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Abstract

For a natural number n, the authors propose and develop three new series representations for the Riemann Zeta function
�(2n + 1). The in�nite series occurring in each of these three representations for �(2n + 1) converges remarkably faster
than that in Wilton’s result. Furthermore, one of the three series representations for �(2n + 1) involves the most rapidly
convergent series among all the hitherto known members of the family of series representations considered here. Relevant
connections of the results presented in this paper with many other known series representations for �(2n + 1) are also
briey indicated. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the usual notations, let �(s) and �(s; a) denote the Riemann and the Hurwitz Zeta functions
de�ned (for R (s)¿ 1) by

�(s) :=
∞∑
n=1

1
ns
=

1
1− 2−s

∞∑
n=1

1
(2n− 1)s (R (s)¿ 1) (1.1)

and

�(s; a) :=
∞∑
n=0

1
(n+ a)s

(R (s)¿ 1; a 6= 0;−1;−2; : : :) (1.2)
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and (for R (s)61; s 6= 1) by their analytic continuations (see, for details, [8]). Then, in terms of
the familiar Bernoulli numbers Bn de�ned by means of the generating function:

t
et − 1 =

∞∑
n=0

Bn
tn

n!
(|t|¡ 2�); (1.3)

it is fairly well known that

�(2n) = (−1)n+1 (2�)
2n

2(2n)!
B2n (n ∈ N:={1; 2; 3; : : :}); (1.4)

but no such simple (and useful) representation exists for �(2n+ 1) (n ∈ N). Indeed there are many
known series representations for �(2n+ 1) (n ∈ N), which converge much more rapidly than those
given by the de�ning series in (1.1). For example, we have the series representation:

�(2n+ 1)= (−1)n−1 �2n
[
H2n+1 − log �
(2n+ 1)!

+
n−1∑
k=1

(−1)k
(2n− 2k + 1)!

�(2k + 1)
�2k

+ 2
∞∑
k=1

(2k − 1)!
(2n+ 2k + 1)!

�(2k)
22k

]
(n ∈ N); (1.5)

which was given, over seven decades ago, by Wilton [10, p. 92] (see also Hansen [3, p. 357, Entry
(54:6:9)]), and the following result given recently by Srivastava [6, p. 10, Eq. (42)] (see also [5,
p. 5, Eq. (3.4)]):

�(2n+ 1)= (−1)n−1
(�
2

)2n [H2n+1 − log (�=2)
(2n+ 1)!

+
2(4n − 1)
(2n+ 2)!

B2n+2 log 2

− 2
2n+1 − 1
(2n+ 1)!

�′(−2n− 1)− 24n+3

(2n+ 1)!
�′
(
−2n− 1; 1

4

)

+
n−1∑
k=1

(−1)k
(2n− 2k + 1)!

�(2k + 1)
(�=2)2k + 2

∞∑
k=1

(2k − 1)!
(2n+ 2k + 1)!

�(2k)
42k

]
(n ∈ N); (1.6)

where (and in what follows) a prime denotes the derivative of �(s) or �(s; a) with respect to s, an
empty sum is to be interpreted as nil, and Hn denotes the familiar harmonic numbers de�ned by

Hn :=
n∑
j=1

1
j

(n ∈ N): (1.7)

Of the two seemingly analogous representations (1.5) and (1.6), the in�nite series in (1.6) would
obviously converge more rapidly, with their general terms having the order estimates:

O(k−2n−2 · m−2k) (k → ∞; n ∈ N; m= 2 and 4): (1.8)

The main object of this paper is to derive three (presumably new) members of the class of the
series representations (1.5) and (1.6). The general terms of the in�nite series occurring in these
three members (given by Theorem 4 below) have the order estimates:

O(k−2n−2 · m−2k) (k → ∞; n ∈ N; m= 3; 4; 6); (1.9)

which exhibit the fact that each of the three series representations derived here for �(2n+1) converges
more rapidly than Wilton’s result (1.5) and two of them at least as rapidly as Srivastava’s result
(1.6).
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2. A set of lemmas

We begin by de�ning the sequence {�n(x)}∞n=0 by means of the generating function [cf. Eq. (1.3)]:

