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a b s t r a c t

Isonemal weaving designs, introduced into mathematical literature by Grünbaum and
Shephard, were classified into thirty-nine infinite sets, and a small number of exceptions
by Richard Roth. This paper refines Roth’s taxonomy for the first ten of these families in
order to solve three problems: which designs exist in various sizes, which prefabrics can
be doubled and remain isonemal, and which can be halved and remain isonemal.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Except for a short list of interesting exceptions, Richard Roth [11] has classified isonemal periodic prefabric designs into
39 infinite sets. The first ten have reflection or glide-reflection symmetries with parallel axes, and no rotational symmetry.
The remainder have reflection or glide-reflection symmetries with perpendicular axes, hence half-turns (22), or have
quarter-turns (7). This paper is intended to reconsider this taxonomy for the first ten sets, refining it slightly to make it
easier to use, and then to use it to examine three questions about prefabrics. This reconsideration presupposes the validity
of Roth’s taxonomy; the aim is to make it appear natural and to show it to be useful. The unanswered questions addressed
are (for these designs) which prefabrics can be doubled and remain isonemal, which prefabrics can be halved and remain
isonemal, and which orders there can be. These questions are answered in the final three sections. Answering depends on
refining the taxonomy.
Since I am asking a reader to spend some time on a taxonomy, I ought to admit that no taxonomy that does not break its

subject matter into individuals, is not subject to further refinement. Richard Roth used something slightly coarser than his
taxonomy to study perfect and chromatic colouring of fabrics because he did not need its refinement for that purpose. In
this paper I am determining a finer taxonomy, because it is needed in Sections 7 and 8, although not in 6. Section 7 actually
requires a small further ad hoc refinement that I make nothing more of.
The argument of the paper is very simple. It shows that knowing the symmetry groups of prefabric designs allows us to

determine both facts about those designs (Sections 6 and 7) and what designs there can be (Section 8). Much geometrical
literature, including the paper [11] of Roth, stops short at crystallographic types of symmetry groups. Useful as knowledge
of types is – and it is crucial to the present work – it is the groups themselves that tell the story. Roth’s type determination
is useful, because it allows group determination with just a little additional effort.
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Fig. 1. (a) Fragment of plain weave. (b) Reverse of the fragment of Fig. 1(a) as seen in a mirror. (c) Reverse of the fragment of Fig. 1(a) as seen from behind.
(d) Fragment of plain weave. (e) Reflection of the fragment of Fig. 1(d).

As Roth observes beginning his subsequent paper [12] on perfect colourings, ‘[r]ecentmathematicalwork on the theory of
woven fabrics’ begins with [4], which remains the fundamental reference. Roth’s papers [11] and [12], however, contain the
major advance from the fundamental work of Grünbaum and Shephard. In them he determines the various (layer, similar to
crystallographic) symmetry-group types that periodic isonemal fabrics – actually prefabrics – can have and (in [12]) which
of them can be perfectly coloured by striping warp and weft. We are not concerned with striping warp and weft, but the
other terms need to be defined. A prefabric, as defined by Grünbaum and Shephard [5], consists of two or more congruent
layers (here only two) of parallel strands in the same plane E together with a preferential ranking, or ordering, of the layers
at every point of E that does not lie on the boundary of a strand. The points not on the boundary of any strand are naturally
arranged into what are called here cells, in each of which one strand is uppermost. The (parallel) strands of each layer are
perpendicular to those of the other layer, making the cells square (Fig. 1). These square cells are taken here to be of unit
area. Mathematical literature on weaving has concerned exclusively periodic arrangements in the plane in the standard
two-dimensional sense explained by Schattschneider, in her exposition of plane symmetry groups [13]. There exists a non-
unique finite region, and two linearly independent translations, such that the set of all images of the region, when acted
upon by the group generated by these translations, reproduces the original configuration, which is assumed to be infinite in
all directions for convenience. Schattschneider gives the name unit to any smallest region of the plane having the property
that the set of its images under this translation group covers the plane. Such units are all of the same area, the period, but in
general can be of a variety of shapes. Since our prefabric layersmeet at right angles and the symmetry groupswithwhichwe
shall be concerned here all have parallel axes of reflection or glide-reflection, the lattice units, that is, units whose vertices
are all images of a single point under the action of the translation group, can be either rectangular or rhombic (Fig. 3). Many
of the rectangles have one set of parallel boundaries defined by the group, but the perpendicular boundaries arbitrary in
position, only the distance between them being dictated by the group.
The notion of symmetry group allows the definition of the term isonemal; a prefabric is said to be isonemal if its symmetry

group is transitive on the strands, whose directions are conventionally chosen to be vertical, called warps, and horizontal,
calledwefts. The distinction between prefabrics and fabrics can now be explained; a fabric is a prefabric that hangs together,
that is, that does not fall apart, in the sense that some warps or some wefts or some of each can be lifted off the remainder,
because they are not bound into a coherent network by the interleaving defined by the preferential ranking.
The standard way to represent the preferential ranking of the strands is to regard the plane E as viewed from one side,

from which viewpoint one or the other strand is visible in each cell. By the normal colouring of warps dark and wefts pale,
the visual appearance of the strands from a particular viewpoint becomes an easily understood code for which strand is
uppermost. An array of dark and pale congruent cells tessellating the plane is given a topological meaning, the design of the
prefabric (Fig. 1(a)).
If a finite region of the plane E is viewed from behind by setting up a mirror beyond it and looking at E’s reflection, then

what is seen is the strand perpendicular in direction and opposite, or complementary, in colour in corresponding positions
as in Fig. 1(b) compared with the front view of Fig. 1(a). Fig. 1(b) is in contrast to what one would see from the other side
of E, which appears in Fig. 1(c), where the correspondence of cells of E between Fig. 1(c) and Fig. 1(a) is obscured by the
left-right reversal that causes mirror-image confusion in the real world. For the sake of correspondence, the reverse of a
fabric will be represented as in Fig. 1(b); the mirror here being a simplifying device. Another thing that the mirror does is to
prevent symmetry axes from flipping between having positive slope and having negative slope. As long as the strands are
coloured normally, the reverse (so viewed) is just the colour-complement of the obverse and so is of no particular interest
(‘obverse’ and ‘reverse’ rather than ‘front’ and ‘back’ because of the arbitrariness of which is which, as of a coin). Because one
of the isometries that is used in weaving symmetries is reflection in the plane E, the reversal of which strand is uppermost
at every non-boundary point, it is good to have an easy way to represent such reflection, denoted τ . As Fig. 1(a), (b) make
clear, reversal of dark and pale represent the action τ adequately. They also make clear why τ can be in a symmetry but
cannot itself be a symmetry.
If Fig. 1(d) is reflected in either diagonal, the diagram remains Fig. 1(d), but, because warps become wefts under such a

