Radical Relations in Orthogonal Groups

Erich W. Ellers*
Department of Mathematics
University of Toronto
Toronto, Ontario
Canada M5S 1A1
and
Wolfgang Nolte
Fachbereich Mathematik
Techn. Hochschule Darmstadt
6100 Darmstadt
West Germany

Submitted by Richard A. Brualdi

Abstract

Any relation between simple isometries is a consequence of relations of lengths $\leqslant 4$. This extends earlier results which deal with relations between reflections.

1. INTRODUCTION

If (V, Q) is a metric vector space with nontrivial radical (or singular if char $K=2$), then the orthogonal group of (V, Q) contains elements that do not fix every element in the radical. The orthogonal group is larger than the group generated by reflections (cf. [3, p. 104]), even if the dimension of V is finite. But the reflections together with the simple radical isometries form a system of generators (cf. [3]). For the characterization of transformation groups it is important to find a set T of short relations between generators such that every relation is a consequence of these relations. This task is known as the relation problem [2].

In [5], the relation problem has been solved for unitary groups and for orthogonal groups whose quadratic form has an index at most 1 . Using recent

[^0]results [6] and results from [1], we can now prove a similar result regardless of the index of the quadratic form.

In Sec. 2 we collect some formulas which are needed in the proof of the main theorem. The proof of the preparatory Lemma 3 makes use of results in [5], while the proof of Theorem 1 combines results established in [1], [3], and [6].

Theorem 2 finally solves the relation problem for subgroups of orthogonal groups (cf. [7]).

2. FACTORIZATION OF SIMPLE RADICAL ISOMETRIES

Let V be a vector space over a commutative field K, and V^{*} its dual space. The dimension of V is arbitrary (it may be infinite). We shall consider a metric vector space (V, Q) where Q is a quadratic form. Let f be the bilinear form associated with Q. Then (V, f) also is a metric vector space. Its radical will be denoted by R. The singular radical will be denoted by SR.

Lemma 1. Let (V, Q) be a metric vector space, and assume $|K|>2$. If $s \in V \backslash R$ and $Q(s)=0$, then there are $a, b \in V \backslash R$ such that $Q(a), Q(b) \neq 0$ and

$$
s=\frac{a}{Q(a)}-\frac{b}{Q(b)}
$$

Proof. Since $s \notin R$, there is some $t \in V$ such that $Q(t)=0$ and $f(s, t) \neq 0$, i.e. $H=\langle s, t\rangle$ is a hyperbolic plane. Let $a \in H$ and $Q(a) \neq 0$; then $Q(a-\alpha t)$ $=Q(a)-\alpha f(a, t) \neq Q(a), 0$ for some $\alpha \in K \backslash\{0\}$, since $|K| \geqslant 3$. Let us denote αt simply by t again. We put $b=a-t$. Then $Q(a-b)=0$ and hence

$$
Q\left(\frac{a}{Q(a)}-\frac{b}{Q(b)}\right)=0
$$

as an easy calculation shows. Since $Q(a) \neq Q(b)$, and since a and b are linearly independent, $a / Q(a)-b / Q(b) \notin K(a-b)=K t$. Thus $a / Q(a)-$ $b / Q(b) \in K s \backslash\{0\}$. Therefore we can assume $a / Q(a)-b / Q(b)=s$.

A short calculation shows
Lemma 2. Let (V, Q) be a metric vector space, $a, b \in V \backslash R$ such that $Q(a), Q(b) \neq 0$, and $r \in S R$. Then
(i) $\sigma_{a} \sigma_{a+r}: x \rightarrow x-\frac{f(x, a)}{Q(a)} r$, and
(ii) $\sigma_{a} \sigma_{a+r} \sigma_{b} \sigma_{b+r}: x \rightarrow x-f\left(x, \frac{a}{Q(a)}-\frac{b}{Q(b)}\right) r$.