F(x; t):=
t − log x
et − x =

∞∑
n=0

�n(x)
tn

n!
(16x61 + c; c¿ 0); (2.1)

so that, clearly,

�n(1) = Bn (n ∈ N0 :=N ∪ {0}): (2.2)

Since the zeros of et − x are given by
t = 2n�i + log x (n ∈ Z := {0;±1;±2; : : :}); (2.3)

the radius of convergence of the series in (2.1) is at least 2�. Hence, by the Cauchy–Hadamard
theorem for absolute convergence (cf., e.g., [11, p. 30]), we have

Lemma 1. Let the sequence {�n(x)}∞n=0 be de�ned by (2:1). Then there exists some nonnegative
real number � such that

lim inf
n→∞

( |�n(x)|
n!

)−1=n
= 2�+ � (�¿0): (2.4)

We now consider the following Dirichlet series [cf. Eq. (1.1)]:

!(s; x):=
∞∑
n=1

x−n−1

ns
+
log x
s− 1

∞∑
n=1

x−n−1

ns−1
(16x61 + c; c¿ 0); (2.5)

so that, obviously,

!(s; 1) = �(s): (2.6)

In case 1¡x61+ c (c¿ 0), we can see that the function !(s; x) is meromorphic, that is, holomor-
phic on the whole complex s-plane except for a simple pole at s= 1 with residue

log x
x − 1 :

Lemma 2. Let �n(x) and !(s; x) be de�ned by (2:1) and (2:5); respectively. Then

!(1− n; x) =−�n(x)
n

(n ∈ N\{1}): (2.7)

Proof. Relationship (2.7) is well known when x = 1. So we assume that 1¡x61 + c (c¿ 0).
For t ∈ C with |t|¡ log x, we �nd from the generating function (2.1) that

F(x; t) =−
(
t − log x

x

) ∞∑
j=0

x−j e jt

=−
∞∑
n=0


 ∞∑
j=0

x−j−1 j n

 tn+1
n!
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+(log x)
∞∑
n=0


 ∞∑
j=0

x−j−1 j n

 tn

n!

=
log x
x − 1 +

1− x + log x
(x − 1)2 t

+
∞∑
n=2


n

− ∞∑

j=1

x−j−1 j n−1

+ (log x) ∞∑

j=1

x−j−1j n

 tn
n!
: (2.8)

Assertion (2.7) of Lemma 2 would now follow from (2.8) if we apply the de�nition (2:5) and
compare the coe�cients of tn in (2.1) and (2.8).
Next, we prove

Lemma 3. For n ∈ N and |�|¡ 2� (� ∈ R);

(2n+ 1)
∞∑
k=1

x−k−1

k2n+2
sin(k�) +

∞∑
k=1

x−k−1

k2n+1
[sin(k�) log x − � cos(k�)]

=
(−1)n� 2n+1
(2n+ 1)!

log x
x(x − 1) +

n−1∑
k=0

(−1)k� 2k+1
(2k + 1)!

(2n− 2k)!(2n− 2k + 1; x)

+
∞∑

k=n+1

(−1)k � 2k+1
(2k + 1)!

�2k−2n(x) (1¡x61 + c; c¿ 0): (2.9)

Proof. Denote, for convenience, the left-hand side of (2.9) by 
n(x; �). Then it is easily seen that


n(x; �) = (2n+ 1)
∞∑
k=1

x−k−1

k2n+2

∞∑
j=0

(−1) j(k�)2j+1
(2j + 1)!

+
∞∑
k=1

x−k−1

k2n+1


(log x) ∞∑

j=0

(−1) j(k�)2j+1
(2j + 1)!

− �
∞∑
j=0

(−1) j(k�)2j
(2j)!




=
∞∑
j=0

(−1) j� 2j+1
(2j + 1)!

(2n+ 1)
∞∑
k=1

x−k−1

k2n−2j+1

+
∞∑
j=0

(−1) j� 2j+1
(2j + 1)!

∞∑
k=1

x−k−1
(
log x
k2n−2j

− 2j + 1
k2n−2j+1

)

=
∞∑
j=0

(−1) j� 2j+1
(2j + 1)!