reflection and vice versa, Fig. 1(d) is not the design of the reflected fabric. The representation of the reflected fabric is Fig. 1(e),
correctly indicating that the reflection is not a symmetry of the fabric. If, however, τ is combined with the operation, then
the colours are reversed again, Fig. 1(d) is restored, and the combination of (two-dimensional) diagonal reflection (within
the plane) and τ (three-dimensional reflection in the plane) is seen to be a symmetry of the fabric because it preserves its
design.
The reference numbers of catalogued fabrics and prefabrics require explanation before use. Because the prefabrics of

interest are periodic in a two-dimensional sense, they are also periodic along each strand. Because they are isonemal, they
have the same period along every strand, which is called here order [4] to prevent confusion with two-dimensional period,
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which often differs numerically.1 Fabrics were catalogued by Grünbaum and Shephard, sorted first under order, and then
by binary index, which is the sequence of pale and dark cells of order length represented by 0s and 1s and chosen to be
a minimum, then given an arbitrary sequence number. The first catalogue [6] listed fabrics other than twills up to order 8
(plus 13) and an extension [7] likewise up to order 12 (plus 15 and 17).
Prefabrics that fall apart2 were catalogued by Hoskins and Thomas [10] up to order 16 — numerically the same way but

with an asterisk to indicate that they are not fabrics. The omission of twills from catalogues, despite their all being isonemal,
stems from their extreme simplicity; the over-and-under sequence of each strand is that of its neighbour, say below, shifted
by one place always in the same direction, e.g., Fig. 5(b). This row-to-row shift is called the offset. Because twills do not
appear in the catalogues, a twill is referred to by its over-and-under sequence along a strand, as in the caption to Fig. 5(b).
The designs to be discussed here include twills and the simplest extension of the twills, called twillins [4]. Twillins have

each row shifted more than one place always in the same direction up the design (offset greater than 1). If from row to next
row, in addition to the shift, the colours are complemented, the design was at first called a ‘colour-alternate twillin’ but now
is referred to as being of genus II [6]. Genus I contains all twills and twillins without colour reversal. These two genera (and
the other three not discussed here) can overlap: If an isonemal design has pale and dark cells balanced in number along a
strand (and therefore along all strands), colour reversal need not change the sequence (e.g., plain weave in Fig. 1). A design
of genus II that is not also of genus I is called, as in footnote 1, of pure genus II.
Design is a mathematical model of woven fabrics. It may be helpful to consider briefly the comparison between a fabric

and the models. Consider a fabric fragment with a design illustrated in Fig. 2(a) (12-35-1 with somemirrors and boundaries
of a lattice unit indicated), thought of for amoment as fixed in a horizontal plane and viewed from above and from the south.
In the terms of the previous paragraph, it is a twillinwith offset 5, order 12, and genus I. Because the fabric does not have half-
turn symmetry (which would make its genus III, IV, or V), viewed from the north it looks quite different (Fig. 2(b)). Looked
at from the east and from the west (Fig. 2(c), (d) respectively), it looks different in a different way because of the colouring
convention (which is relative to the view). The four views from below (and south, north, east, and west) are different again,
complementary to the first four (Fig. 2(e)–(h), respectively). The four views from below would of course also be seen if
the fabric fragment were turned over, and still viewed from above, but which diagram is which would depend on how the
fragment was turned over. There are eight different designs illustrated here, all representing the same piece of physical
fabric, a situation somewhat opposed to the usual simplification in mathematical models. For no good reason, illustrations
here will have axes of positive slope. There is a handedness to all of these designs that the physical fabrics modelled lack.
Whether the designs illustrated here are right-handed or left-handed is rightly left to the reader.
In the trivial prefabric, all thewefts pass over all thewarps or vice versa. The lattice unit is a single cell, conventionally pale

or dark respectively. As Roth points out ‘for completeness’, its symmetry group is a layer group that is a subgroup of the direct
product of a two-dimensional group of type p4m (having several mirror symmetries in addition to rotational symmetry)
with this lattice unit and the group in the third dimension {e, τ }, where e is the identity. For this simplest prefabric, all
interchanges of warp and weft require τ to make them symmetries. So the symmetry group consists of operations (g, e),
where g does not interchange warp and weft, and (g, τ ), where g involves a quarter-turn or reflection or glide-reflection
with axis at 45◦ to the strand directions. All other prefabrics have lattice units that are not single cells. The full symmetry
group is a three-dimensional layer group G. Associated with G is a planar group algebraically isomorphic to G consisting of
all G’s elements g whether paired with e or τ , the planar projection of G, denoted G1 by Roth. G’s side-preserving subgroup
H , consisting of the elements (g, e) and omitting (g, τ ) elements is also isomorphic3 to its planar projection H1 consisting
of those elements g paired with e in H . H1 will be referred to as the side-preserving subgroup of G1. Fig. 2(a) illustrates the
common lattice unit for G1 and H1 for the fabric 12-35-1 and axes of reflective symmetry that are in G1 but not in H1. Note
that, while the lattice unit for this H1 can be chosen to be the same as that for G1, it is often larger, corresponding as it does
to a subgroup of G1.
For the prefabrics with only parallel symmetry axes, the planar projection G1, the group comprising the set of gs, is of

crystallographic type pg , pm, or cm, that is, it has parallel glide-reflection axes, or axes of reflection, or both (alternating)
respectively. In order for a glide-reflection to be a symmetry of the prefabric, it may or may not have to be combined with
reversal of the sides of the prefabric, τ . Mirror symmetry must always be combined with τ , because any cell through which
the mirror passes must be its own image in the symmetry but the reflection alone, reversing warp and weft, would reverse
its conventional colour. So τ is needed to restore it. This means that there is never mirror symmetry in H1. It is H1 that
determines the two-dimensional period under translation alone. For these prefabrics, H1 is of type either p1, which is a
group of translations only, or pg . The possible side-preserving subgroups just mentioned and their lattice units, dimensions
aside, are illustrated in Fig. 3(a), (b), where glide-reflection axes without τ are hollow dashed black lines. Later in Fig. 3,
dashed axes of glide-reflections with τ are filled, not hollow, (Fig. 3(c), (d), (g)) like the undashed mirrors (Fig. 3(e), (g), (h)).

1 An order length of one strand is a unit but not a lattice unit for prefabrics of genus I, but that length of a pair of adjacent strands is needed to compose
a unit for pure genus II, making two-dimensional period either one or two times order respectively. The categorization of these designs into genera will be
explained shortly.
2 The subject of several investigations: Clapham [1] and Ens [3] for prefabrics in general, Hoskins and Thomas [9] and Grünbaum and Shephard [6] for
isonemal prefabrics, and Delaney [2] for non-isonemal prefabrics.
3 This stronger geometrical sense of isomorphism is explained by Grünbaum and Shephard [8, p. 38], and can be called geometrical isomorphism.
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Fig. 2. Fragment of fabric 12-35-1, stationary as viewer takes up viewpoints. (a) View from above and the south. (b) View from above and the north. (c)
View from above and the east. (d) View from above and the west. (e) View from below and south. (f) View from below and north. (g) View from below and
east. (h) View from below and west.

