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ABSTRACT 

Any relation between simple isometries is a consequence of relations of lengths 
64. This extends earlier results which deal with relations between reflections. 

1. INTRODUCTION 

If (V, Q) is a metric vector space with nontrivial radical (or singular if 
char K = 2), then the orthogonal group of (V, Q) contains elements that do 
not fix every element in the radical. The orthogonal group is larger than the 
group generated by reflections (cf. [3, p. 104]), even if the dimension of V is 
finite. But the reflections together with the simple radical isometries form a 
system of generators (cf. [3]). For the characterization of transformation 
groups it is important to find a set T of short relations between generators 
such that every relation is a consequence of these relations. This task is known 
as the relation problem [2]. 

In [5], the relation problem has been solved for unitary groups and for 
orthogonal groups whose quadratic form has an index at most 1. Using recent 
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results [6] and results from [l], we can now prove a similar result regardless of 
the index of the quadratic form. 

In Sec. 2 we collect some formulas which are needed in the proof of the 
main theorem. The proof of the preparatory Lemma 3 makes use of results in 
[5], while the proof of Theorem 1 combines results established in [l], [3], and 

WI. 
Theorem 2 finally solves the relation problem for subgroups of orthogonal 

groups (cf. [7]). 

2. FACTORIZATION OF SIMPLE RADICAL ISOMETRIES 

Let V be a vector space over a commutative field K, and V* its dual 
space. The dimension of V is arbitrary (it may be infinite). We shall consider a 
metric vector space (V, Q) where Q is a quadratic form. Let fbe the bilinear 
form associated with Q. Then (V, f) also is a metric vector space. Its radical 
will be denoted by R. The singular radical will be denoted by SR. 

LEMMA 1. Let (V, Q) be a metric vector space, and assume ( K I> 2. Zf 
sEV\R and Q(s)=O, then there are a, bEV\R such that Q(a),Q(b)#O 
and 

‘=e Q;b, 
--. 

Proof. Since s c+Z R, there is some t E V such that Q( t ) = 0 and f( s, t ) # 0, 
i.e. H=(s, t) is a hyperbolic plane. Let aEH and Q(a)#O; then Q(a-at) 
=Q(a)-af(a, t)#Q(a),O for some oEK\{O}, since ]1<]>3. Let us denote 
at simply by t again. We put b = a - t. Then Q( a - b) = 0 and hence 

as an easy calculation shows. Since Q(a)# Q(b), and since a and b are 
linearly independent, a/Q(a) - b/Q( b) 4 K( a - b) = Kt. Thus a/Q(a) - 

b/Q(b)EKs\{O}. Therefore we can assume a/Q(u)-b/Q(b)=s. n 

A short calculation shows 

LEMMA 2. Let (V, Q) be a metric vector space, a, b E V\R such that 

Q(u), Q(b)#O> and r E SR. Then 

f(x,a> r and 
(i) u,u,+,: x+X- ~ 

Q(u) ’ 

(ii) u~u~+rubub+r: x+x-f 
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3. RELATIONS IN THE ORTHOGONAL GROUP 0 

The group of all isometries of (V, Q) will be denoted by 0. Let r be an 
isometryino; thenB(m)=V”-‘isthepathandF(a)={xEV;x”=x}isthe 
fix of r. An isometry r will be called simple if dim B(m)=codim F(a)= 1. 
Let T be the set of all simple isometries, Tl = { 7 E T; B( 7) CR}, and T, = T\T,. 
The sets T, T,, T, are normal in 0. Also, T-’ CT, T,-’ CT,, and T,-’ CT,. 
Let 8 be the free group generated by the set T. A word (a) =(uEl, . . . , Q) in 
5, where ai E T, q = t I (a/ = ui, and a,-’ is the inverse of ui in s), is a 
relation if CJ:~, . . . , a, ?n=l, where vi=1 if q=Z and q=--1 if i=-Z. If a 
word (7~) of length n is a relation, we call r an n-relation. For our purposes, it 
is enough to consider words (x ) where all si = Z (namely, T - ’ C T ), and we 
shall calculate modulo the normal subgroup S which is generated by all 
n-relations with n<4. Thus S clearly contains the 2-relations (u, u -‘) for all 
UET. 

The word (a;, . . . , u~)=(~‘)inFS:isderivedfromtheword(ur,...,u,)=(~) 
in 3 if (r’)=(r) mod Sand if fJ~=“=,F(u,:)> ny=‘=,F(q). A word (~~,...,a,,) 
in 3 is contracted if dimB(u,u,+i)=2 for i=l,...,n-1. It is vordered for 
some v~Vif v~F(u,) and u@F(ui) implies i<i. It has defect k if v@F(q) 
for exactly k of the elements a,, i = 1,. . . , n. 