[
(2n− 2j)

∞∑
k=1

x−k−1

k2n−2j+1
+ (log x)

∞∑
k=1

x−k−1

k2n−2j

]
; (2.10)

where the various interchanges of the order of summation are justi�ed by absolute convergence of
the series involved under the conditions stated already with Lemma 3.
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Upon separating the j-sum in (2.10) into three parts, we have


n(x; �) =
n−1∑
j=0

(−1) j� 2j+1
(2j + 1)!

[
(2n− 2j)

∞∑
k=1

x−k−1

k2n−2j+1
+ (log x)

∞∑
k=1

x−k−1

k2n−2j

]

+
(−1)n� 2n+1
(2n+ 1)!

(log x)
∞∑
k=1

x−k−1 +
∞∑

j=n+1

(−1) j� 2j+1
(2j + 1)!

∞∑
k=1

x−k−1
(
2n− 2j
k2n−2j+1

+
log x
k2n−2j

)
:

(2.11)

Finally, in view of the de�nition (2:5) and Lemma 2, we �nd from (2.11) that


n(x; �) =
n−1∑
j=0

(−1) j� 2j+1
(2j + 1)!

(2n− 2j)!(2n− 2j + 1; x)

+
(−1)n� 2n+1
(2n+ 1)!

log x
x(x − 1) +

∞∑
j=n+1

(−1) j� 2j+1
(2j + 1)!

�2j−2n(x); (2.12)

which evidently completes the proof of Lemma 3.

3. Preliminary results

By applying Lemma 3, we �rst prove

Theorem 1. For n ∈ N and |�|¡ 2� (� ∈ R);

(2n+ 1)
∞∑
k=1

sin(k�)
k2n+2

− �
∞∑
k=1

cos(k�)
k2n+1

− 2n� �(2n+ 1)

=2(−1)n� 2n+1
(
n−1∑
k=1

(−1)k · k
(2n− 2k + 1)!

�(2k + 1)
� 2k

−
∞∑
k=0

(2k)!
(2n+ 2k + 1)!

�(2k)
(2�=�)2k

)
: (3.1)

Proof. If n ∈ N and � ∈ R, it is easily observed that each series on the left-hand side of (2.9) is
uniformly convergent with respect to x on the closed interval [1; 1 + c] (c¿ 0). On the other hand,
it follows from Lemma 1 that the series on the right-hand side of (2.9) is also uniformly convergent
with respect to x on [1; 1 + c], provided that |�|¡ 2�. Thus, by letting x → 1+ in Lemma 3, we
obtain

(2n+ 1)
∞∑
k=1

sin(k�)
k2n+2

− �
∞∑
k=1

cos(k�)
k2n+1

=2n� �(2n+ 1) +
n−1∑
k=1

(−1)k� 2k+1
(2k + 1)!

(2n− 2k) �(2n− 2k + 1)

+
(−1)n� 2n+1
(2n+ 1)!

+
∞∑

k=n+1

(−1)k � 2k+1
(2k + 1)!

B2k−2n; (3.2)

where we have also used the relationships (2.2) and (2.6).
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Now, in view of the familiar relationship (1.4), we can write the last term on the right-hand side
of (3.2) in the form:

∞∑
k=n+1

(−1)k � 2k+1
(2k + 1)!

(−1)k−n−1 (2k − 2n)!
22k−2n−1 �2k−2n �(2k − 2n)

=2(−1)n−1� 2n+1
∞∑
k=1

(2k)!
(2n+ 2k + 1)!

�(2k)
(2�=�)2k

= − (−1)n� 2n+1
(2n+ 1)!

+ 2(−1)n−1� 2n+1
∞∑
k=0

(2k)!
(2n+ 2k + 1)!

�(2k)
(2�=�)2k ; (3.3)

since �(0) =− 1
2 . Assertion (3.1) of Theorem 4 follows from (3.2) upon substituting the expression

given by (3.3) for the last term on the right-hand side of (3.2).

Since each series in (3.1) is uniformly convergent with respect to � on the open interval (−2�; 2�),
by executing termwise di�erentiation in (3.1) with respect to �, we have

Theorem 2. For n ∈ N and |�|¡ 2� (� ∈ R);

2n
∞∑
k=1

cos(k�)
k2n+1

+ �
∞∑
k=1

sin(k�)
k2n

− 2n �(2n+ 1)

=2(−1)n� 2n
(
n−1∑
k=1

(−1)k · k
(2n− 2k)!