The dashed filling of hollow lines in Fig. 3(f) indicates a mirror (with τ ), that is also an axis of glide-reflection without τ .
Thin black lines are just boundaries of lattice units, outlining or completing the outline of rectangles or rhombs. Symbols
in the caption of Fig. 3 will be explained in the next section. The rectangular and rhombic shapes of the lattice units have
a maximum dimension in the direction of the axes. It will be referred to as the unit’s length, and the maximum dimension
perpendicular to the axes will be referred to as its width even when width is greater than length and when, in the rhombs,
width – like the length – is a diagonal.

2. Symmetry operations

Roth has determined the types of the layer groups that are the three-dimensional symmetry groups of prefabrics, in
terms of the standard crystallographic types of the layer groups’ planar projections. Corresponding to these types of layer
groups and their corresponding two-dimensional groups are what I am calling species of prefabric. Something to note about
the groups is that they are unavoidably subgroups of other groups, but for classification purposes it is helpful to have the
species not overlap. A species of isonemal prefabrics is the set of prefabrics with symmetry groups of a single Roth type or
subtype. The Roth symmetry-group types and therefore the species of prefabrics here are numbered 1–10; some will be
subdivided, as 7 into 7o and 7e, where the subdivisions will be indicated by a subscript. A family of isonemal prefabrics is
the set of prefabrics with the same symmetry group, not group type. Families are obviously finite; all the species, except the
few interesting exceptions to which I alluded in the first sentence, contain infinitely many families. The exceptions all have
order 4 or less. As such prefabrics are exceptions to many otherwise general statements, attention here is limited to orders
greater than 4.
The way I have chosen to develop Roth’s categorizing of prefabrics with only parallel axes of symmetry is to consider H1

first. There are only two H1 diagrams except for dimensions (Fig. 3(a), (b)). The simplest symmetry-group division divides
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Fig. 3. Representations of side-preserving-subgroup and symmetry-group types. (a) Type p1 (side-preserving subgroup only). (b), (c), (d). Type pg (three
versions: pg/−, pg/pg , and pg/p1). (e), (f). Type pm (two versions: pm/p1 and pm/pg). (g), (h). Type cm (two versions: cm/p1 and cm/pg).

the prefabrics into species 2, 5, and 8 having H1 of type p1 and the others having H1 of type pg . What of G1? It is possible
that G1 = H1, but only ifH1 is of type pg . This gives the G1/H1 type combination4 that Roth denotes pg/−, the dashmeaning
that H1 is not just of the same type as G1 but is the same group. The combination characterizes Roth type 1.
To either p1 or pg can be added glide-reflections with τ giving groups of type pg of either the second sort illustrated in

Fig. 3(d) (pg/p1, Roth type 2) or of the third (mixed) sort illustrated in Fig. 3(c) (pg/pg , Roth type 3 or 4 depending on further
considerations). The repetition of pg indicates that, while the planar projections G1 and H1 are of type pg , they are not the
same group. The lattice unit of groups of the p1 and pg types can be used for groups of type pm depending onwhether, in the
side-preserving subgroup, the mirrors simply disappear (pm/p1, Roth type 5, Fig. 3(e)) or become axes of side-preserving
(no τ ) glide-reflection (pm/pg , Roth type 6 or 7 depending on further considerations, Fig. 3(f)). One produces the first sort
of cm in Fig. 3(g), by adding to a rhombic lattice unit for p1 (such lattice units need only be parallelograms, but here they are
rectangular except in this case) bothmirrors and glide-reflection axes with τ (cm/p1, Roth type 8). One produces the second
sort of cm in Fig. 3(h) by adding to type-pg H1 of Fig. 3(b) mirrors between the axes of side-preserving glide-reflection. This
process gives cm/pg with G1 lattice unit of a quite different shape but the same length, Roth type 9 or 10 depending on
further considerations. (See Fig. 7(b) for both lattice units in one diagram.) The further considerations nowmentioned three
times have to do with the placement of the axes with respect to the grid of cells, the subject to which we must now turn.
Amirror can intersect the boundary of a cell only at corners, either singly or in diagonally opposite pairs, transforming the

cell into either a diagonally adjacent cell or itself. A symmetry group containing both reflection in an axis and a translation
along that axis contains, as their composition in either order, a glide-reflection with the same axis and glide the length of
the translation. This possibility illustrates that glide-reflection axes may have what I call mirror position. But as well, such
axes can be displaced to intersect cell boundaries at themid-points of adjacent sides and pass through the right part of a cell,
then the left part of a cell, and so on alternately. This extra freedom in the placement of glide-reflection axes leads to Roth’s
types 4 and 10 rather than 3 and 9, and it is the source of the refinement of his taxonomy proposed here. Roth’s example
of a species-1 fabric illustrates the mirror-position possibility (Fig. 4(a)), but Fig. 4(b) illustrates the other position. Fig. 4(b)
illustrates that a glide-reflectionwith axis not inmirror position reflects axes of other glide-reflections not inmirror position
among themselves, as do Figs. 8(b), 10, 12(b) and 13.

Lemma 1. Glide-reflection axes of a prefabric with symmetry group of crystallographic type pg are all in mirror position, or all
not in mirror position.

Proof. To see that a glide-reflectionwith axis inmirror position cannot reflect axes not inmirror position among themselves,
it suffices to consider exactly what it would have to do. For definiteness, consider two glide-reflection axes not in mirror
position bounding a lattice unit of a symmetry group of type pg as in Fig. 4(b). Because each axis is translated perpendicularly
to the other axis (as well as in many oblique directions), they both have corresponding parallel paths through the right part
of a cell, then the left part of a cell, then the right part of a cell, and so on, in either direction. The glide-reflection with axis
central to the lattice unit must transform each axis to the other one. It must therefore be half-way between them, and this
location is not amirror position but is a similar or opposite (depending on the distance between the other axes) path through
the right part of a cell, then the left part of a cell, and so on. �

4 The notation is a Coxeter notation specifying the layer group G, not an indication of a factor group.
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Fig. 4. G1 (same asH1) lattice units of fabrics of species 1. (a) 12-183-1with glide-reflection axes inmirror position. (b) Order-30 fabricwith glide-reflection
axes not in mirror position.

Fig. 5. Species-10 fabrics with G1 lattice units. (a) Roth’s order-30 example of a species-10 fabric. Fig. 5 of [11]. (b) The 1/2/4/1/2/4 twill.

Glide-reflection axes can be displaced from mirror position when they are combined with mirrors because there is not,
in such groups, a translation from one axis to the next that is perpendicular to the axes. Such perpendicular translations
as there are relate alternate glide-reflection axes, as in the fabrics in Figs. 5, 7, 9, 16(b) and 17; the translations between
adjacent glide-reflection axes are exclusively oblique (the sides of the rhombs indicating the least oblique).

