. T h e  12 error  norms ,  wi th  s ingular  pe r tu rba t ion .  Example  1. N~ = Nt  = 40, 
e = 0.005, 6 --- 0.0667, ny  = n t  = 10, A = 0.010. 

I 
Nx 12 for u ( x , y , t )  R. 12 for u ( x , y , t )  12 for u x ( x , y , t )  R. 12 for u x ( x , y , t )  

5 

10 

15 

20 

25 

0.0047 0.0013 O. 1602 0.0138 

0.0023 0.0007 0.5075 0.0437 

0.0015 0.0004 O. 1927 0,0166 

0.0015 0.0004 0.2544 0.0219 

0.0017 0.0005 0.3531 0.0304 
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T a b l e  8 i l l u s t r a t e s  a s ign i f i can t  i m p r o v e m e n t  in t h e  s t a b i l i t y  o f  t h e  a l g o r i t h m .  M u c h  s m a l l e r  

space  m a r c h i n g  s t ep  size is n o w  a l lowed,  and  all  t h e  r e su l t s  sa t i s fy  o u r  a c c u r a c y  c r i t e r ion .  

W e  p r o v i d e  one  m o r e  c o m p a r i s o n .  Tab l e  9 c o n t a i n s  t h e  r e su l t s  w i t h o u t  s ingu la r  p e r t u r b a t i o n ,  

a n d  T a b l e  10, t h o s e  w i t h  s ingu la r  p e r t u r b a t i o n .  T h e  p a r a m e t e r  va lues  a re  e = 0.005, & = 0.0667, 

Nv = Nt  = 60, a n d  A = 0.004. 

Table 9. The 12 error norms, without singular pe~urbation. Example 1. Nu = 
Nt =60,  e=0 .005 ,  &=0.0667, nu =nt  = 10, A=0.000.  

g~  

5 

10 

15 

20 

25 

/2for  u(x,y,t) R . / 2 f o r  u(x,y,t) 12 for ux(x,y,t) R . / 2 f o r  ux(x,y,t) 

0.0093 0.0010 0.5186 0.0177 

0.0053 0.0006 0.3436 0.0117 

0.0036 0.0004 1.3039 0.0445 

0.0037 0.0004 9.9876 0.3405 

0.0134 0.0015 78.3677 2.6714 

Table 10. The/2 error norms, with singularpe~urbation. Example 1. N y = N t =  60, 
e = 0.005, & = 0.0667, nu = nt = 10, A = 0.004. 

N~ 

5 

10 

15 

20 

25 

12 for u(x,y,t) R. 12 ~r u(x,y,t) 12 ~r ux(x,y,t) R. 12 for ux(x,y,t) 

0.0091 0.4455 0.0125 0.0010 

0.0006 0.0051 0.2363 0.0081 

0.0035 0.0004 0.2495 0.0085 

0.0027 0.0003 0.5511 0.0188 

0.0024 0.0003 1.3109 0.0447 

4.3 .  P e r f o r m a n c e  o n  D e n s e  G r i d s  

As  i l l u s t r a t e d  in T a b l e  7, t h e  a c c u r a c y  of  t h e  r e c o v e r y  is a lso sens i t i ve  to  t h e  d e n s i t y  o f  t h e  

g r id  for t h e  mo l l i f i c a t i on  a l g o r i t h m  w h e n  Nx > 10. A d d i n g  t h e  s ingu la r  p e r t u r b a t i o n  t e r m  also 

i m p r o v e s  t h e  p e r f o r m a n c e  o f  t h e  a l g o r i t h m  on  dense  grids.  To  see th i s ,  we t e s t  t h e  a l g o r i t h m  on  

t h e  g r ids  w i t h  Ny --  Nt  > 60. Nx  is set  to  20, a n d  again ,  e = 0.005 and  & = 0.0667 for all  t h e  

cases  cons ide red .  

T a b l e s  11 a n d  12 a re  for N~ = Nt  = 80. Al l  t h e  m o d e l  e x a m p l e s  a re  t e s t e d  a n d  t h e / 2  e r ro r  

n o r m s  a re  p r e s e n t e d .  T a b l e  11 c o n t a i n s  t h e  resu l t s  w i t h o u t  t h e  s ingu la r  p e r t u r b a t i o n ,  a n d  Ta -  

ble  12 t h o s e  w i t h  t h e  s ingu la r  p e r t u r b a t i o n .  A = 0.003 for t h e  r e su l t s  i l l u s t r a t e d  in T a b l e  12. 

