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Abstract

The paper presents the structure and achievements of the BIGCO2 R&D Platform, an international 

collaborative research project aiming at developing several enabling technologies and innovative 

solutions supporting a large-scale deployment of CO2 capture from power generation and 

underground storage of CO2. All main routes for CO2 capture are investigated, and emphasis is put 

on combining experimental work with theoretical analyses. The project is coordinated by SINTEF 

Energy Research and the budget of the current project period (2007-2011) is 16 M€.
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1. Introduction

The BIGCO2 R&D Platform (BIGCO2) builds knowledge and technology underpinning demonstration of power 

generation with carbon capture and storage (CCS) at industrial scale. The project aims at closing several critical 

knowledge gaps of the CO2 chain to enable sustainable power generation from fossil fuels based on carbon capture and 

safe underground storage of CO2. Taking the first phase of the project into account BIGCO2 is the largest publicly 

funded research project on CCS in Europe. Hence, BIGCO2 is a unique project in terms of its size, its diversity and the 

fact that it comprises the whole CO2 chain. The project is set up as a an extensive international collaborative effort 

bringing together the expertise and research infrastructure of  competent research institutes and universities, supported 

by leading vendors, energy companies, oil and gas companies. The paper presents the BIGCO2 project, discusses its 

scientific achievements, and outlines how the project results can contribute to large-scale deployment of CCS.

2. BIGCO2 objectives and facts

The purpose of BIGCO2 is to complement and extend knowledge developed in the forerunners of the project and in 

other ongoing research programmes to enable power generation with CCS. Tangible objectives are 90 % CO2 capture 

rate, 50% cost reduction and a fuel to electricity penalty less than 7 % compared with state-of-the-art power 

generation. Emphasis is put on advanced basic and applied research providing breakthrough knowledge and solutions 
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paving the way for environment-friendly and profitable power generation based on fossil fuels. BIGCO2

(www.bigco2.com) is coordinated by SINTEF Energy Research. Other partners of the BIGCO2 Consortium are Statoil, 

GE Global Research, Statkraft, Aker Clean Carbon, Shell, TOTAL, ConocoPhillips, ALSTOM, DLR, TUM, NTNU, 

CICERO, SINTEF Materials and Chemistry and SINTEF Petroleum Research. The University of Oslo is a 

subcontractor of the project. Further, BIGCO2 benefits from a strong collaboration between the combustion research 

facility at Sandia National Laboratories (USA) and SINTEF Energy Research. The main sponsors of BIGCO2 are the 

Research Council of Norway and Gassnova, with considerable co-funding from the industry partners. The total budget 

for the current project period of BIGCO2 (2007-2011) is 16 M€. 

3. R&D challenges addressed by BIGCO2

BIGCO2 includes research activities related to the main CO2 capture routes; post-combustion, pre-combustion, oxy-fuel 

and Chemical Looping Combustion (CLC), illustrated in Figure 1. A portfolio of capture technologies are investigated 

including novel combustion systems, advanced materials, innovative CO2 capture technologies, integration of novel 

technologies in power cycles and analysis of power cycles performance (Task A through D and G). In addition, there is 

extensive activity related to enhanced oil and gas recovery with CO2 and safe underground storage of CO2 in geological 

formations (Task F). Finally, CO2 chain analysis is included to evaluate the whole CO2 chain with respect to 

technology, economy and environmental impact (Task E). The scientific focus of the project is defined based on the 

identified long-term research needs pointed out by e.g. the European Technology Platform for Zero Emission Fossil 

Fuel Power Plants (www.zeroemissionsplatform.eu), the research areas where the research providers of the project have 

proved to be in the scientific forefront and the topics in which the industry partners have commercial interest. Section 5 

presents the results from each research task of BIGCO2. 

Figure 1: Scientific focus of BIGCO2 with reference to research tasks.