3. Lattice units

Since lattice units have already been marked on figures, it would be as well to stress that the location of unit boundaries
other than axes has no geometrical significance, except for how far apart they are. When one boundary is chosen, another
is its closest parallel image under the relevant group, G1 or H1.
With the sole exception of species 5 (of type pm/p1), which has only mirror symmetry (including τ ) besides translations

inG1, and so only translations inH1, the lengths of lattice units are determined by the glides of the glide-reflections present in
G1 of all prefabrics considered here.When a glide-reflection axis is inmirror position, the glidemust be an integermultiple of
the cell diagonal δ to transform cells to cells (e.g., along the axis). Theminimum translation along the axis that is a symmetry,
with or without τ , is accordingly twice the glide and so an even multiple of δ. The length of a lattice unit for such glide-
reflection, whether rhombic or rectangular, is accordingly an even multiple of δ. On the other hand, when a glide-reflection
axis is not in mirror position, the relevant increment is β ≡ δ/2. Along the axis (and hence everywhere), cells can be
transferred to cells if the glide is an integer multiple of β . But to be a glide-reflection, the multiple must be odd. The length
of a lattice unit in such a groupmust therefore be twice an oddmultiple of β , which is an oddmultiple of δ. We have proved
the following lemma.

Lemma 2. According to whether the axis of a glide-reflection of an isonemal prefabric design is in mirror position or not, the
length of the H1 lattice unit is an even or odd multiple of the cell diagonal.
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Fig. 6. Roth’s species-6 examples with H1 lattice units. The G1 lattice units have half the length. (a) 8-11-1; ` = 1,w = 4. (b) 12-23-1; ` = 3,w = 2.

Fig. 7. Roth’s species-9 examples with G1 lattice units. (a) 8-11-2. (b) 8-19-2 (H1 lattice unit dashed).

We can see now that the lengths of glides determine the lengths of lattice units for a group including a glide-reflection
and for its side-preserving subgroup, which includes the square of any glide-reflection in the group. For prefabrics of species
6 and 7, whose mirrors become axes of side-preserving glide-reflection in their side-preserving subgroups, it should be
noted how the glide determines the length of the G1 lattice unit. Because the axis of the glide-reflection in H1, which
advances cells of the diagram by the glide, and allows their colours to be complemented by the colouring convention (no
τ ), is coincident with the axis of the diagram’s mirror symmetry (not in H1), the glide-reflection effects what looks like a
translation of the diagram. Such a translation with colour complementation is not a symmetry of the diagram because of the
colour complementation; the corresponding symmetry is what Roth calls a τ -translation. It is illustrated by Roth’s species-6
examples in Fig. 6, where one half of the H1 lattice unit τ -translates along the axes to the other half. Cf. Figs. 15 and 16(a).
Something related occurs in species 9 (Fig. 7), and 10 (Fig. 5), where again there are side-preserving glide-reflections in

H1 and mirrors in G1, but they are not coincident. Mirrors are interchanged by the glide-reflection half-way between them.
Because of the mirror symmetry, the colour-reversing glide-reflection effects what looks like a translation, but oblique to
the direction of the axes because of the non-coincidence of themirror and the glide-reflection’s axis. This effect explains the
τ -translations along the boundaries of the rhombic lattice unit of these types, and so how the rectangular lattice unit of H1
has twice the area although the same length as the rhombic lattice unit of G1.
We have seen two ways in which the lattice unit of H1 can be larger than that of G1. To see a third, we must change our

attention to the width of the lattice unit of G1 of types 3 and 4, formed by adding, between each adjacent pair of axes of
side-preserving glide-reflection as shown in Fig. 3(b), an axis of side-reversing glide-reflection as shown in Fig. 3(c). The H1
lattice unit, as illustrated in Fig. 8, can be taken to comprise two G1 lattice units side by side. This convention is adopted
in order to have side-preserving glide-reflection axes as the sides of both G1 and H1 lattice units, as they are illustrated in
Fig. 3(b), (c). These side-by-side G1 lattice units are not related by translation as they would be if they were H1 lattice units
but rather by τ -translations. Fig. 8 shows designs of species 3 (axes in mirror position) and 4 (axes not in mirror position).
While the length `δ of a rhombic lattice unit is twice the length of the glides of the symmetry group and the widthwδ is

twice the distance between adjacent mirrors, only certain combinations of ` and w are feasible. The constraints on mirror
position and glide lengths require only that ` and w be integers. Without loss of generality, let the centre of a lattice unit,
which lies on a mirror, lie at a cell corner as illustrated in Fig. 7(b). (Any point on the mirror is a possible choice, e.g., a cell
centre as in Fig. 7(a).) The distance wβ from the unit centre to the adjacent mirror can be either even as in Fig. 9(a) or odd
as in Fig. 9(b). If w is even, then the corners of the lattice unit on the adjacent mirrors fall at cell corners; if w is odd, then
the corresponding corners fall at cell centres. The other corners of the lattice unit must also fall at cell corners or cell centres
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Fig. 8. Roth’s pg/pg examples with side-by-side G1 lattice units composing H1 lattice units. (a) Species 3: 12-79-1. (b) Species 4: 24-282555. Fig. 4 of [11].

Fig. 9. Roth’s examples of species 8 with G1 and H1 lattice units. (a) 8-11-6 with (`, w) = 2. (b) 15-35-1 with (`, w) = 1.

respectively. This means that `β along the central mirror must have ` even when w is even and ` odd when w is odd. The
feasibility constraint on ` andw is that their parities be the same.

4. Isonemality

For a symmetry group tomake aprefabric isonemal, a corner of its lattice unit, if chosen to be in a cell,must have translates
in every other strand. The side-preserving subgroup H1 need not and does not always do this.
Let rectangular G1 lattice units bemeasured in the diagonal δ of a cell. A unit `δ long bywδwidewill have a corner image

in every strand when the greatest common factor of ` and w is 1, equivalently ` and w are relatively prime or there exist
integers c and d such that c`+ dw = 1. The last condition is a kind of recipe for how many iterated translations |c| and |d|
in perpendicular directions are required to move a corner to an adjacent parallel strand. A dimension can sometimes be δ as
in Fig. 5(b). In contrast, the similar parameters for H1 can have greatest common divisor 2 and often do (Figs. 6, 7, 8(a) and
13). This can be summed up in a lemma.

Lemma 3. A necessary and sufficient condition that a prefabric of species 1–7 with a rectangular G1 lattice unit `δ by wδ be
isonemal is that (`, w) = 1.

If rhombic G1 lattice units that tessellate the plane without colour reversal (cm/p1, Roth type 8) or with colour reversal
(cm/pg , Roth types 9 and 10) are measured similarly along their diagonals, then the necessary condition for isonemality
may be (`, w) is either 1 or 2. Roth gives examples of both for species 8, illustrated in Fig. 9. We also have a lemma for these
other species.

Lemma 4. A necessary and sufficient condition that a prefabric of species 8–10 with a rhombic G1 lattice unit of length `δ and
widthwδ be isonemal is either that ` andw be odd and (`, w) = 1 or that ` andw be even, (`/2, w/2) = 1, and `/2 andw/2
differ in parity.
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Fig. 10. G1 and H1 lattice units. (a) Order-24 example of species 1e with ` = 3,w = 4. (b) Order-30 example of species 1o with ` = 5,w = 3.