�(2k + 1)
� 2k

−
∞∑
k=0

(2k)!
(2n+ 2k)!

�(2k)
(2�=�)2k

)
: (3.4)

In their special cases when �= �, Theorems 1 and 2 readily yield

Corollary 1. For n ∈ N;

�(2n+1) = (−1)n 2(2�)2n
(2n− 1)22n+1

[
n−1∑
k=1

(−1)k−1 · k
(2n− 2k + 1)!

�(2k + 1)
�2k +

∞∑
k=0

(2k)!
(2n+ 2k + 1)!

�(2k)
22k

]

(3.5)

and

�(2n+ 1) = (−1)n (2�)2n
n(22n+1 − 1)

[
n−1∑
k=1

(−1)k−1 · k
(2n− 2k)!

�(2k + 1)
�2k +

∞∑
k=0

(2k)!
(2n+ 2k)!

�(2k)
22k

]
: (3.6)

Remark 1. The series representation (3.5) was given by Srivastava [5, p. 4, Eq. (2.5)] (see also
[7, p. 393, Eq. (3.20)]). Indeed, as already observed by Srivastava [op. cit.], (3.5) provides a
signi�cantly simpler (and much more rapidly convergent) version of one of the two main results of
Cvijovi�c and Klinowski [1, p. 1265, Theorem B].

Remark 2. The series representation (3.6) is the other main result of Cvijovi�c and Klinowski [1, p.
1265, Theorem A], whose companion was referred to in Remark 1.
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Remark 3. Since
(2k − 1)!

(2n+ 2k + 1)!
=

1
2n+ 1

[
(2k − 1)!
(2n+ 2k)!

− (2k)!
(2n+ 2k + 1)!

]
(n; k ∈ N); (3.7)

it is not di�cult to obtain Wilton’s result (1.5) by combining the series representation (3.5) with
another result of Srivastava [5, p. 1, Eq. (1.3)] (see also [7, p. 389, Eq. (2.9)]), which we shall
recall here as Eq. (4.1) below.

With a view to applying Theorems 1 and 2 in their other special cases when

�= 2
3�;

1
2�; and 1

3�; (3.8)

we now evaluate several trigonometric sums given by

Lemma 4. For R (s)¿ 1;
∞∑
n=1

cos(2n�=3)
ns

=
31−s − 1
2

�(s); (3.9)

∞∑
n=1

sin(2n�=3)
ns

=
√
3
{
3−s − 1
2

�(s) + 3−s �
(
s;
1
3

)}
; (3.10)

∞∑
n=1

cos(n�=2)
ns

= 2−s(21−s − 1) �(s); (3.11)

∞∑
n=1

sin(n�=2)
ns

= (2−s − 1) �(s) + 21−2s �
(
s;
1
4

)
; (3.12)

∞∑
n=1

cos(n�=3)
ns

=
1
2
(61−s − 31−s − 21−s + 1) �(s) (3.13)

and
∞∑
n=1

sin(n�=3)
ns

=
√
3
[
3−s − 1
2

�(s) + 6−s
{
�
(
s;
1
6

)
+ �

(
s;
1
3

)}]
: (3.14)

Proof. Although a direct proof of each of the trigonometric sums (3.9) to (3.14) may seem to be
fairly elementary, we choose to derive these sums by suitably specializing one or the other of the
following known results recorded (for example) by Hansen [3, p. 223, Entry (14.4.3); p. 244, Entry
(17.4.3)]:

∞∑
n=1

sin(nx + y)
ns

=
(2�)s
2�(s)

csc(�s)
[
cos
(
y − 1

2
�s
)
�
(
1− s; x

2�

)

− cos
(
y +

1
2
�s
)
�
(
1− s; 1− x

2�

)]
(R (s)¿ 1; 0¡x¡ 2�) (3.15)
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and
∞∑
n=1

cos(nx + y)
ns

=
(2�)s
2�(s)

csc(�s)
[
sin
(
y +

1
2
�s
)
�
(
1− s; 1− x

2�

)

− sin
(
y − 1

2
�s
)
�
(
1− s; x

2�

)]
(R (s)¿ 1; 0¡x¡ 2�): (3.16)