3. RELATIONS IN THE ORTHOGONAL GROUP O

The group of all isometries of (V, Q) will be denoted by O. Let π be an isometry in O ; then $B(\pi)=V^{\pi-1}$ is the path and $F(\pi)=\left\{x \in V ; x^{\pi}=x\right\}$ is the fix of π. An isometry π will be called simple if $\operatorname{dim} B(\pi)=\operatorname{codim} F(\pi)=1$. Let T be the set of all simple isometries, $T_{1}=\{\tau \in T ; B(\tau) \subset R\}$, and $T_{2}=T \backslash T_{1}$. The sets T, T_{1}, T_{2} are normal in O. Also, $T^{-1} \subset T, T_{1}^{-1} \subset T_{1}$, and $T_{2}^{-1} \subset T_{2}$. Let \mathfrak{F} be the free group generated by the set T. A word $(\pi)=\left(\sigma_{1}^{\varepsilon_{1}}, \ldots, \sigma_{n}^{\varepsilon_{n}}\right)$ in \mathfrak{F}, where $\sigma_{i} \in T, \varepsilon_{i}= \pm I\left(\sigma_{i}^{I}=\sigma_{i}\right.$, and $\sigma_{i}{ }^{-I}$ is the inverse of σ_{i} in $\left.\mathfrak{F}\right)$, is a relation if $\sigma_{1}^{\eta_{1}}, \ldots, \sigma_{n}^{\eta_{n}}=1$, where $\eta_{i}=1$ if $\varepsilon_{i}=I$ and $\varepsilon_{i}=-1$ if $i_{i}=-I$. If a word (π) of length n is a relation, we call π an n-relation. For our purposes, it is enough to consider words (π) where all $\varepsilon_{i}=I$ (namely, $T^{-1} \subset T$), and we shall calculate modulo the normal subgroup S which is generated by all n-relations with $n \leqslant 4$. Thus S clearly contains the 2 -relations (σ, σ^{-I}) for all $\sigma \in T$.

The word $\left(\sigma_{1}^{\prime}, \ldots, \sigma_{m}^{\prime}\right)=\left(\pi^{\prime}\right)$ in \mathfrak{F} is derived from the word $\left(\sigma_{1}, \ldots, \sigma_{n}\right)=(\pi)$ in \mathfrak{F} if $\left(\pi^{\prime}\right) \equiv(\pi) \bmod S$ and if $\cap_{i=1}^{m} F\left(\sigma_{i}^{\prime}\right) \supset \cap_{i=1}^{n} F\left(\sigma_{i}\right)$. A word $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ in \mathfrak{F} is contracted if $\operatorname{dim} B\left(\sigma_{i} \sigma_{i+1}\right)=2$ for $i=1, \ldots, n-1$. It is v-ordered for some $v \in V$ if $v \in F\left(\sigma_{i}\right)$ and $v \notin F\left(\sigma_{i}\right)$ implies $i<j$. It has v-defect k if $v \notin F\left(\sigma_{i}\right)$ for exactly k of the clements $\sigma_{i}, i=1, \ldots, n$.

Lemma 3. If $(\pi)=\left(\tau_{1}, \ldots, \tau_{n}\right)$ where $\tau_{i} \in T_{1}$ is a relation, then the empty word \varnothing is derived from (π).

Proof. Since T_{1} is normal, we can assume by [5, Lemma 5] that (π) is v-ordered. It is easy to see that we can also assume that (π) is contracted. Neither v-ordering nor contraction increases the v-defect. If the v-defect is not zero, it can be reduced. Clearly, the v-defect cannot be 1 . Now we assume the v-defect is greater than 1 . Let $\tau, \omega \in T_{1}$ such that $B(\tau \omega)=2$ and $v \in V \backslash(F(\tau)$ $\cup F(\omega))$. Then $v^{\tau \omega}-v=r \in B(\tau \omega) \backslash\{0\} \subset$ SR. We define $\omega^{\prime}: x \rightarrow x+x^{\psi} r$, where $\psi \in V^{*}$ such that $F(\tau \omega)^{\psi}=0, v^{\psi}=1$, and $D^{\psi}=0$ for some complement D of $F(\tau \omega)+K v$ in V. Then $\omega^{\prime} \in T_{1}$ is an isometry and $F\left(\tau \omega \omega^{\prime-1}\right)=F(\tau \omega)+K v$. We put $\tau \omega \omega^{-1}=\tau^{\prime}$. Then $\tau^{\prime} \in T_{1}$ is also an isometry. We have $F(\tau) \cap F(\omega)$ $=F\left(\tau^{\prime}\right) \cap F\left(\omega^{\prime}\right)$. Since codim $\cap_{i-1}^{n} F\left(\tau_{i}\right)=k$ is finite, we can now use induction on k to finish the proof.