Proof. If `δ andwδ are the lengths of rhombic diagonals, then the diagonals can be thought of as vectors (`, `) and (w,−w).
The sides of the rhombs can be thought of as vectors ( `+w2 ,

`−w
2 ) and (

`−w
2 ,

`+w
2 ). The feasibility constraint of Section 3 is

that ` andw must have the same parity.
For isonemality it is necessary and (with the reflective symmetry being supposed) sufficient that horizontally and

vertically a rhomb corner in one strand be translatable to an adjacent strand as for Lemma 3. Here this condition is that
integers e and f exist such that e `+w2 + f

`−w
2 = 1. For ` and w both odd, e

`+w
2 + f

`−w
2 = 1 is just a rearrangement of

e+f
2 `+

e−f
2 w = 1. So for ` andw odd, isonemality is equivalent to the relative primality of ` andw. In Fig. 9(b), ` = 5, w = 3,

and so e = 1, f = −3. When ` and w are even, c` + dw = 1 is impossible, and so a different condition is needed. Since
another rearrangement of e `+w2 + f

`−w
2 = 1 is (e+ f )

`
2 + (e− f )

w
2 = 1, divisions possible because ` andw are both even,

the condition required includes the relative primality of `/2 and w/2. In Fig. 9(a), ` = 2, w = 4, and so e = 1, f = 2. The
specific form of the coefficients e± f , themselves unavoidably of the same parity whether e, f , were odd-odd, odd-even, or
even-even, forces `/2 and w/2 to differ in parity as well as being relatively prime, since if `/2, w/2, as well as e + f , e − f ,
were of the same parity, the displayed equation could not be satisfied. (Since e± f must both be odd, e and f will also differ
in parity.) �

5. Symmetry groups

The preceding observations make it possible to determine each of the infinite families of symmetry groups G that
isonemal prefabrics with no rotational symmetry have in terms of the length and width of their lattice units. We shall
work through Fig. 3 from 3(b) to 3(h).
1. When G1 = H1 is of type pg , the axes of side-preserving glide-reflection can be in mirror position or not. If in mirror
position, then the lattice unit is an evenmultiple `δ long. By the standard isonemality constraint, thewidthmust bewδwith
(`, w) = 1 and so w odd. As Roth remarks [11, p. 318], w > 1 or a twill with mirror symmetry would result, contradicting
the type of the symmetry group. This is species 1m (m for mirror position). Roth’s species-1 examples have symmetry of this
subtype; a twillin with offset 5 is illustrated in Fig. 4(a). Period and order are 2`w, always divisible by 4. Genus is I.
If the glide-reflection axis is displaced, then the length of the lattice unit must be an odd multiple `δ. For isonemality,

the width must be wδ with (`, w) = 1, allowing w to be even or odd. There are accordingly two further species 1e and 1o,
respectively, with parameters as follows: For 1e, parameters are as for 1m except for the omission of ` = 3, w = 2, which
forces the lattice unit to have more symmetry, e.g., 12-17-1 with group of Roth type 16. This is analogous to barringw = 1
above. Period and order are 2`w, always divisible by 4. Genus is I.
For 1o, Fig. 4(b) showed the example ` = 3, w = 5. Fig. 10 shows ` = 3, w = 4 and ` = 5, w = 3. Parameters ` = 1,

w = 2 and ` = 3,w = 2 are too small. Period and order are 2`w, always even. Genus is I.
The production of examples such as those in Fig. 10 is easy if it is possible. To produce all the members of a family, all

that is needed is to construct a diagram of the lattice unit and name enough cells that their (distinct) orbits under the group
cover the plane. This refines a technique introduced by Grünbaum and Shephard [4]. In the case ` = 3, w = 4, the family
of Fig. 10(a), 12 cells/orbits A to L illustrated in Fig. 11 are required. The side-preserving (colour-reversing) glide-reflections
make half of the plane be coloured with the complementary colours A to L. Colours have then to be chosen such that no
further symmetry is introduced. In Fig. 10(a), H and J are pale, other unbarred letters dark. It is often possible to produce
plain weave, because its group contains many groups as subgroups. When ` = 3, w = 2, is attempted with six orbits,
further symmetry is unavoidable. This was confirmed by noting that, in the catalogue of Grünbaum and Shephard [7], the
only order-12 fabrics of species 1 are the two Roth gave as examples, 12-183-1 (Fig. 4(a)) and 12-411-1.
2. When G1 is of type pg but illustrated by Fig. 3(d) as having side-reversing (colour-preserving) glide-reflections so that H1
has only translations (p1) and the Roth type is 2, little that was said of species 1 needs to be changed. The possible G1 lattice
units are the same for the analogous species 2m, 2e, and 2o, including the failure to find an example of 2e with ` = 3, w = 2.
Fig. 12(a) shows a fabric of species 2m (` = 2, w = 5) of smaller order than the example constructed by Roth ([11], Fig. 3,
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Fig. 11. The letter array for production of Fig. 10(a). (X and X are of complementary colours.)

Fig. 12. G1 and H1 lattice units. (a) Order-20 example of species 2m with ` = 2,w = 5. (b) Order-20 example of species 2e with ` = 5,w = 2.

` = 4,w = 3), and Fig. 12(b) shows a fabric of species 2e with ` = 5,w = 2. Period and order for all three species are 2`w,
for species 2m and 2e always divisible by 4 and for 2o only by 2. Genus is I.

3. When G1 of type pg is illustrated by Fig. 3(c) as having a mixture of side-preserving and side-reversing glide-reflections,
with the latter absent from H1, whose lattice unit is accordingly twice the width of G1’s, we again have the glide-reflection
axes with mirror position (type 3) or not (type 4). In the former case, the lattice unit for G1 must obey the constraints of
species 1m. One of Roth’s two examples of species 3, which differ only insignificantly, is illustrated in Fig. 8(a) and has in δ
units the distance between neighbouring axes of the same kind w = 3 and twice the length of the glides ` = 2. So does
12-203-3, the only other example with so small a lattice unit. The lattice unit of H1, being twice as wide, has corners on only
alternate strands, making these fabrics of pure genus II. Period is 4`w, but the order, on account of genus II, is only 2`w,
always divisible by 4.

4. When the axes of mixed side-preserving and side-reversing glide-reflections are not in mirror position, the G1 lattice unit
must obey the constraints of species 1o or 1e, making the parameter values of 4o and 4e be those of 1o and 1m (rather than
1e since ` = 3, w = 2, is possible, being illustrated in Fig. 8(b)). The H1 lattice unit is twice as wide. Examples of species
4o with ` = 5, w = 3, and ` = 3, w = 5, are illustrated in Fig. 13. Too much symmetry results from ` = 1 or w = 1. The
period and order of species 4o are 4`w, always divisible by 4, and of species 4e, with ` and w from the parameters for 1m,
also 4`w, always divisible by 8.