4. Research approach

The scientific ambition of BIGCO2 is to conduct high quality research within selected topics, push science beyond the 

state of the art and serve as a basis for innovation. In the project, principal research is executed at a level of detail 

spanning from molecular reaction kinetics to CO2 chains and global climate effects.  To a large extent theoretical 

analyses are accompanied by experimental studies and demonstrations. To some extent laboratory set ups are built 

specifically for the purposes of the project, e.g. cold and hot rigs for CLC experiments, oxy-fuel and hydrogen 

combustion test rigs, experimental set up for testing high temperature membranes and laboratory for exploring CO2

storage in geological structures. In addition, the project makes extensive use of the existing laboratory infrastructure 

available among the partners of the project and promotes close interaction between the partners to release the full 

potential of this scientific partnership. A comprehensive educational program is part of BIGCO2, including 11

concluded and 12 on-going PhD fellowships, 11 post docs and several research visitors. The educational program 

contributes with fundamental research and will in the long run enable industry and research institutions to recruit 

competent researchers to the growing field of CCS. 

The project is organised in 8 tasks. Figure 2 indicates the research areas of BIGCO2 and illustrates how the tasks relate 

and interact.
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Figure 2: BIGCO2 research tasks. 

5. Results 

Below the main results from the research tasks in BIGCO2 are summarized and selected references are included. 

CO2 capture technologies 

BIGCO2 includes activities related to post-combustion, pre-combustion, oxy-fuel and CLC for CO2 capture, as well as 

enabling technologies such as high temperature oxygen generation and systems integration.  Five tasks in BIGCO2 

focus on topics related to CO2 capture: Task A - Task D and Task G.

Task A: High temperature membranes for clean power production
Gas and coal power plants world wide require cleaner combustion and less emission. Several different technologies are 

under development to facilitate this and oxygen transport membranes (OTM) is one of them. OTMs can separate 

oxygen from air with 100% selectivity. The high operating temperatures make OTMs particularly promising for 

integration in power plants to facilitate combustion in pure oxygen (oxy-fuel combustion). The exhaust gases of such a 

process will consist of only CO2 and steam which can be easily separated, and hence give a power plant with 100% CO2

capture. Access to oxygen at a lower cost is also a key to reducing the costs related to natural gas reforming and 

gasification which are parts of pre-combustion CO2 capture. 

In BIGCO2 Task A, large efforts are put on the development of OTM materials and scalable methods for manufacturing 

membranes. From starting with fabrication and testing of planar membranes of ~1cm
2
, tubular membranes are currently 

assembled. Silver based brazing is used to seal tubular OTMs to high temperature alloy caps attached to steel gas pipes. 

These pipes transport the permeated oxygen out of the module for instance by a sweep gas. The oxygen flux of the 

OTMs has been measured at high temperatures (600-1000°C) with promising results. As the flux decreases with 

increasing membrane thickness, the membranes are manufactured with an asymmetric architecture. This means that a 

dense membrane layer is prepared on top of a porous support; the latter should not restrict the gas flow and assure 

sufficient mechanical strength. The increased flux using this concept has already been demonstrated for small planar 

membranes and is currently under investigation for tubular membranes. [1-5]

Task B: Improved post-combustion CO2 capture by novel solvents development and system modelling and simulation
Post combustion CO2 capture by chemical absorption is a subject under rapid development, since this is the only 

technology presently available for large scale CCS. The overall goal of Task B is to reduce the energy consumption for 

this technology to <2.5 GJ/ton CO2 captured, while at the same time reducing amine losses and waste production by 

50% and equipment cost by 30% and the main focus is on novel solvents development and system modelling and 

simulation. A critical issue is to increase the understanding of the chemistry and thermodynamics of the process is 

required as an improved description of the chemistry is important both in the development of solvents and in improving 

process modelling tools applied for process optimization and operation, 

To describe a solvent system data on a number of properties is required: phase and chemical equilibrium data, reaction 

kinetics and equilibrium constants in the system. In BIGCO2, work is carried out on screening and characterization of 

new candidate solvents [6-10], measuring reaction kinetics [11-12], phase equilibria [13-15] and enthalpy of absorption 

[16,17] for a number of solvents. The work also includes molecular simulation and test of the candidate solvents at pilot 

plant. Further, development of thermodynamically consistent model [18,19] for CO2 capture as well as process 

modelling [20,21] is important for design and operation of the industrial units. Dynamic modelling and simulation are 

crucial activities to understand the capture process under transient conditions [22,23]. Transient conditions occur 
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normally during start-up and shut-down, but many power plants are operated at varying load meaning that the inlet 

conditions for the capture plant will change continuously. Currently, the study of related environmental issues is an 

important activity in the project. For instance, daphnia toxicity are investigated and fate studies are carried out.

