
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Neuron

Article
Temporal Integration of Olfactory Perceptual
Evidence in Human Orbitofrontal Cortex
Nicholas E. Bowman,1,* Konrad P. Kording,2 and Jay A. Gottfried1,*
1Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
2Rehabilitation Institute of Chicago, Northwestern University, Chicago, IL 60611, USA

*Correspondence: nickbowman80@gmail.com (N.E.B.), j-gottfried@northwestern.edu (J.A.G.)
http://dx.doi.org/10.1016/j.neuron.2012.06.035
SUMMARY

Given a noisy sensory world, the nervous system
integrates perceptual evidence over time to optimize
decision-making. Neurophysiological accumulation
of sensory information is well-documented in the
animal visual system, but how such mechanisms
are instantiated in the human brain remains poorly
understood. Here we combined psychophysical
techniques, drift-diffusion modeling, and functional
magnetic resonance imaging (fMRI) to establish
that odor evidence integration in the human olfactory
system enhances discrimination on a two-alternative
forced-choice task. Model-based measures of fMRI
brain activity highlighted a ramp-like increase in
orbitofrontal cortex (OFC) that peaked at the time
of decision, conforming to predictions derived from
an integrator model. Combined behavioral and fMRI
data further suggest that decision bounds are not
fixed but collapse over time, facilitating choice
behavior in the presence of low-quality evidence.
These data highlight a key role for the orbitofrontal
cortex in resolving sensory uncertainty and provide
substantiation for accumulator models of human
perceptual decision-making.

INTRODUCTION

Perceptual decisions are routinely formed in the wake of imper-

fect sensory information. Behavioral performance improves,

especially for noisy or weak sensory inputs, when animals take

more time to sample the stimulus. For example, in the olfactory

domain, a hunting dog may require multiple sniffs to decide

whether a fast-moving rabbit has darted left or right under

a hedgerow; a human may take several sniffs to decide whether

a carton of milk on the verge of spoiling is a wise breakfast

option. The implication is that the nervous system accumulates

sensory information over time for efficient perceptual decision-

making.

Neuroscientific support for the integration of noisy perceptual

evidence is principally based on single-unit studies in

nonhuman animals (Gold and Shadlen, 2007; Newsome et al.,

1989; Platt, 2002; Romo and Salinas, 2001; Schall and Thomp-
916 Neuron 75, 916–927, September 6, 2012 ª2012 Elsevier Inc.
son, 1999). In a widely studied visual perceptual paradigm

(Cook and Maunsell, 2002; Hanes and Schall, 1996; Newsome

et al., 1989; Platt and Glimcher, 1999), responses in the lateral

intraparietal area (LIP) show a ramp-like increase during a dot-

motion discrimination task, such that animals make a decision

when neuronal activity surpasses a bound (Roitman and Shad-

len, 2002; Shadlen and Newsome, 2001). Such findings have

helped inform and constrain models of perceptual decision-

making.

Human imaging studies have begun using simple two-choice

tasks to explore the neural substrates of visual perceptual deci-

sion-making (Heekeren et al., 2004; Huettel et al., 2005; Ivanoff

et al., 2008; Noppeney et al., 2010; Ploran et al., 2007; Tosoni

et al., 2008). However, the direct integration of perceptual

evidence over time and its modulation by the degree of sensory

noise are poorly understood. Resolving temporal integration

using functional magnetic resonance imaging (fMRI) is difficult

because humans tend to solve perceptual tasks much faster

than the minimum data-acquisition rate of functional MRI scan-

ners—too few data points are obtained per trial to allow the char-

acterization of signal integration during the decision process.

Traditional wisdom thus holds that fMRI is too slow to capture

sensory integration (Noppeney et al., 2010; Philiastides and

Sajda, 2007).