LEMMAS. Zf(r)=(ri,..., r,,) where ri E Tl is a relation, then the empty 
word 0 is derived j%m (T ). 

Proof Since Tl is normal, we can assume by [5, Lemma 51 that (r) is 
u-ordered. It is easy to see that we can also assume that (m) is contracted. 
Neither vordering nor contraction increases the defect. If the n-defect is not 
zero, it can be reduced. Clearly, the defect cannot be 1. Now we assume the 
defect is greater than 1. Let T, w E Tl such that B( rw)=2 and v E V\( F( 7) 
U F(w)). Then vTw - v=rEB(rw)\{O} CSR. We define w’: x+x+x%, where 
J/E V* such that F(w)+ =O, v$ = 1, and D* =O for some complement D of 
F(Tu)+Kv in V. Then JET, is an isometry and F(ww’-~)=F(w)+Kv. 
We put rw w ‘-’ =T’. Then 7’ E Tl is also an isometry. We have F( 7) nF(w) 
=F(~‘)flF(w’). Since codim fl y=lF(~i)= k is finite, we can now use induc- 
tion on k to finish the proof. n 

THEOREMS. Let JK1>2.Zf( ) r is a relation in 8, then (r)z 0 mod S. 

Proof. Let (rr)=(ur,..., a,,) be a relation in 3, and assume ui, . . . , a, E T. 
Since q is normal in 5, there are pi ET, and ri E Tl such that (r) E 

(Pi? , . *, pk, rk+l, * * -9 7,) mod S. Then pi “.pkrkfl “.T,, =l and K= 

rk+l” -rn =pk’. ‘pi ~0. Clearly, B(rc)CR and thus B(K)C SR by [3, Lemma 
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31. Since R CF( pi), we get R CF(K), and therefore by [3, Lemma 21, there are 
7;: x-+x+x$~~,, where ri E&K), & EV*, and F(K)CF(T~)), such that K= 

$+I . . .r,‘,. Since K=pk. . .pl, we get by [3, Lemma 181 that Gi =f,, for 
ai EV\R. Since ri ESR, we get that ~,‘:x+x+f(x,a~)r, are isometries. By 
Lemmas 1 and 2, there are a/ ET’ such that (71:+1,...,7~,)_(u;,...,u~) 
mods and ~=ri+~ ...T,‘, =a; . ..a.. Since ~=p~...p~, we obtain 
(a;,..., u;)-(Pk>..., pl) by [l, Satz 21 and [6, Theorem 6.11. Thus we get 

(n>=(p 1 ,..., pk, T~+~ ,..., T,)E(T~+~ ,..., r,‘,, 7k+l ,..., 7,) mods. We use 
Lemma 3 to finish the proof. n 

The results in Theorem 1 can be extended to a class of subgroups of the 
orthogonal gr_oups. Le_t v be a subspace of V, T= {u E T; B(u) C V}, ?;L {(I -- 
E T; B(u) C VII R}, T, = TIT,, 0 the subgroup of 0 generated by T, 3 the 
free group generated by T, and S the normal subgroup of 3 generated by all 
n-relations with n d 4. 

THEOREM 2. Let ]1<1>3.Zf( ) 7~ isarelationin~,then(71)_0 mod% 

We note that in case ) K I= 3, the result is also true if V#H+rad V, or 
radVCR, or dimVt4. Here, H is a hyperbolic plane and rad V is the radical 
of v. 

The proof is similar to that of Theorem 1. We shall list the necessary 
modifications. We replace T, Ti, and S by T, Tj, and S, respectively. If 
Q(x)=0 for all xEV\R, then (a)=(rk+b...,~7,) and we can apply Lemma 
3. Now we assume there is some XE V\Z? such that Q(x)#O. Clearly, 
B(~)CvnSll, B($)CB(K), and a, E[&B(p,)]\R by the last sentence in the 
proof of Lemma 18 in [3]. The existence of a[ ET, follows again with the help 
of Lemmas 1 and 2. This is clear if either Q( a i) # 0 or if Q( a I>= 0 and 
ui EV\radc If Q(u,)=O and a, EradV\R, then we take any a’EV\R such 
that Q(u’)#O ( sue h an a’ exists by our assumption) and put b’=u’-a. Then 
Q(b’)=Q(u’). Th ere ore, we can apply Lemma 2(ii). We use [7, Theorem] f 
and [6, Theorem 8.31 instead of [l, Satz 21 and [5, Theorem 6.11. 
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