Task C: Pressurised combustion of enriched fuels enabling hydrogen and oxy-fuel combustion
Task C includes combustion research at SINTEF Energy Research, DLR (Stuttgart, Germany), the Technical University 

in Munich. The overall objective of the task is to advance the fundamental understanding of combustion applied to 

power generation processes with CO2 capture and to develop improved numerical and experimental tools to facilitate 

development of new concepts and validation of hydrogen and oxy-fuel combustors and their operational behaviour. 

While the processes for post-combustion are mainly based on conventional combustion technologies, the alternative

routes, pre-combustion and oxy-fuel, represent great challenges that are addressed by Task C.

Oxy-fuel combustion is a new field and a special effort is put on experimental studies of basic properties of combustion. 

The global behaviour of laboratory scale flames is investigated as a function of CO2 dilution of the oxygen. The

stability regimes are mapped for the lifted and swirl flames, and the radiative heat flux profiles of methane flames in 

varying O2/CO2 environment have been quantified and compared to air supported combustion. Fundamental properties 

like laminar flame speeds and ignition delay times have been measured at varying pressure and O2 concentrations and 

compared to the numerical solutions based on various kinetic mechanisms [24-27].

For the pre-combustion applications, hydrogen combustion is investigated on several fronts. The challenges in using 

hydrogen as a fuel reside in its high reactivity when in contact with hot air, preventing the use of conventional low NOx 

burner technology. A necessary step to conceive appropriate burners is to fully predict the mixing of hydrogen.  A 

recent mixing model (Linear Eddy Model) has therefore been further developed in collaboration with SANDIA 

National Labs and is implemented into a RANS/EDC based CFD. Experimentally, the sensitivity of hydrogen flames to 

flashback through boundary layers is investigated in order to better understand the underlying physics responsible for 

this particular phenomenon. Finally, theoretical chemical kinetic studies of intermediate reactions of the hydrogen 

combustion mechanism have been performed [28].

By achieving the goals set forth in Task C, necessary knowledge on combustion performance and the pollutant emission 

threat will be gained to support the design of oxy-fuel and hydrogen combustion systems.

Task G: Chemical looping combustion (CLC)
Chemical Looping Combustion (CLC) is a fuel conversion technology with a potential of converting fossil fuel with 

higher efficiency than conventional combustion and with CO2 separation partly inherent in the process. In CLC, the air 

and fuel are not mixed. An oxygen carrier material is continuously looped between two reactors transporting oxygen 

from the air reactor to the fuel reactor where the fuel is oxidized. The fuel reactor exhaust contains only CO2 and water 

vapour which can easily be separated by condensation. Major challenges of CLC are related to the reactor design and to 

the oxygen carrier materials in order to achieve continuous long-term stable operation with high fuel conversion. This is 

the motivation and the basis for the Task G activities on CLC.

A 150 kWth reactor system of two connected circulating fluidised beds (CFB) has been designed and engineered and 

will be built in the laboratories of SINTEF/NTNU. [29,30]. A cold flow model in scale 1:1 was built in 2009 and is 

being used to test hydrodynamics and oxygen carrier circulation [31,32]. Key design features are:

� Industrial applicability and scalability - industrial CFB solutions where possible

� Flexibility – different type of oxygen carrier materials and operating conditions

� Compactness – for minimum oxygen carrier inventory and for placement into a vessel in order to operate at 

elevated pressure planned for the last project phase

� Process control measures for long-term continuous operation

The oxygen carrier materials being developed in Task G are based on in-expensive industrial tailings and by-products. 

The aim is to achieve high oxygen capacity and mechanical and chemical stability for long-term operation at the high 

temperatures (~1000°C) and the cyclic environmental conditions (air/fuel reactor) in a CLC laboratory set up. A 

manganese ore with addition of calcium to form a perovskite phase has been selected as the most promising from a 

large number of materials initially tested [33].