( E n t r i e s  l a rge r  t h a n  103 a re  r e p l a c e d  by  as te r i sks . )  

Table 11. The 12 error norms, without singular perturbation. Nx --- 20, N~ = 
Nt ---- 80, ~ = 0.005, & = 0.0667, n~ = ne ---- 8, A ---- 0.000. 

Example 12 for u(x,y,t) R. l~ for u(x,y,t) 12 for ux(x,y,t) R. 12 for ux(x,y,t)  

1 0.0059 0.0007 * * * * * * * 3.6241 

2 0.0059 0.0017 * * * * * * * 9.2092 

3 0.0059 0.0020 * * * * * * * 50.6177 

4 0.0059 0.0224 * * * * * * * * * * * * * * 

5 0.0183 0.0005 * * * * * * * 3.5097 
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Table 12. The 12 error norms, with singular perturbation. Nx -- 20, Ny ---- Nt = 80, 
e = 0.005, 6 = 0.0667, nu = nt = 8, A = 0.003. 
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Example 12 for u(x,y , t )  R. 12 for u(x,y , t )  12 for ux(x,y , t )  R. 12 for u~(x,y, t)  

1 0.0021 0.0002 2.5275 0.0863 

2 0.0015 0.0004 2.5108 0.2195 

3 0.0013 0.0004 2.5258 1.2032 

4 0.0013 0.0049 2.5258 2.7430 

5 0.0186 0.0005 2.5259 0.0834 

Table 13. The 12 error norms, with singular perturbation. N z =  20, N ~ = N t =  100, 
e = 0.005, 6 = 0.0667, n~ = nt = 6, A = 0.001. 

Example /2for u(x,y, t )  R./2for  u(x,y, t )  12 for uz(x ,y , t )  R./2for  uz(x ,y , t )  

1 0.0031 0.0004 31.4977 1.0773 

2 0.0031 0.0009 31.5609 2.7675 

3 0.0031 0.0010 31.4842 15.0037 

4 0.0031 0.0116 31.4842 34.2225 

0.0146 0.0004 31.4847 1.0399 

Tab le  13 i l lus t ra tes  t he  resul ts  for the  even denser  grid Ny = Nt  = 100 wi th  s ingular  p e r t u r b a -  

t ion.  T h e  t e s t ing  of  the  moll i f icat ion a lgo r i thm wi thou t  s ingular  p e r t u r b a t i o n  for t he  s ame  gr id  

sizes gives unaccep t ab l e  d a t a  and  no cor responding  t ab le  is provided.  

REMARKS. 

1. As  men t ioned  earl ier ,  the  pe r fo rmance  of the  a lgor i thm is cons is ten t  when  app l i ed  to  

different  example  models .  Tables  11-13 can also be t aken  as evidence of  such a s t rong  

cons i s tency  of the  a lgor i thm.  The  absolu te  12 error  norms for the  t e m p e r a t u r e  and  hea t  

flux funct ions  are  p rac t i ca l ly  cons tan t  for all the  examples .  

2. T h e  pe r fo rmance  of the  combined  s ingular  p e r t u r b a t i o n  scheme also de pe nds  on the  per-  

t u r b a t i o n  cons tan t  ),. For  different grid sizes, one has to  choose a p rope r  value  of  A to  get  

t he  expec t ed  improvement .  Table  14 conta ins  the  cor respond ing  o p t i m a l  values  of  A for 

different  gr id  sizes Ny = Nt .  

Table 14. The relationship between N u -- Nt and A. 

N v = N t  A 

40 0.010 

60 0.004 

80 0.003 

100 0.001 

4.4. C o r r e c t i o n  for H e a t  F lux  

Accord ing  to  Tables  12 and 13, the  numer ica l  solut ions  give a good  a p p r o x i m a t i o n  for the t em-  

p e r a t u r e  funct ions  on the  dense grid.  However,  the  resul ts  for t he  hea t  flux funct ions  do not  mee t  

our  accu racy  s t a n d a r d  wi th  N v = Nt  = 80, and  are not  accep tab le  a t  all w i th  Nu = Nt  = 100. 

To look a t  t he  recovered funct ions more  closely, we take  a list  of  2-surfaces wi th  x fixed and  

observe  the  c o m p u t e d  hea t  flux function.  The  resul ts  wi th  N~ = 20, Nu = Nt  = 100 are  l i s ted  in 

Tab le  15. 
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Table 15. The 12 error norms with fixed x for the heat flux. Example I. Nx ---- 20, 
Ny ----- Nt = 100, e = 0.005, $ -- 0.0667, ny = nt ---- 6, A = 0.001. 