For example, if we set

x = 2
3� and y = 0;

in (3.15), we �nd that
∞∑
n=1

sin(2n�=3)
ns

=
(2�)s
4�(s)

csc
(
1
2
�s
)[
�
(
1− s; 1

3

)
− �

(
1− s; 2

3

)]
: (3.17)

Since

�(s) =
1

ms − 1
m−1∑
j=1

�
(
s;
j
m

)
(m ∈ N\{1}); (3.18)

which is an immediate consequence of the de�nitions (1.1) and (1.2), the trigonometric sum (3.10)
would follow from (3.17) when we appropriately apply Rademacher’s formula (cf., e.g., Magnus
et al. [4, p. 23]):

�
(
s;
m
n

)
=2�(1− s)(2n�)s−1


sin(1

2
�s
) n∑

j=1

cos
(
2mj�
n

)
�
(
1− s; j

n

)

+cos
(
1
2
�s
) n∑

j=1

sin
(
2mj�
n

)
�
(
1− s; j

n

) (m; n ∈ N); (3.19)

as well as its well-known special case when m= n= 1:

�(s) = 2(2�)s−1 sin( 12�s)�(1− s) �(1− s): (3.20)

The other trigonometric sums asserted by Lemma 4 can be proven similarly.
Next, we prove

Theorem 3. For n ∈ N;

�(2n+ 1)= (−1)n 2(2�)2n
n(32n+1 − 1)

[
(32n − 1)�
4
√
3 (2n)!

B2n +
(−1)n �√
3 (2�)2n

�
(
2n;

1
3

)

+
n−1∑
k=1

(−1)k−1 · k
(2n− 2k)!

�(2k + 1)
(2�=3)2k +

∞∑
k=0

(2k)!
(2n+ 2k)!

�(2k)
32k

]
; (3.21)

�(2n+ 1)= (−1)n 2(2�)2n
n(24n+1 + 22n − 1)

[
22n−3(22n − 1)�

(2n)!
B2n +

(−1)n�
2(2�)2n �

(
2n;

1
4

)

+
n−1∑
k=1

(−1)k−1 · k
(2n− 2k)!

�(2k + 1)
(�=2)2k +

∞∑
k=0

(2k)!
(2n+ 2k)!

�(2k)
42k

]
(3.22)
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and

�(2n+ 1)= (−1)n 2(2�)2n
n(62n + 32n + 22n − 1)

[
22n−3(32n − 1)�√

3 (2n)!
B2n

+
(−1)n �

2
√
3 (2�)2n

{
�
(
2n;
1
3

)
+ �

(
2n;

1
6

)}

+
n−1∑
k=1

(−1)k−1 · k
(2n− 2k)!

�(2k + 1)
(�=3)2k +

∞∑
k=0

(2k)!
(2n+ 2k)!

�(2k)
62k

]
; (3.23)

in terms of the Bernoulli numbers Bn de�ned by (1:3).

Proof. Upon specializing the parameter � in Theorem 2 as in (3.8), if we make use of the corre-
sponding assertions of Lemma 4 and relationship (1.4), we shall obtain the series representations
(3.21) to (3.23) of Theorem 3. The details may be omitted.
By comparing the series representation (3.22) with a known result due to Srivastava [6, p. 9, Eq.

(41)] (see also [5, p. 5, Eq. (3.3)], we get an interesting identity involving the Zeta functions �(s)
and �(s; a) (and their derivatives with respect to s), which is given by

Corollary 2. For n ∈ N;
(−1)n�
2(2�)2n �

(
2n;
1
4

)
=
{
(22n−2 − 1) log 2− 22n−3(22n − 1)�} B2n

(2n)!

− 22n−1 − 1
2(2n− 1)!�

′(1− 2n)− 42n−1

(2n− 1)!�
′
(
1− 2n; 1

4

)
: (3.24)

4. The main series representations

We �rst recall here the following series representations for �(2n + 1), which were given earlier
by Srivastava [5, pp. 1–2, Eqs. (1.3) to (1.6)] (see also [7, p. 389, Eqs. (2.9) to (2.12)]):

Lemma 5. For n ∈ N;

�(2n+ 1)= (−1)n−1 (2�)2n
22n+1 − 1

[
H2n − log �
(2n)!

+
n−1∑
k=1

(−1)k
(2n− 2k)!