Most of the CLC demonstration work today is on CFB kind of reactors. In a longer term more compact reactors may be 

developed using a rotating reactor concept. At present the Task G is developing such a concept and a laboratory scale 

prototype reactor has been built and is now being tested. Since the oxygen carrier bed is rotating, one of the critical 

points is to avoid mixing between the gas streams [34].
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Task D: Power cycle integration and analyses including unit modelling and simulation
Due to high efficiency and low carbon intensity in the fuel, modern natural gas-fired power plants emit less CO2 per 

kWh of produced electricity than coal-fired power plants, but will still have to be cleaned of CO2 as part of the global 

effort for reduced emissions. While BIGCO2 as a whole mainly focuses on developing technology to enable clean 

power production from fossil fuels, the main function of Task D is to investigate the application and integration of 

novel capture technologies in overall power plant processes. In this evaluation, the feasibility of new technologies must 

be assessed against several criteria such as energy efficiency, process control, techno-economic performance, reliability 

and availability. A challenge in the evaluation of the potentials of novel capture technologies is the fact that the 

processes in consideration to a large extent have not yet been built, at least not in the required scale. This necessitates 

the use of process simulation tools to represent possible configurations of the capture processes. In Task D, a

benchmarking method is developed [35,36] and the CO2 capture technologies focused on in BIGCO2 are assed in a 

process perspective to reveal new knowledge related to research challenges and opportunities within the technologies 

[37,38].

In addition, a macroscopic flow model for a CFB-CLC unit is implemented by Task D. The model is object oriented 

and based on semi-empirical correlations and its purpose was to investigate where the unit has stable operation points 

and forms a basis for more detailed reactor models that will include mass and energy balance and chemical reaction 

kinetics.  The results from the model development and simulations were valuable inputs to the process of designing the 

CFB-CLC reactor in Task G [39].

CO2 chains Task E: CO2 chain analyses 
BIGCO2 is developing a modelling framework for evaluating viability of large-scale CCS chains taking technical, 

economical and environmental aspects into consideration in a consistent and transparent way [40].  In addition, 

conditioning and infrastructure for CO2 transport are investigated. The activity on CO2 chain analyses formed the basis 

for the development of the EU FP7 project ECCO [41]. Lately, case-studies on CO2 transport infrastructure are carried 

out. Focus has been optimization of pipeline network, effect of ownership and political incentives [42].

CO2 storage Task F: Enhanced oil recovery and safe underground storage of CO2 in geological formations 
In Task F, options for safe CO2 storage in aquifers and depleted oil/gas fields are investigated and fundamentals related 

to CO2 for EOR are studied [43-45]. The project also includes analyses of global climate effects of various leakage 

scenarios and legal/institutional aspects of CO2 management are investigated [46]. Increased knowledge on all relevant 

aspects of geological storage of CO2 will provide a better foundation for establishing a common regulatory framework 

for CO2 storage, thereby enabling a stable environment for sound, long-term business decisions.

A recent result of Task F is an improved theoretical description of the stability of the diffusive boundary layer between 

a CO2 gas cap in a saline aquifer and the water column below [47-48]. When CO2 is injected into a saline aquifer it will 

rise to the top of the formation due to its buoyancy with respect to water. Over time the CO2 will gradually diffuse into 

the water column below. Since water with dissolved CO2 will increase in density, this creates an unstable situation and 

eventually convective currents will arise, transporting dissolved CO2 into the deeper parts of the aquifer much quicker 

than what can be achieved with diffusion alone. Due to the negative buoyancy of CO2 dissolved in water, this is 

considered to be a very safe storage situation. The work has established a new formulation of the time development of 

the diffusive layer, enabling calculation of the time before onset of convection for anisotropic porous media.

6. Spin-off effects and implications for CCS deployment 

Norway is an early mover within CO2 capture and storage. Since 1996, Statoil has injected CO2 from the Sleipner gas 

field in the Utsira formation reducing the annual CO2 emissions by nearly 1 M ton and providing unique knowledge 

regarding processing and injection of CO2. When is comes to CCS research SINTEF and NTNU have been pioneers. 