X 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

12 for ux ( z , y , t )  R. 12 for ux (x , y , t )  

0.1004 0.0033 

0.1321 0.0044 

0.1473 0.0049 

0.1621 0.0054 

0.1776 0.0060 

0.2166 0.0074 

0.2683 0.0094 

3.5576 0.1266 

19.2814 0.7021 

• • * • • • • 4.2664 

O n e  c o n c l u d e s  t h a t  t h e  la rge  12 e r ro r  n o r m  is m a i n l y  caused  by  t h e  las t  c o u p l e  o f  s t eps  w h e n  

m a r c h i n g  in  t h e  x - d i r e c t i o n .  T h i s  e x p l a i n s  t h a t ,  a l t h o u g h  t h e  ea r l i e r  r e c o v e r e d  h e a t  f lux  f u n c t i o n  

has  t o  be  used  t o  c o m p u t e  t h e  t e m p e r a t u r e  in t h e  c u r r e n t  m a r c h i n g  s tep ,  t h e  h i g h  e r ro r  d id  n o t  

c o n t r i b u t e  t o  t h e  r e c o v e r y  o f  t h e  t e m p e r a t u r e  func t ion .  T h e  wi ld  l as t  two  va lues  o f  t h e  h e a t  f lux 

f u n c t i o n  a re  n o t  u sed  t o  o b t a i n  t h e  t e m p e r a t u r e  o u t p u t  a t  t h o s e  loca t ions .  

C o n s e q u e n t l y ,  a n a t u r a l  w a y  t o  fix t h e  e r ro r  in t h e  r e c o v e r y  o f  t h e  h e a t  f lux f u n c t i o n  is t o  use  

t h e  a l r e a d y  e v a l u a t e d  t e m p e r a t u r e s  to  r e c o m p u t e  t h e  h e a t  f lux f u n c t i o n  a t  t h e  s a m e  level .  T h i s  

s h o u l d  i m p r o v e  t h e  a c c u r a c y  of  t h e  c o m p u t e d  h e a t  f lux func t ion .  T h e  12 e r r o r  n o r m s ,  for t h e  

a l g o r i t h m  w i t h  co r r ec t i on ,  a re  in Tab le s  16 a n d  17. Tab l e  16 is for t h e  case  N~ = N t  - -  80 a n d  

T a b l e  17 for N~ --  N t  --  100. W e  now c o m p a r e  T a b l e  16 to  12 a n d  T a b l e  17 t o  13 t o  see  t h e  

i m p r o v e m e n t s .  

Table 16. The 12 error norms, with corrector. Nx ---- 20, Nu --- Nt = 80, e ---- 0.005, 
6 = 0.0667, n~ = nt = 8, A = 0.003. 

Example 12 for u(x ,y , t )  R. 12 for u(x ,y , t )  12 for ux(x , y , t )  R. 12 for ux(x ,y ,$)  

1 0.0021 0.0002 0.7596 0.0259 

2 0.0015 0.0007 0.6358 0.0556 

3 0.0013 0.0004 0.6202 0.2955 

4 0.0013 0.0049 0.6184 0.6715 

5 0.0186 0.0005 7.2472 0.2394 

Table 17. The 12 error norms, with corrector. Nx --- 20, Nv -- Nt ---- 100, e ---- 0.005, 
6 = 0.0667, n~ = nt = 6, A = 0.001. 

Example 12 for u(x ,y , t )  R. 12 for u(x ,y , t )  12 for ux(x , y , t )  R. 12 for ux (x , y , t )  

1 0.0031 0.0004 1.1888 0.0407 

2 0.0031 0.0009 1.1147 0.0977 

3 0.0031 0.0010 1.0949 0.5218 

4 0.0031 0.0116 1.0937 1.1889 

5 0.0146 0.0004 7.3011 0.2411 
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Figure 1. Reconstructed temperature  function at x = 0.5. Example 1. Nx = 20, 
N~ = Nt ---- 40, e = 0.005, & = 0.0667, ny ~- nt  = 10, and ~ -- 0.010. 

Figure 2. Reconstructed heat flux function at x = 0.5. Example 1. Nx ---- 20, 
Ny -- Nt = 40, ~ -- 0.005, & = 0.0667, ny = nt  -- 10, and ~ -- 0.010. 