5.We come now to groups of the Roth type of Fig. 3(e), species 5withG1 of type pm andH1 of type p1 since the side-reversing
mirrors disappear from H1. The mirrors are constrained as to position in cells but not otherwise, so that the isonemality
constraint (`, w) = 1 is the only one. Roth’s examples (Figs. 2(a) and 14(a)) show that {`,w} = {2, 3} can be used both
ways, and the same is true for the smallest viable odd pair, {3, 5} (Fig. 14(b) and (c)). The parameters for the obviously
defined species 5o and 5e are those of 1o and 1m respectively. While the period and order of species 5o are 2`w, always even,
those of species 5e, also 2`w, are divisible by 4. Genus is I.

6. The second sort of type-pmG1 has axes of reflection that do not disappear from H1 but become axes of (side-preserving)
glide-reflection instead, making the H1 lattice unit be twice as long as G1’s and the symbol be pm/pg (Fig. 3(f)). The
constraints on these G1 lattice units are those of type 5. If the width of the lattice units is even, then the type is 6, illustrated
in Fig. 6. The parameter values for type 6, in addition to those of 5e (that is of 1m), are the pairing of 1 with even numbers,
beginning with 2. When the G1 lattice-unit length, i.e., the length of the glide in δ units, ` = 1, prefabric 4-1-1* (the only
prefabric of order 4 or less in species 1–10) has twice the distance between neighbouringmirrorsw = 2 and Roth’s example
8-11-1 (Fig. 6(a)) hasw = 4. Period is 4`w, but because the genus is II the order is only 2`w, always divisible by 4.
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Fig. 13. Order-60 examples of species 4o . (a) ` = 5,w = 3 (H1). (b) ` = 3,w = 5 (G1 only).

Fig. 14. G1 and H1 lattice units. (a) 12-69-1 (species 5e , with ` = 3,w = 2). (b), (c). Order-30 examples of species 5o with {`,w} = {3, 5}, used both ways.

Fig. 15. Order-60 examples of species 7o with {`,w} = {3, 5}, used both ways. H1 lattice units.

7. On the other hand, if the width of the lattice units is odd wδ, then the length `δ can be either odd or even, giving rise
to the two species 7o and 7e respectively. The parameter values for species 7o, in addition to those of 5o (that is of 1o), are
the pairing of 1 with odd numbers, beginning with 3. Roth’s sole example illustrating type 7, 12-315-1, is of species 7o with
` = 1, w = 3, the only example with these smallest parameters. Pairs with 1 can be used only that way. The 1o parameter
pairs begin with {3, 5}. They can be used here both ways as is illustrated in Fig. 15. The parameter values for species 7e are
those of 5e (that is of 1m), of which the smallest pair is ` = 2,w = 3, illustrated in Fig. 16(a). Period and order for species 7o
are 4`w, always divisible by 4, and for species 7e are also 4`w but always divisible by 8 because ` andw come from the 1m
parameter list. The genus of both species 7e and 7o is I and II, as can be seen in Fig. 15(b). (The dark motif at the far right can
go up one strand with colour reversal and down one strand without colour reversal by moving farther left.) That completes
the crystallographic type pm.
8. We turn now to G1 of the type cm illustrated in Fig. 3(g), in which mirrors and axes of side-reversing glide-reflections
alternate. The constraints on this group type for feasibility (parity) and isonemality (common factors) have already been
discussed in the previous section, with Roth’s examples illustrated in Fig. 9. The same parameters, greater than 1, can be used
either way around. {`,w} = {2, 4} and {3, 5}, used one way in Fig. 9(a), (b), are used the other way around in Fig. 17(a), (b).
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Fig. 16. H1 lattice units. (a) Order-24 example of species 7e with ` = 2,w = 3. (b) The 1/1/2/3 twill, the smallest example of species 8o .

Fig. 17. Examples of species 8e , 8o , with G1 and H1 lattice-unit dimensions of Fig. 9 used the other way around. (a) 8-19-5. (b) 15-19-1.

If the length `δ and width wδ of the rhombic lattice unit are both odd, then the parameters of what is species 8o, having
only to be relatively prime, include those of species 1o, but a greater range of parameters is allowed than those of species
1o since w can be 1, as long as ` is at least 7. These extra parameters, like those of species 6 and 7o, can be used only that
way around. This adds, to what would otherwise be present, an infinite family of twills the smallest of which is the 1/1/2/3
twill of order 7 (Fig. 16(b)). If ` andw are even, then the parameters of species 8e, their halves needing to be both relatively
prime and of opposite parities, must be twice the parameters for type 6, that is twice those of species 1m augmented by 1
paired with all even numbers. Roth’s examples (Fig. 9) are of both kinds. Period and order for species 8o is `w, always odd,
the only odd orders among these prefabrics. For species 8e, period and order are also `w, always divisible by 8. Genus is I.
9. Finally, G1 of the type cm illustrated in Fig. 3(h) has H1 of type pg with lattice units either an even or odd multiple of δ
wide. If the width is an even multiplewδ, then the Roth type is 9, the length of the rhomb `δmust be even too, and the axes
of glide-reflection are in mirror position (Fig. 7). If the width and length are odd multiples of δ, then the Roth type is 10, and
the axes of glide-reflection are not in mirror position because of the distance between the mirrors (Fig. 5). The constraints
on G1 for species 9 are the same as those of species 8e, and so the parameters are the same. Roth’s examples (Fig. 7) are
of the smallest pair, {2, 4}, used both ways. While the parameters are the same as in 8e, the H1 lattice unit is larger, being
rectangular rather than rhombic (Fig. 7(b)). Period is 2`w, but, because genus is II, order is `w, always divisible by 8.
10. The constraints on G1 for species 10 are the same as those of species 8o; again a greater range of parameters is allowed
than those of species 1o since the width can be δ so long as the length is at least 7δ. The infinite family of twills added to
what would otherwise be present has as a smallest example the 1/2/4/1/2/4 twill of order 14 illustrated in Fig. 5 along
with Roth’s example. Period and order are 2`w, always even. Genus is I and II.

6. Doubling

Anatural question that has, so far as I know, never been asked, because there has beennoway to look at it, iswhich designs
remain isonemalwhen doubled as plainweave is doubled to 4-3-1; each strand is replaced by a pair of strandswith the same
behaviour. Plain weave remains isonemal when doubled because it has symmetries not being considered here. Doubling is
something thatweavers actually do, but itwas introduced into theweaving literature byGrünbaumandShephard [4] applied
to square satins like 5-1-1. (They used the term again with a different meaning in [5].) Among the prefabrics of the species
being considered here, the prevalence of a requirement of oddness makes it easy to see that replacing every strand with
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Table 1
Effects of reflections and glide-reflections on cell numbers

Operation Parities of axis and cells
Same Opposite

Odd glide Interchanges numbers Preserves numbers
Even glide Preserves numbering Interchanges numbers
Reflection (even length) Preserves numbering Interchanges numbers
Reflection (odd length) Preserves numbering Preserves numbering when combined with translation

two strands behaving the same way – and thereby doubling lattice-unit dimensions – will alter the dimensions to destroy
isonemality. The only species that come close to working are 8o and 10 since there are corresponding species 8e and 9 with
even dimensions. But those even dimensions are twice numbers of different parity, which the odd dimensions of 8o and 10
are not.