SINTEF Petroleum research early identified CO2 storage as an option for reducing CO2 emissions. SINTEF Energy 

Research and SINTEF Materials and Chemistry jointly with NTNU systematically have built competence on a range of 

CO2 capture technologies and integrated power cycle analysis. The BIGCO2 represents a coordinated effort to establish 

the scientific platform for developing new knowledge and technology for power production with CO2 capture and 

storage. The project and its predecessors have resulted in progress within multiple research areas related to CCS and 

have led to several new projects building on the results and knowledge achieved in BIGCO2. Most recently, the 

international research centre BIGCCS was launched in 2009 involving 22 research and industry partners and a total 

budget of 45 million € over 8 years [49]. Other examples are SOLVit, CO2 Lab Field, and BIGH2 Innovation, all with 

considerable financial support from the public research programme Climit in addition to industry funding. The 

Trondheim CCS Conference (TCCS) has become a leading scientific CCS technology conference and is organised 

every second year. In addition, several EU projects such as DECARBit and ECCO, are established by SINTEF in 

collaboration with international research and industry partners. 
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BIGCO2 focuses on establishing the scientific foundation for new knowledge and technology, paving the road for 

sustainable power generation with CCS at reduced costs and with acceptable environmental impacts. By conducting 

targeted long-term research in the early phase of the innovation chain BIGCO2 can provide future opportunities for new 

products and new solutions for CCS. Figure 3 illustrates the role of the project in the innovation chain and some 

Norwegian examples are included. 

Figure 3: Knowledge building projects (R&D projects) as part of the innovation chain.

The blue sky R&D activity is mainly conducted by the universities and includes research and education focusing on 

aspects like fundamental physical and chemical properties. The work is usually publicly funded and implies high risk 

with respect to short or medium term commercial benefit, but can provide breakthroughs that represent step changes 

within various technologies. Targeted basic R&D is mainly conducted by research institutes and universities and to 

some extent industry companies. The projects develop knowledge and technology underpinning new solutions to 

identified challenges that are far reaching and the project consortiums include several industry companies and public 

bodies in addition to the research institutes. BIGCO2 is a major project in this category. EU FP6 and EU FP7 comprise 

a long list of R&D projects focusing on CCS such as ENCAP, CASTOR, DYNAMIS, CO2 REMOVE, ULCOS and 

CO2 GEONET (EU FP6) and ECCO, DECARBit, CESAR and CEASAR (EU FP7). These extensive collaborative 

undertakings enable coordination of research activities, facilitate information exchange and educate experts that can be 

recruited by industry and academia. Applied R&D includes the innovation projects of a more competitive character. 

The projects are usually more focused, closer to the possible future commercial products and involve fewer partners 

than the basic R&D projects and the extent of industry participation and funding is larger. Many innovation projects 

make use of results such as competence and research infrastructure developed in basic R&D projects and some projects 

are spin-offs from ongoing research projects. One example related to BIGCO2 is the project BIGH2 Innovation aiming 

at developing a new generation of hydrogen-powered gas turbines. Another example is the eight-year science research 

and development program SOLVit launched by Aker Clean Carbon, SINTEF and NTNU. SOLVit aims to generate 

better and more cost effective processes and chemicals to manage CO2 emissions from power generation and industry, 

and results from BIGCO2 and related research projects served as starting point for the new program [10].

Next phase of the innovation chain is large scale tests, pilots and demonstrations where a consortium can be set up by 

energy companies, technology manufacturers, vendors and possibly governmental bodies when public funding is 

included. Often research partners are included as well for integrated research activity. The objective is to further 

develop and demonstrate viability of new technology and make possible commercialization at reduced risk and lower 

cost. One Norwegian example is the Mongstad project preceded by the European Test Centre Mongstad where post-

combustions technologies will be further developed, tested, and qualified at large scale before a full scale 

implementation is carried out to capture flue gases from Mongstad’s combined heat and power plant (investment 

decision 2014). The final phase of the innovation chain is the product development conducted by technology 

manufacturers and vendors aiming at commercialization and thereby widespread dissemination of the proven 

technology. Examples of CCS related products are solvent contactors, gas turbines and membrane modules. By 

developing and validating CCS technologies research projects can strengthen the competitiveness of related industry 

and result in value creation based on new products and services. However, profitability is a prerequisite for industrial 

uptake of new technology, independent of the noble intentions of developing technology for preventing climate change.