N o t e  t h a t  t h e  f o r m u l a  u s e d  for  t h e  c o r r e c t i o n  o f  t h e  h e a t - f l u x  f u n c t i o n s  is g i v e n  b y  

V ~  _ V ~  
W n .  = i+ l , j  ~ - l , j  

~,3 2 h  ' 

a n d  t h e  f u n c t i o n  v a l u e s  a t  t h e  v e r y  e n d  of  t h e  s p a c e  m a r c h i n g  (x  = 0.5)  a r e  r e c o m p u t e d  b y  ex -  

t r a p o l a t i o n .  E x a m p l e  5 ( w i t h  uxx = - 2 0 0  a n d  uyy = 100) b e h a v e s  e x c e p t i o n a l l y .  T h e  c o r r e c t i o n  

s c h e m e  d o e s  n o t  i m p r o v e  t h e  12 e r r o r  n o r m  for  t h e  h e a t  f lux  f u n c t i o n  in  t h i s  case .  
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F i g u r e  3. R e l a t i v e  errors  for t h e  t e m p e r a t u r e  f u n c t i o n  a t  x = 0 .5 .  E x a m p l e  l .  

N x  = 20,  Nrj = Nt = 40,  e = 0 . 0 0 5 ,  ~ = 0 . 0 6 6 7 ,  n~  = nt --- 10, a n d  A = 0 .010 .  

%1 

F i g u r e  4. R e l a t i v e  e r r o r s  fo r  t h e  h e a t  f lux  f u n c t i o n  a t  x = 0 .5 .  E x a m p l e  1. N ~  = 20,  

Ny = Nt = 40 ,  e = 0 .005 ,  6 = 0 .0667 ,  n y  = nt = 10, a n d  )~ = 0 .010 .  

The graphs in this section illustrate the qualitative behavior of the reconstructed temperatures 

and heat fluxes at x = 0.5, corresponding to Example 1 and the set of parameters Nx -- 20, 
N v = Nt = 40, e = 0.005, 6 = 0.0667, n~ = nt = 10, and ), = 0.01. 

Figures 1 and 2 show the computed temperature and heat flux functions, respectively, for y 
and t between 0.2 and 0.8. 

The discrete relative error functions associated with the temperature and heat flux functions 
(Vi:j--u(ih,jAy,nAt) W~g--u,( ih , jAy,nAt)~ respectively, are displayed in Figures 3 and 4 for y u(ih,jAlhnAt ) and u~ (ih, jAy,nAt)  ] ' 

and t between 0.2 and 0.8. 

The transient grid relative errors for the temperature and heat flux functions, corresponding 
to the space locations x = y = 0.5 and x = 0.5, y = 0.8, respectively, are shown in Figures 5 
and 6, for 0.2 < t _< 0.8. 
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Figure 6. Transient relative errors for 
the temperature (solid line) and heat flux 
(dashed line) functions at x = 0.5, y = 0.8. 
Example 1. Nx = 20, Nu = Nt = 40, 
e = 0.005, 5 = 0.0667, n~ = nt = 10, 
and A = 0.010. 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

A combined mollification-singular perturbation regularization technique is derived and investi- 
gated. The method is implemented as a space-marching-fully-explicit finite differences algorithm, 
providing computa t iona l  flexibility and  overall efficiency. 

Several test  cases are invest igated for a finite three-dimensional  cube in the  (x, y, t )-space when  

the t e m p e r a t u r e  and  heat  flux da ta  funct ions are measured only  on the square [0,1] x [0, 1 + 35], 

in the  (y, t)-space at  x = 0. The  required t empera tu re  and  heat  flux funct ions  axe numer ica l ly  

approx imated  in the "interior" cube ~ = [0, 0.5] x [35, 1 - 35] × [35, 1] of the (z, y, t)-space. 

A n u m b e r  of parameters  are varied, including radii of mollification, a m o u n t  of noise in the  da ta ,  

step march ing  and grid sizes. A reliable set of parameters  values is exper imenta l ly  de te rmined  

to guaran tee  acceptable accuracy and good s tabi l i ty  propert ies for the  algori thm. 

A general  conclusion is tha t  the numerical  procedure presented in this work remains  a viable  

procedure  for the numerica l  solut ion of the 2-D IHCP in "interior" bounded  subdomains .  

The  more difficult task involving the recovery of the ini t ial  and  b o u n d a r y  t empera tu re  funct ions  

on the whole original  three-dimensional  un i t  cube in the (x, y, @space  will appear  in another  

report ,  Pa r t  II, of this  research. 
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