�(2k + 1)
�2k

+2
∞∑
k=1

(2k − 1)!
(2n+ 2k)!

�(2k)
22k

]
; (4.1)

�(2n+ 1)= (−1)n−1 2(2�)
2n

32n+1 − 1

[
H2n − log (2�=3)

(2n)!
+

n−1∑
k=1

(−1)k
(2n− 2k)!

�(2k + 1)
(2�=3)2k

+2
∞∑
k=1

(2k − 1)!
(2n+ 2k)!

�(2k)
32k

]
; (4.2)
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�(2n+ 1)= (−1)n−1 2(2�)2n
24n+1 + 22n − 1

[
H2n − log (�=2)

(2n)!

+
n−1∑
k=1

(−1)k
(2n− 2k)!

�(2k + 1)
(�=2)2k + 2

∞∑
k=1

(2k − 1)!
(2n+ 2k)!

�(2k)
42k

]
(4.3)

and

�(2n+ 1)= (−1)n−1 2(2�)2n
32n(22n + 1) + 22n − 1

[
H2n − log (�=3)

(2n)!

+
n−1∑
k=1

(−1)k
(2n− 2k)!

�(2k + 1)
(�=3)2k + 2

∞∑
k=1

(2k − 1)!
(2n+ 2k)!

�(2k)
62k

]
; (4.4)

where (just as elsewhere in this paper) an empty sum is to be interpreted as nil.

As pointed out by Srivastava [7, p. 391], by suitably combining the series representations (4.1)
and (4.3), one can easily obtain a slightly modi�ed (and corrected) version of a result proven by
Tsumura [9, p. 383, Theorem B] as well as a variant of Tsumura’s result (cf. [7, p. 391, Eq. (3.8)],
which is essentially the same as the determinantal expression for �(2n + 1) derived by Ewell [2,
p. 1010, Corollary] by employing some entirely di�erent techniques from those used here (and by
Tsumura [9] and Srivastava [7]). Furthermore, Srivastava’s series representation (4.1) converges
faster than each of the series representations for �(2n+ 1); which were given earlier by Zhang and
Williams [12, p. 1590, Eq. (3.13)] and by Cvijovi�c and Klinowski [1, p. 1265, Theorem A] (already
referred to in Remark 2 in the preceding section). See also Remark 3 for relevant connection of the
series representation (4.1) with Wilton’s result (1.5).
By applying Theorem 3 and Srivastava’s series representations (4.2) to (4.4), we now prove our

main results given by

Theorem 4. For n ∈ N;

�(2n+ 1)= (−1)n−1
(
2�
3

)2n [H2n+1 − log (2�=3)
(2n+ 1)!

+
(32n+2 − 1)�
2
√
3(2n+ 2)!

B2n+2

+
(−1)n−1√
3(2�)2n+1

�
(
2n+ 2;

1
3

)

+
n−1∑
k=1

(−1)k
(2n− 2k + 1)!

�(2k + 1)
(2�=3)2k + 2

∞∑
k=1

(2k − 1)!
(2n+ 2k + 1)!

�(2k)
32k

]
; (4.5)

�(2n+ 1)= (−1)n−1
(�
2

)2n [H2n+1 − log (�=2)
(2n+ 1)!

+
22n(22n+2 − 1)�
(2n+ 2)!

B2n+2

+
(−1)n−1
2(2�)2n+1 �

(
2n+ 2;

1
4

)

+
n−1∑
k=1

(−1)k
(2n− 2k + 1)!

�(2k + 1)
(�=2)2k + 2

∞∑
k=1

(2k − 1)!
(2n+ 2k + 1)!

�(2k)
42k

]
(4.6)
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and

�(2n+ 1)= (−1)n−1
(�
3

)2n [H2n+1 − log (�=3)
(2n+ 1)!

+
22n(32n+2 − 1)�√
3(2n+ 2)!

B2n+2

+
(−1)n−1

2
√
3(2�)2n+1

{
�
(
2n+ 2;

1
3

)
+ �

(
2n+ 2;

1
6

)}

+
n−1∑
k=1

(−1)k
(2n− 2k + 1)!

�(2k + 1)
(�=3)2k + 2

∞∑
k=1

(2k − 1)!
(2n+ 2k + 1)!