Theorem 1. Let $|K|>2$. If (π) is a relation in \mathfrak{F}, then $(\pi) \equiv \varnothing \bmod S$.

Proof. Let $(\pi)=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ be a relation in \mathfrak{F}, and assume $\sigma_{1}, \ldots, \sigma_{n} \in T$. Since T_{i} is normal in \mathfrak{F}, there are $\rho_{i} \in T_{2}$ and $\tau_{i} \in T_{1}$ such that $(\pi) \equiv$ $\left(\rho_{1}, \ldots, \rho_{k}, \tau_{k+1}, \ldots, \tau_{n}\right) \bmod S$. Then $\rho_{1} \cdots \rho_{k} \tau_{k+1} \cdots \tau_{n}=1$ and $\kappa=$ $\tau_{k+1} \cdots \tau_{n}=\rho_{k} \cdots \rho_{1} \in 0$. Clearly, $B(\kappa) \subset R$ and thus $B(\kappa) \subset$ SR by [3, Lemma

3]. Since $R \subset F\left(\rho_{i}\right)$, we get $R \subset F(\kappa)$, and therefore by [3, Lemma 2], there are $\tau_{i}^{\prime}: x \rightarrow x+x^{\psi_{i}} r_{i}$, where $r_{i} \in B(\kappa), \psi_{i} \in V^{*}$, and $F(\kappa) \subset F\left(\tau_{i}^{\prime}\right)$, such that $\kappa=$ $\tau_{k+1}^{\prime} \cdots \tau_{n^{\prime}}^{\prime}$. Since $\kappa=\rho_{k} \cdots \rho_{1}$, we get by [3, Lemma 18] that $\psi_{i}=f_{a_{i}}$ for $a_{i} \in V \backslash R$. Since $r_{i} \in \mathrm{SR}$, we get that $\tau_{i}^{\prime}: x \rightarrow x+f\left(x, a_{i}\right) r_{i}$ are isometries. By Lemmas 1 and 2, there are $\sigma_{i}^{\prime} \in T_{2}$ such that $\left(\tau_{k+1}^{\prime}, \ldots, \tau_{n^{\prime}}^{\prime}\right) \equiv\left(\sigma_{1}^{\prime}, \ldots, \sigma_{m}^{\prime}\right)$ $\bmod S$ and $\kappa-\tau_{k+1}^{\prime} \cdots \tau_{n^{\prime}}^{\prime}=\sigma_{1}^{\prime} \cdots \sigma_{m}^{\prime}$. Since $\kappa=\rho_{k} \cdots \rho_{1}$, we obtain $\left(\sigma_{1}^{\prime}, \ldots, \sigma_{m}^{\prime}\right) \equiv\left(\rho_{k}, \ldots, \rho_{1}\right)$ by [1, Satz 2] and [6, Theorem 6.1]. Thus we get $(\pi) \equiv\left(\rho_{1}, \ldots, \rho_{k}, \tau_{k+1}, \ldots, \tau_{n}\right) \equiv\left(\tau_{k+1}^{\prime}, \ldots, \tau_{n}^{\prime}, \tau_{k+1}, \ldots, \tau_{n}\right) \bmod S$. We use Lemma 3 to finish the proof.