Here we took advantage of the fact that human olfactory

perception evolves at a slow timescale, particularly for mixtures

of odorants (Laing and Francis, 1989). This natural prolongation

of response times implies that the olfactory system is ideally

suited to characterize perceptual evidence integration with

imaging techniques. In this study, we used fMRI to measure

brain activity while subjects participated in a two-choice olfac-

tory categorization task. Varying the relative proportion of

components in a two-odorant mixture (Abraham et al., 2004;

Boyle et al., 2009; Kepecs et al., 2008; Khan et al., 2008;

Rinberg et al., 2006; Uchida and Mainen, 2003; Wesson

et al., 2008) allowed us to manipulate odor mixture difficulty

and to titrate the speed and accuracy of decision-making.

With a combination of model-based fMRI approaches (O’Doh-

erty et al., 2007), olfactory psychophysics, and deconvolu-

tion techniques (Glover, 1999; Zelano et al., 2009), we first

established behaviorally that human subjects integrate odor

information over time, particularly for difficult decisions, and

then found that the profile of odor-evoked fMRI activity in

medial orbitofrontal cortex (OFC) conforms to model simula-

tions suggestive of evidence accumulation toward a decision

bound.
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Figure 1. Task Design and Behavioral Results from Experiment 1

(A) The odorants eugenol (clove) and citral (lemon) were used to create nine different binary odorant mixtures ranging between 100% eugenol and 100% citral in

12.5% steps.

(B) Trial design depicting the two-alternative odor categorization task, with sniffs paced at 2 s intervals. Subjects inhaled when they saw a red crosshair on the

screen (667ms) and exhaled when it was not present (1333ms). In separate blocks, subjects were instructed to make a fixed number of sniffs (one, two, or three),

or an open number of sniffs. Visual cues C and L (clove and lemon, respectively) were used to remind subjects which response button corresponded to which

choice.

(C) Psychophysical data from Experiment 1. Mean binary choice accuracy conditional on number of sniffs is plotted for fixed-sniff blocks (filled circles) and open

sniff blocks (hollow circles). Performance accuracy (mean ± SEM) improved as subjects took more sniffs, particularly for more difficult odor mixtures (*p < 0.05,

compared to one-sniff trials). Error bars: SEM.
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RESULTS

Experiment 1: Odor Identification Accuracy Improves
with More Sniffs
Although temporal integration in the visual system is well docu-

mented (Cook andMaunsell, 2002; Hanes and Schall, 1996; Platt

and Glimcher, 1999), there is some controversy about whether

such mechanisms take place in the olfactory system. In rodent

models, a few studies indicate that rats require no more than

one sample (sniff) to disambiguate odor mixtures (Kepecs

et al., 2008; Uchida and Mainen, 2003; Wesson et al., 2008),

while other work suggests that additional sniffs enhance percep-

tual performance (Abraham et al., 2004; Rinberg et al., 2006).

Therefore, in Experiment 1, we set out to establish at the behav-

ioral level whether the human olfactory system integrates infor-

mation over time.

Healthy human subjects (n = 10) participated in a two-alterna-

tive forced-choice (2AFC) odor discrimination task, indicating

which of two odor percepts was dominant in a set of odorant

mixtures ranging between 100% eugenol (‘‘clove’’) and 100%

citral (‘‘lemon’’). Maximal mixture ‘‘difficulty’’ occurred with the
50% eugenol/50% citral mixture (Figure 1A). Stimulus mixtures

were matched for perceived intensity, ensuring that subjects

could not use this perceptual feature to guide their responses

(see Supplemental Experimental Procedures available online).

In separate blocks of trials, subjects were instructed to take

one, two, or three sniffs, being cued to sniff every 2 s during stim-

ulus presentation until the requisite number of sniffs had been

taken. In a fourth block, subjects made additional sniffs until

they reached a sufficient level of certainty regarding which of

the two percepts dominated the mixture (Figure 1B).