�(2k)
62k

]
: (4.7)

Proof. In order to prove the �rst assertion (4.5) of Theorem 4, we apply the series representations
(3.21) and (4.2) with n replaced by n+1 in each case. By equating the two expressions for �(2n+3)
thus obtained, we �nd that

− 1
n+ 1

[
(32n+2 − 1)�
4
√
3(2n+ 2)!

B2n+2 +
(−1)n−1

2
√
3 (2�)2n+1

�
(
2n+ 2;

1
3

)

+
n−1∑
k=1

(−1)k−1 · k
(2n− 2k + 2)!

�(2k + 1)
(2�=3)2k +

(−1)n−1 · n
2!

�(2n+ 1)
(2�=3)2n

− 1
2(2n+ 2)!

+
∞∑
k=1

(2k)!
(2n+ 2k + 2)!

�(2k)
32k

]

=
H2n+2 − log (2�=3)

(2n+ 2)!
+

n−1∑
k=1

(−1)k
(2n− 2k + 2)!

�(2k + 1)
(2�=3)2k

+
(−1)n
2!

�(2n+ 1)
(2�=3)2n + 2

∞∑
k=1

(2k − 1)!
(2n+ 2k + 2)!

�(2k)
32k

; (4.8)

since �(0) =− 1
2 .

Now, in view of the identities:

(2k − 1)!
(2n+ 2k + 1)!

=
(2k)!

(2n+ 2k + 2)!
+ 2(n+ 1)

(2k − 1)!
(2n+ 2k + 2)!

(4.9)

and
1

2(2n− 2k + 1)! =
n+ 1

(2n− 2k + 2)! −
k

(2n− 2k + 2)! ; (4.10)

if we multiply both sides of (4.8) by n+ 1 and combine similar terms, we have

(n+ 1)
H2n+2 − log (2�=3)

(2n+ 2)!
− 1
2(2n+ 2)!

+
(32n+2 − 1)�
4
√
3(2n+ 2)!

B2n+2 +
(−1)n−1

2
√
3(2�)2n+1

�
(
2n+ 2;

1
3

)
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+
1
2

n−1∑
k=1

(−1)k
(2n− 2k + 1)!

�(2k + 1)
(2�=3)2k +

∞∑
k=1

(2k − 1)!
(2n+ 2k + 1)!

�(2k)
32k

=
(−1)n−1
2

�(2n+ 1)
(2�=3)2n (n ∈ N): (4.11)

Since

(n+ 1)
H2n+2 − log (2�=3)

(2n+ 2)!
− 1
2(2n+ 2)!

=
H2n+1 − log (2�=3)

2(2n+ 1)!
; (4.12)

the assertion (4.5) of Theorem 4 would follow readily from (4.11).
Our derivations of the remaining assertions (4.6) and (4.7) of Theorem 4 are much akin to that

of (4.5). We similarly make use of the series representations (3.22) and (4.3) to derive the assertion
(4.6), and the series representations (3.23) and (4.4) to derive the assertion (4.7).
Each of the main series representations (4.5) to (4.7), which we have derived for �(2n+1) (n ∈ N)

in this paper, belongs to the class containing Wilton’s formula (1.5) and Srivastava’s formula (1.6).
If, for convenience, we denote the summands of the in�nite series in the representations (1.5), (1.6),
and (4.5) to (4.7) by S( j)

k (j = 1; 2; 3; 4; 5), respectively, and apply Stirling’s formula (cf., e.g. [4,
p. 12]) and the fact that �(2k) → 1 as k → ∞, we easily obtain the following order estimates [cf.
Eqs. (1.8) and (1.9)]:

S( j)
k =O(k−2n−2 · m−2k) (k → ∞; n ∈ N) (4.13)

(m= 2 when j = 1; m= 3 when j = 3; m= 4 when j = 2 and j = 4; m= 6 when j = 5):

Clearly, therefore, of these �ve series representations for �(2n + 1), our result (4.7) involves the
most rapidly convergent series. On the other hand, the rate of convergence of the series involved
in each of our results (4.5) to (4.7) is obviously much better than that of the series involved in
Wilton’s result (1.5). And, in particular, the rate of convergence of the series involved in our result
(4.6) is as good as that of the series involved in Srivastava’s result (1.6).
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