As illustrated by this review of a simplified innovation chain, BIGCO2 can promote the large scale deployment of CCS 

by developing knowledge and technology critical for the commercial actors in their efforts to create the products 
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required for cost effective solutions for sustainable power generation with CCS. Application of new technology will 

reduce the emissions in the western part of the world and transfer of new technology to developing countries will be a 

premise for global reduction of GHG emissions. Besides technology development there are critical frame conditions 

that must be in place to enable large scale CCS. First, an international agreement must be reached regarding the global 

ambitions for emission cuts and how the cuts should be financed. Second, there are several legal and institutional issues 

to be resolved in order to implement CO2 chains across borders with large scale CO2 storage sites.

7. Conclusion

The BIGCO2 R&D Platform is a comprehensive, international collaborative research project and the paper illustrates 

how BIGCO2 contributes to enabling large scale CCS. First, the paper’s review of the scientific progress in BIGCO2 

documents that new knowledge is developed supporting all CO2 capture routes and underground CO2 storage. Further, it 

is pointed out that the education program of BIGCO2 will result in a total of 23 completed PhDs and that the project has 

already resulted in several spin-off projects. Finally, experience shows that by involving industry partners in research 

projects and innovation activities it is possible to promote the competence building and targeted technology 

development required for the implementation of large scale CCS. Scientific progress, education and industry uptake are 

critical to accelerate the CCS deployment and BIGCO2 contributes to all. 

8. Acknowledgements 

This publication forms a part of the BIGCO2 project, performed under the strategic Norwegian research program 

Climit. The authors acknowledge the partners: Statoil, GE Global Research, Statkraft, Aker Clean Carbon, Shell, 

TOTAL, ConocoPhillips, ALSTOM, the Research Council of Norway (178004/I30 and 176059/I30) and Gassnova.

9. References 

[1] Dahl P.I., Fontaine M-L, Mei S., Larring Y., Peters T., Henriksen P.P., Bredesen R., Development and testing of membrane 
materials and modules for high temperature air separation. To be presented at GHGT-10, 2010.

[2] Dahl P.I., OTM modules: materials, flux and stability. Euromembrane 2009, Montpellier, France, 2009.

[3] Fontaine M-L., et al., On the performance of mixed oxygen ion and electron conducting La2(Ni,Fe)O4+d membranes. 10th

International Conference on Inorganic Membranes, Tokyo, Japan, 2008.

[4] Dahl P.I., et al., Preparation and characterization of mixed conducting oxides for air separation. 10th International Conference 

on Inorganic Membranes, Tokyo, Japan, 2008.

[5]  Dahl P.I., et al., Asymmetric ceramic membranes for high temperature oxygen separation. 10th International Conference on 

Inorganic Membranes, Tokyo, Japan, 2008. 

[6] Singth P., da Silva E.F., Brilman D.W.F., Determination of structural effects on carbamate stability for various amine based 
solvents by using ab Initio method. To be presented at GHGT-10, 2010.

[7] Aronu U.E., Svendsen H.F., Hessen E.T., Haug-Warberg T., Hoff K.A.. Equilibrium absorption of carbon dioxide by amino 
acid salt and amine amino acid salt solutions. To be presented at GHGT-10, 2010. 

[8] Aronu, U..E., Svendsen, H.F., Hoff, K.A., 2010. Investigation of amine amino acid salts for carbon dioxide absorption. Int. J. 

of Greenhouse Gas Control, in press, doi:10.1016/j.ijggc.2010.04.003 

[9]  Aronu U.E., Svendsen  H.F., Hoff K.A., Juliussen O., Solvent selection for carbon dioxide absorption. Energy Procedia 1, 

1051-1057. 2009.

[10] Ma’mun S., Svendsen H.F., Solubility of N2O in aqueous monoethanolamine and 2-(2-aminoethyl-amino)ethanol solutions 
from 298 to 343K. Energy Procedia, 2009,1, 837-843. 

[11]  Hartono A., da Silva E.F., Svendsen H.F., Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine 
(DETA). Chem. Eng. Sci., 2009, 64, 3205-3213. 

[12] Ma’mun S., Dindore V.Y., Svendsen H.F. Kinetics of the reaction of carbon dioxide with aqueous solutions of 2-((2-
aminoethyl)amino)ethanol. Ind. Eng. Chem. Res. 2007, 46, 385-394. 

[13] da Silva EF. Theoretical study of the equilibrium constants for solvents for CO2 capture. To be presented at GHGT-10, 2010.