Theorem 1. No prefabric with only parallel symmetry axes can be doubled and remain isonemal.

Proof. If one thinks of each strand being divided into two lengthwise this becomes clear. For half a strand to be mapped to
the other half of the strand by a symmetry as isonemality requires, the half-strand must be rotated (there are no half-turn
symmetries in these prefabric species), or reflected (no axis parallel with strands is available) or translated. While the other
two possibilities are realized by plain weave, not even it allows translation of the lower half of a weft to the upper half of
it by a symmetry of the design, for to have that symmetry every cell of the weft would have to be coloured identically to
that above it, since the weft’s upper half would bemapped to the lower half of the next weft, cell images straddling the weft
boundary. The design would accordingly have to consist of vertical strips, and so not be isonemal unless it were the trivial
prefabric. It is clearly impossible. �

7. Halving

By analogywith doubling, we shall call halving the operation on a prefabric introduced byGrünbaumand Shephard in [5],
the removal of every other strand in each direction, making an intermediate construction used in chair seats (and the chapel
floor at New College Oxford from 4-3-1), and called a pseudofabric by them, and the widening of all the strands uniformly
to produce another prefabric. Grünbaum and Shephard left as an open question when the prefabric produced by halving is
isonemal. In terms of species, the answer for the prefabrics considered here is simple, but obtaining it will require a little
machinery.We require the cells of the plane to be numbered in fours: group the cells into square blocks of four that tessellate
the plane as do the cells, and number the cells of each block as the quadrants of the Cartesian plane are numbered. Plain
weave can be described in these terms as odd dark and even pale or vice versa. Beginning with a prefabric, one can then
produce any half-fabric by preserving the crossings at cells assigned any one of the four numbers and discarding the rest. If
one keeps the 2-cells, for example, one has discarded the strands in both directions containing the 4-cells, so that what were
crossings in the odd cells are no longer crossings because what was crossed by the remaining strands is no longer there. And
the areas of the plane occupied by the odd cells and the 4-cells have been shrunk to nothing by widening the remaining
strands to expand the 2-cells to fill the plane. Since there is a sense in which the prefabric obtained by keeping the 2-cells,
and that obtained by keeping the 4-cells are combined (by the crossings in the odd cells) to make the original prefabric, I
shall refer to the results of this process as factors and the 2-factors and the 4-factors collectively as the even factors and the
others as the odd factors. The action may all be in the combination: if halving is applied to plain weave, all four factors are
trivial prefabrics. This is, in fact, a hint of one result, namely that if the G1 lattice unit of the prefabrics under consideration
here is small enough, a twill (of which the trivial prefabric is the trivial example) results from halving. Small enough is a
length or width of 2δ because halved it is δ, and that forces twills, all of which are isonemal.
All prefabrics of species 1 to 10 are of genus I or II. Accordingly halved they become of genus I with translations from

weft to adjacent weft. Moreover, the double offset from a strand to a strand two strands away is always even so that the
numbering of the cells is preserved under those translations. So in a halved prefabric, there are always strand-to-adjacent-
strand translations that are symmetries. The question is whether there are warp-to-weft symmetries. The species here
all have glide-reflections or reflections that take warp to weft, and so the question reduces to whether they preserve the
numbering. Glide-reflections with axes not in mirror position interchange odd and even cells, and so they cannot be called
upon to make a halved prefabric isonemal. Prefabrics with only such warp-to-weft symmetries (species 1o, 1e, 2o, 2e, and 4)
will in consequence not halve to isonemal factors, unless their lattice units are small enough. Ignoring those species then,
we need to see what reflections and mirror-position glide-reflections do to the numbering of the cells.

Lemma 5. The action of a reflection or glide-reflection with axis in mirror position on the numbering of the cells is displayed in
Table 1, where the parity of an axis is the parity of the cells through which it runs, length refers to length of the G1 lattice unit, and
interchange of numbers means specifically the interchange of 1 and 3 or 2 and 4.
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Proof. The effects of glide-reflections in Table 1 are obvious. And the effects of reflections are those of zero (even) glides,
except for the anomalous effect on cells of parity opposite to that of the cells through which the mirror runs when the G1
lattice unit is of odd length. Then, while the reflection interchanges numbers, a translation along the mirror by the length
of the lattice unit (a symmetry of the prefabric perhaps involving τ ) also interchanges numbers (e.g., Fig. 17(b)). Since
the product of the two interchanges is the identity, the numbering is preserved by a subgroup of the original symmetry
group. �

Theorem 2. Isonemal prefabrics of species 1–10, except those satisfying the two conditions (1) having only glide-reflections with
axes not inmirror position (species 1o, 1e, 2o, 2e, and 4) and (2) having both lattice-unit dimensions greater than 2δ, can be halved
with only isonemal results.

Proof. In species 1–10 (except for 1o, 1e, 2o, 2e, and 4) there are four different situations with respect to the spacing of axes:

1. There are only glide-reflection axes, and they are half an odd multiple of δ apart (species 1m, 2m, and 3).
2. There are mirrors, and they are half an odd multiple of δ apart (species 5o, part of 5e with ` even, 7, 8o, 10).
3. There are mirrors a whole multiple of δ apart and with G1 lattice units an odd multiple of δ long (the part of species 5e
with ` odd and species 6).

4. There aremirrors an even number of δ apart with glide-reflection axes between them andwith the glides an oddmultiple
of δ (species 8e and 9).

In all cases, the result of halving is isonemal. What needs to be proved is the presence of a warp-to-weft transformation;
case by case:

1. Whether the glide-reflection axes are for odd glides or even, adjacent axes run through even cells and odd cells, and so
factors of both parities have their numbering preserved by one or other of any pair of adjacent axes’ glide-reflections by
Lemma 5.

2. Adjacent mirrors run through even cells and odd cells, and so factors of both parities have their numbering preserved by
reflection in one or other of any pair of adjacent mirrors by Lemma 5. (The glide-reflections of species 8o and 10, whose
axes are not in mirror position, take no part in this and vanish from the factors.)

3. While, because of their spacing, all mirrors run through cells of factors of the same parity, preserving the numbering of
cells in those factors, the effect of the mirrors on the factors of the other parity is that of glide-reflections by Lemma 5.
(Since the cells that themirrors run through are not in those factors, the axes of glide-reflection are not inmirror position
in those factors. They are side-preserving or side-reversing depending on whether τ is involved in the translation from
one G1 lattice unit to the next in the direction of the axes.)