The main hypothesis was that if integration exists, then the

perceived quality of information should be greater with longer

sampling times (more sniffs), resulting in higher performance

accuracy. The psychophysical data, arranged into ‘‘less difficult’’

and ‘‘more difficult’’ mixture conditions, clearly show an

improvement in accuracy as subjects took more sniffs (Fig-

ure 1C). The main effect of sniff number, tested across one-,

two-, and three-sniff trials and collapsed across all mixture

conditions, was significant (c2 = 6.34, df = 2, p = 0.042; Friedman

test for related samples), and this was particularly the case for

the more difficult mixtures (c2 = 8.21, df = 2, p = 0.017; Friedman
Neuron 75, 916–927, September 6, 2012 ª2012 Elsevier Inc. 917



Figure 2. Integrative and NonintegrativeModels of Decision-Making

Generate Different Predictions about RT Probability Distributions

(A) In an integrative decision process, successive samples of information, or

‘‘evidence,’’ are accumulated over time, and a choice is made when that

evidence crosses one of two decision bounds (X or Y, upper panel). This

schematic shows integration of evidence (purple lines) for 16 sample trials,

each terminating in a choice of X or Y (purple circles). Normal curves (gray

lines) represent the distribution of evidence levels after each of four samples

(simulated acrossmany trials), where the shaded areas of the curves represent

relative numbers of choicesmade at each sampling point for either X (blue) or Y

(red). This decision process can be transformed into RT distributions for

choices X (blue line) and Y (red line), which conform to gamma-distributed

probability density functions (lower panel).

(B) In a nonintegrative (stochastic) decision process, each sample of infor-

mation is independent of the previous samples, and a choice is made when

a single sample has sufficient evidence to cross a bound (upper panel). The

schematic also depicts 16 sample trials with four sampling points, but in this

instance, if evidence does not surpass a threshold level, the decision process

begins again at zero evidence for the next sample. The RT distributions arising

from this nonintegrative process (lower panel) conform to exponentially de-

caying probability density functions. Specific sample trials (solid purple lines)

in the upper panels of (A) and (B) depict differences in how evidence accrues

over time in the two models.
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test), but not for the less difficult mixtures (c2 = 0.64, df = 2, p =

0.73). (For post hoc analyses and analyses of similar open-sniff

profiles, see Supplemental Experimental Procedures.) Together

these findings demonstrate performance gains with an

increasing number of sniffs, especially for difficult mixtures,

and are compatible with integrator models of perceptual deci-

sion-making in the human olfactory system.

Experiment 2: Integration Accounts for RT Distributions
in an Open-Sniff Task
Given that the above results accord with olfactory temporal inte-

gration, in Experiment 2 we set out to elucidate this mechanism

more extensively at the psychophysical and neuroimaging

levels. To this end, fMRI brain activity was measured from an

independent group of subjects (n = 11) participating in an olfac-

tory 2AFC task. Odor stimuli, task design, and instructions were

identical to the paradigm in Experiment 1, except that subjects

made as many sniffs as needed (‘‘open’’ sniffs) to decide which

odorant dominated the mixture. Binary choices and response

times (RTs) were both recorded. Critically, as opposed to Exper-

iment 1, this open-sniff paradigm enabled us to define RT distri-

bution functions that could be compared to those of integrative

and nonintegrative (stochastic) models of perceptual decision-

making (Figure 2) to provide support for either model.

We began by confirming that behavior in our olfactory task

was consistent with profiles observed in other established

perceptual decision-making paradigms (Gold and Shadlen,

2007). Psychometric data indicate that subjects successfully

categorized eugenol-dominant mixtures as ‘‘clove’’ and citral-

dominant mixtures as ‘‘lemon’’ (Figure 3A; for single-subject

data, see Figure S1A). Subjects also rated odor mixtures with

more citral as having a higher perceptual ratio of lemon relative

to clove (Figure S1B). Decision accuracy was higher for the

less difficult mixtures (at both ends of the mixture spectrum), ex-

hibiting a sigmoidal relationship (R = 0.99 ± 0.001, group mean ±

SEM; p < 0.0001) typical of 2AFC behavior (Luce, 1986; Ratcliff

and McKoon, 2008; Wickelgren, 1977). Chronometric data simi-

larly followed results in other sensory domains: subjects took

more time when trying to categorize more difficult mixtures,

and the RT profile across subjects showed a negative curvature

of the best-fit parabola (p < 0.001; Wilcoxon sign-rank test)

across the mixture continuum (Figure 3B; single-subject plots,

Figure S1C).