[14] Kim I., Svendsen H.F., Børresen E., Ebulliometric determination of vapor – liquid equilibria for pure water, 
monoethanolamine, N-methyldiethanolamine, 3-(methylamino)-propylamine, and their binary and ternary solutions. J. Chem. 

Eng. Data, 2008, 53, 2521-2531. 

[15] Kim I,, da Silva E,F,,  Grimstvedt A., Thermodynamics of protonation of alkanolamines in aqueous alkanolamine solutions. To 

be presented at GHGT-10, 2010.

[16] Kim I, Hessen E,T,, Haug-Warberg T,, Svendsen H,F., Enthalpies of absorption of CO2 in aqueous alkanolamine solutions 
from e-NRTL model. Energy Procedia, 2009, 1, 829-835.

G. Tangen et al. / Energy Procedia 4 (2011) 6077–6084 6083



Author name / Energy Procedia 00 (2010) 000–000

8

[17] Kim I., Hoff K.A., Hessen E.T., Haug-Warberg T., Svendsen HF. Enthalpy of absorption of CO2 with alkanolamine solutions 
predicted from reaction equilibrium constants. Chem. Eng. Sci, 2009, 64, 2027-2038. 

[18] Hessen E.T., Haug-Warberg T., Svendsen H.F. Thermodynamic models for CO2-H2O-alkanolamine systems, a discussion.
Energy Procedia, , 20091, 971-978. 

[19] Hessen E.T., Haug-Warberg T., Svendsen H.F., The refined electrolyte-NRTL model applied to CO2-H2O-alkanolamine 
systems. Chem. Eng. Sci., 2010 65, 3638-3648. 

[20] Kvamsdal, H.M., Jordal K., Bolland O., A quantitative comparison of gas turbine cycles with CO2 capture. Energy, 200732 (1), 

10-24. 

[21] Kvamsdal H.M., Rochelle G.T., Effects of the Temperature Bulge in CO2 Absorption from Flue Gas by Aqueous 
Monoethanolamine. Ind. Eng. Chem. Res., 200847 (3), 867-875. 

[22] Chikukwa A., Kvamsdal H.M., Hillestad M., A comparison of different parameter correlation models and the validation of an 
MEA-based absorber model. To be presented at GHGT-10, 2010.

[23] Kvamsdal H.M., Jakobsen J.P., Hoff K.A., Dynamic modeling and simulation of CO2 absorber column for post-combustion 
CO2 capture. Chemical Engineering and Processing, 2009 vol 48 (1), pp. 135-144

[24] Kutne P., Kapadia B.K., Meier W., Oxyfuel Combustion an Option for Gas Turbines?, 4th Int. Conf. Clean Coal Technologies, 

May 2009, Dresden.

[25] Ditaranto M., Oppelt T., Lode B., Measurements of Radiative Heat Flux and Stability in Oxy-Fuel Flames, 1st Oxyfuel 

Combustion Conference, Sept. 2009, Cottbus.

[26] Weydahl T., Sannan S., Gran I.R., Kerstein A.R., Modeling Molecular Mixing in Turbulent Reacting Flows. In Proceedings 
from European Combustion Meeting, April 2007, Chania, Crete. 

[27] Ditaranto M., Hals J., Thermo-acoustic Instabilities in a CO2 Diluted Oxy-Fuel Combustor 2nd IEAGHG Oxy-Fuel Workshop, 

January 25th-26th, 2007.

[28] Sellevåg S., Georgievskii Y., Miller J.A., Kinetics of the Gas-Phase Recombination Reaction of Hydroxyl Radicals to Form 
Hydrogen Peroxide, J.Phys.Chem.A 2009, 113, 4457–4467

[29] Bysveen M., Bakken J., Langørgen Ø., Saanum I., Seljeskog M., Morin J-X., Bischi. A., Design of a 150 kWChemical Looping 
Combustion reactor ready for pressurization. Presented at the TCCS5 conference, Trondheim June 2009.

[30] Bysveen M., Langørgen Ø., Large-scale demonstration of pressurized Chemical Looping Combustion. To be presented at 

GHGT-10, 2010.

[31] Bischi A., Langørgen Ø., Morin J-X., Bakken J., Bysveen M., Bolland O., Design and performance of a full scale cold flow 
model of an innovative chemical looping combustion reactor system. Presented at the 1st International Conference on Chemical 

Looping, 17-19 March 2010, Lyon, France.