4. Both mirrors and axes of glide-reflection run through cells of factors of the same parity. The mirrors preserve the
numbering of the factors they run through, and the glide-reflections, their glides being odd, preserve the numbering
of the other factors by Lemma 5. �

8. Fabrics of a given order

In the absence of Roth’s classification of symmetry-group types and the above determination of the possible symmetry
groups, isonemal fabrics of various orders had to be found by a brute-force method relying on trial and error. This was
explained at the beginning of Grünbaumand Shephard’s catalogue [6].While period is perhaps amore naturalway to classify
fabrics than order, it is now easy to find all fabrics of a given period or order, with no trial and error, only the elimination of
fabrics of smaller (divisor) period or order and prefabrics that fall apart, both of which can be determined. This is at present
possible only for the species discussed here, but this discussion will be extended.
An odd order is a prime or a prime power (and so has no relatively prime factors) or else it does have relatively prime

factors. In the first and second cases, numbers like 23 and25, there are only the twills of those orders in species 8o available. In
the third case, for a number like 21, one looks aswell for its factorisations among the parameters for the only species allowing
non-twills of odd order, 8o, namely the parameters for 1o. Since they are only 3 and 7, used both ways, each possible lattice
unit and therefore its unique family are determined. The method for finding the members of a family explained in Section 5
can then be used to determine all of the fabrics in the family. Since these factors have no factors, no extraneous fabrics or
prefabrics will be produced. When a factor has factors, whole families of smaller-order designs need to be rejected.
For an even order N , one first looks for the species that allow that order by looking for the possibilities of N = `w, 2`w,

or 4`w in all appropriate rows of Table 2 (combining information stated above in the discussion of each species). Species 6,
7o, and 10 add combinations of 1 with even, odd, and odd numbers, respectively, provided they are 2 or more, 3 or more,
and 7 or more, respectively to the parameters of 1m, 1o, and 1o, respectively. The plethora of possibilities explains why the
catalogue stopped at orders 15 and 17; even without trial and error, the number of possibilities of order 16 is too large.
If one runs through the orders from 5 to 27, one finds the following results:

5 is too small to use for the only possibility, with 1 for a twill of species 8o.
7, 11, 13, 17, 19, and 23 are odd primes, and 9, 25, and 27 are powers of primes and large enough to be used for species-8o
twills.
6 = 2(1× 3), and 10 = 2(1× 5) are too small for species 10.
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Table 2
Species in which prefabrics of even orders N may be found

Condition Order Parameters Species

2|N , 4 6 |N 2`w 1o 1o, 2o, 5o, 10
2`w 10 10

4|N , 8 6 |N 4`w 1o 4o, 7o
4`w 7o 7o

4|N 2`w 1m 1m, 1e, 2m, 2e, 3, 5e, 6
2`w 6 6

8|N `w 8e(1m, 6) 8e , 9
4`w 1m 4e, 7e

14 = 2(1× 7), 18 = 2(1× 9), 22 = 2(1× 11), and 26 = 2(1× 13) are big enough that they can be used for species 10.
15 = 3× 5 and 21 = 3× 7 can be used in factored form for species 8o both ways around, and each can be used with 1 for
a species-8o twill.
8 = 2(1 × 4), 12 = 2(1 × 6), 16 = 2(1 × 8), 20 = 2(1 × 10), and 22 = 2(1 × 11) can be used for species 6 one way.
The designs of order 8 will all reappear among the designs of order 16 if not eliminated since G1 of these order-16 designs
is a subgroup of the G1 of these order-8 designs. Nesting of the symmetry groups, which happens again and again, is an
unavoidable geometrical fact; it is not reflected in the way I have chosen to name the species.
8 = 2× 4, 16 = 2× 8, and 24 = 2× 12 = 4× 6 can be used for species 8e and 9 both ways around.
12 = 2(2× 3), 20 = 2(2× 5), and 24 = 2(4× 3) can be used for species 1m, 1e, 2m, 2e, 3, 5e and 6.
12 = 4(1× 3) and 20 = 4(1× 5) can be used for species 7o one way.
24 = 4(2× 3) can be used for species 4e and 7e one way.
One notices also that, because of what the parameters need to be, species 1o, 2o, 5o and the 10s with the 1o parameters

begin with order 2`w = 30, and that species 4o and the 7os with the 1o parameters begin with order 4`w = 60 and so are
not represented among the prefabrics of orders 5–27.
Having determined which species can contain a family of the desired order, one can determine all of the prefabrics in

each such family by the method explained in Section 5. There will typically arise in such determination three classes of
design that are not wanted. There may be designs with order equal to a factor of the desired order. There may be designs
with the symmetry group chosen being a subgroup of their respective groups, of which the previous sentence mentions a
subset. And there can be prefabrics that fall apart in the cases, pointed out by Roth [11], of species 3, 6, and 9, in all of which
the order is divisible by 4.
One can take care to avoid constructing sets of orbits that have additional symmetry, or one can construct all that there

appear to be and reject those with additional symmetries.
One can take care to avoid constructing prefabrics that fall apart, or one can construct all that there appear to be, and

reject those found to fall apart. Or one can construct them beforehand, and avoid or reject them as they might arise. Species
3 has even ` beginning with 2 and odd w beginning with 3. Possible orders of prefabrics that fall apart are 2`w, beginning
with 12. The initial example is 12-69-2*, there being no other of order less than 20. Species 6 has odd ` beginning with 1
and even w beginning with 2, but the smallest pair for which there is a prefabric that falls apart has ` = 1, w = 6. Order
is 2`w. The initial examples are 12-69-1* and 16-1093-1* with ` = 1 and w = 6 and 8 respectively. There are no others of
order less than 20. Species 9 has even ` and w and order `w divisible by 8, the smallest feasible order. The smallest actual
prefabrics of this species that fall apart are 16-277-4* and 16-1093-3* with ` = 2 and w = 8. There are no others of order
less than 24.
The prefabrics that fall apart are easily generated by the usual method, noting that alternate rows have every other cell

dark, and every other cell pale, with these predetermined cells forming a checkerboard with the undetermined cells. The
mirrors and axes of glide-reflection can be placed onto this partially determined array only consistently with its colouring.
Along diagonals of cells with predetermined colouring can be placed mirrors, axes of side-preserving glide-reflection with
odd glides, and axes of side-reversing glide-reflection with even glides. Between those diagonals, that is, through cells not
predetermined, can be placed axes of side-preserving glide-reflection with even glides and axes of side-reversing glide-
reflection with odd glides. The parameters of these three species make these choices consistent. The same generation of
unwanted designs with more symmetry than wanted occurs among prefabrics that fall apart; for example, 12-21-2* with
symmetry of Roth type 23 arises when one aims at order 12 and species 3 because of unwanted mirrors perpendicular to
the imposed axes of glide-reflection.
The falling apart of such prefabrics into two components is a species of halving. The warps corresponding to

predominantly dark columns of the design – together with the wefts corresponding to predominantly pale rows – will
lift off the other half of the warps and wefts.
The results of Sections 6–8 need to be extended to the remaining prefabrics.
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