The results in Theorem 1 can be extended to a class of subgroups of the orthogonal groups. Let \bar{V} be a subspace of $V, \bar{T}=\{\sigma \in T ; B(\sigma) \subset \bar{V}\}, \bar{T}_{\mathrm{L}}=\{\sigma$ $\in T ; B(\sigma) \subset \bar{V} \cap R\}, \bar{T}_{2}=\bar{T} \mid \bar{T}_{1}, \bar{O}$ the subgroup of 0 generated by $\bar{T}, \widetilde{\mathcal{V}}$ the free group generated by \bar{T}, and \bar{S} the normal subgroup of $\overline{\mathfrak{F}}$ generated by all n-relations with $n \leqslant 4$.

Theorem 2. Let $|K|>3$. If (π) is a relation in $\overline{\mathfrak{F}}$, then $(\pi) \equiv \varnothing \bmod \bar{S}$.
We note that in case $|K|=3$, the result is also true if $V \neq H+\operatorname{rad} \bar{V}$, or $\operatorname{rad} \bar{V} \subset R$, or $\operatorname{dim} \bar{V}<4$. Here, H is a hyperbolic plane and $\operatorname{rad} \bar{V}$ is the radical of \bar{V}.

The proof is similar to that of Theorem 1. We shall list the necessary modifications. We replace T, T_{i}, and S by \bar{T}, \bar{T}_{i}, and \bar{S}, respectively. If $Q(x)=0$ for all $x \in \bar{V} \backslash R$, then $(\pi)-\left(\tau_{k+1}, \ldots, \tau_{n}\right)$ and we can apply Lemma 3. Now we assume there is some $x \in \dot{V} \backslash R$ such that $Q(x) \neq 0$. Clearly, $B(\kappa) \subset \overline{\mathrm{V}} \cap \mathrm{SR}, B\left(\tau_{i}^{\prime}\right) \subset B(\kappa)$, and $a_{i} \in\left[\Sigma_{i} B\left(\rho_{i}\right)\right] \backslash R$ by the last sentence in the proof of Lemma 18 in [3]. The existence of $\sigma_{i}^{\prime} \in T_{2}$ follows again with the help of Lemmas 1 and 2. This is clear if either $Q\left(a_{i}\right) \neq 0$ or if $Q\left(a_{i}\right)=0$ and $a_{i} \in \bar{V} \backslash \operatorname{rad} \bar{V}$. If $Q\left(a_{i}\right)=0$ and $a_{i} \in \operatorname{rad} \bar{V} \backslash R$, then we take any $a^{\prime} \in \bar{V} \backslash R$ such that $Q\left(a^{\prime}\right) \neq 0$ (such an a^{\prime} exists by our assumption) and put $b^{\prime}=a^{\prime}-a$. Then $Q\left(b^{\prime}\right)=Q\left(a^{\prime}\right)$. Therefore, we can apply Lemma 2(ii). We use [7, Theorem] and [6, Theorem 8.3] instead of [1, Satz 2] and [5, Theorem 6.1].

REFERENCES

1 J. Ahrens, A. Dress, and H. Wolff, Relationen in orthogonalen Gruppen, J. Reine Angew. Math. 234:1-11 (1969).
2 F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd ed., Springer, New York, 1973.
3 E. W. Ellers, Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries, Abh. Math. Sem. Univ. Hamburg 46:97-127 (1977).
4 E. W. Ellers, Relations in classical groups, J. Algebra 51:19-24 (1978).

5 E. W. Ellers, Radical relations in unitary, symplectic, and orthogonal groups, J. Reine Angew. Math. 306:1-6 (1979).
6 G. Günther and W. Nolte, Defining relations in orthogonal groups of characteristic two, Canad. J. Math., XXI:1217-1246(1979).
7 W. Nolte, Das Relationenproblem für eine Klasse von Untergruppen orthogonaler Gruppen, J. Reine Angew. Math. 292:211-220 (1977).

[^0]: *Research supported in part by the National Research Council of Canada, grant A7251.
 LINEAR ALGEBRA AND ITS APPLICATIONS 38:135-139 (1981)