[32] Bischi A., Langørgen Ø., Morin J-X., Bysveen M., Bolland O., Operation and performance analysis of the cold flow model of a 
second generation chemical looping combustion reactor system. To be presented at GHGT-10, 2010.

[33] Fossdal A., Bakken E., Øye B.A., Schøning C., Kaus I., Mokkelbost T., and Larring Y., Study of inexpensive oxygen carriers 
for chemical looping combustion. Presented at the TCCS5 conference, Trondheim June 2009.

[34] Dahl I.M., Bakken E., Larring Y., Spjelkavik A.I., Håkonsen S.F.,  Blom R., On the development of novel reactor concepts for 
chemical looping combustion. Energy Procedia, 2009, 1, 1513-1519.

[35] Berstad D.O., Jordal K., Arasto A., Haugen G., Parametric study and benchmarking of NGCC, coal and biomass power cycles 
integrated with MEA-based post-combustion CO2 capture. To be presented at GHGT-10, 2010. 

[36] Jordal K., Benchmarking of power cycles with CO2 capture – The impact of the selected framework. International Journal of 

Greenhouse Gas Control, Vol 2, Issue 4, Oct 2008

[37] Aspelund A., Jordal K., Gas conditioning – The interface between CO2 capture and transport.   International Journal of 

Greenhouse Gas Control, Vol 1, Issue 3, July 2007.

[38] Kvamsdal H.M., Jakobsen J.P., Hoff K.A., Dynamic modeling and simulation of a CO2 absorber column for post-combustion
CO2 capture. 2008, Chemical Engineering & Processing: Process Intensification

[39] Grimsmo A.L., Jakobsen J.P., Bakken J., Chemical Looping Combustion of Natural Gas with CO2 Capture: Macroscopic Fluid 
Dynamics Analysis, Presented at The 4th Trondheim Conference on CO2 Capture, Transport and Storage, October 16 -17 2007.

[40] Jakobsen J.P., Tangen G., Nordbø Ø., Mølnvik M.J., Methodology for CO2 chain analysis. International Journal of Greenhouse 

Gas Control , 2008, 2, 4, 439-447.

[41]  Røkke PE, Jakobsen JP,Tangen G,Mølnvik MJ. ECCO-European Value Chain for CO2. Energy Procedia, 2009,1,1,3893-3899.

[42] A. Brunsvold, J.P. Jakobsen,  J. Husebye, and A. Kalinin, Case studies on CO2 transport infrastructure: Optimization of 
pipeline network, effect of ownership and political Incentives. To be presented at GHGT-10, 2010.

[43] Holt T., Lindeberg E., Wessel-Berg D., EOR and CO2 disposal — economic and capacity potential in the North Sea. Energy 

Procedia 1 (2009), pp 4159–4166. Proceedings from the 9th International Conference on Greenhouse Gas Control 

Technologies, November 2008.

[44] Lindeberg E., Modelling the pressure and temperature profile in a CO2 injection well. To be presented at GHGT-10, 2010. 

[45] Grimstad A-A., Georgescu S., Lindeberg E., Vuillaume J-F., Modelling and simulation of mechanisms for leakage of CO2 from 
geological storage. Energy Procedia 1 (2009), pp. 2511–2518. 

[46] Torvanger A., Fuglestvedt J., Skeie R., Rive N., Rypdal K., Lindeberg E., Grimstad A-A., What geological CO2 storage quality 
is required? Presented at The 4th Trondheim Conference on CO2 Capture, Transport and Storage, October 2007.

[47] Grimstad A-A., Wessel-Berg A., Proxy models for prediction of enhanced oil recovery from tertiary CO2 flooding. To be 

presented at GHGT-10, 2010. 

[48] Wessel-Berg D. On a Linear Stability Problem Related to Underground CO2 Storage. SIAM Journal on Applied Mathematics, 

Vol. 70, No. 4., 2009.

[49] Mølnvik MJ, Tangen G, Røkke NA. BIGCCS Centre – Boosting CCS research and innovation. To be presented at GHGT-10, 

2010.

6084 G. Tangen et al. / Energy Procedia 4 (2011) 6077–6084