We next used the behavioral data from Experiment 2 to simu-

late the RT distributions that would arise from a system accumu-

lating information over time. Insofar as our findings accord with

choice performance in other perceptual 2AFC studies, we

modeled the psychophysical data (Figure 3) using a drift-diffu-

sion model (DDM), which distills RT and accuracy data into

two free parameters: the drift rate, which represents the mean

rate of evidence accumulation; and the diffusion coefficient,

which represents the variance around this accumulation. The

DDM has been widely used to model behavior in tasks that rely

on the temporal integration of information (Ditterich, 2006; Link

and Heath, 1975; Mazurek et al., 2003; Ratcliff and McKoon,

2008). This model yields a gamma-like distribution of RTs. In

parallel, a simulated RT distribution corresponding to a noninte-

grative (stochastic) model was also implemented by removing



Figure 3. Psychophysical Data from Experiment 2 Are Consistent with Drift-Diffusion Models of Integration

(A) Group-averaged plots of performance accuracy demonstrate successful categorization of both odorants at each end of the odor mixture spectrum. Color

wheels along the abscissa reflect relative proportions of eugenol-to-citral in each mixture (100% eugenol on the left; 100% citral on the right). The mean

psychometric curve fit (blue line) was averaged across each subject’s individually fitted sigmoidal function. Red curve, ± SEM.

(B) Group-averaged chronometric data demonstrate faster response times (RTs) for easier odor mixtures. Mean curve fit averaged across each subject’s

individually fitted parabolic function.

(C) A histogram plot of the RT data, binned into 2 s intervals, corresponds well to the gamma-like RT distribution arising from an integrative DDM (blue line), as

opposed to the exponential RT distribution arising from a nonintegrative (stochastic) model (gray line).

See also Figure S1.
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the integrator function from the DDM, yielding an exponentially

decaying RT distribution. Comparison of these simulated RT

distribution functions to the actual measured data (Figure 3)

clearly demonstrates that the integrator model provides a better

account of behavior than the nonintegrative model, and implies

that the human olfactory system integrates sensory information

over time in order to improve identification accuracy.

Decision Bounds Collapse over Time
An important follow-up question to the above analysis is how

choice accuracy on this task relates to predictions from the

DDM, andwhether it can be used to demonstrate that the system

benefits from increased sampling. Of note, if the decision-bound

criterion is fixed over time (though see next paragraph), then in an

open-response-time task, the accumulated information at the

time of decision will be perceived to be of the same quality—

upon reaching the decision bound—regardless of the time taken

to reach that decision. It therefore follows that in an open-sniff

task, accuracy for a given odor mixture will be the same for all

observedRTs. That being said, formore difficult mixtures, overall

accuracy may actually be lower, because the general quality of

stimulus information is weaker, and subjects will have a greater

probability of making the wrong choice. Plots of response accu-

racy conditional on number of sniffs (Figure 4A) demonstrate this

mean reduction in decision accuracy for the hardest mixtures.

Interestingly, with regard to whether or not decision bounds

are fixed, the fact that choice accuracy slightly declined for

longer trials (compare three-sniff to five-sniff trials in Figure 4A)

implies that subjects might be willing to accept a lower quality

of evidence with the passage of time. This observation would

be consistent with decision bounds that collapse over time,

and such mechanisms have been hypothesized to occur in the

visual system (Resulaj et al., 2009). Indeed a DDM simulation

model with collapsing bounds closely reproduced behavioral

accuracy on the open-sniff task from Experiment 2 (Figure 4B).

Given these findings, we performed a new analysis to test
whether the fixed-bounds (standard) or collapsing-bounds

DDM (cbDDM) provided a better fit to the behavioral data. A

mean cumulative distribution function (CDF) of the RTs from

the standard DDM was significantly different from the mean

CDF of behavioral RTs (p < 0.001; Kolmogorov-Smirnov test),

indicating that this model was a poor fit to the data (Figure 4C).

However, the mean CDF of the cbDDM did not differ significantly

from the mean CDF of behavioral RTs (p = 0.1) (Figure 4D),

demonstrating that a DDM with collapsing bounds more accu-

rately reflects the behavioral data than one with fixed bounds.

Importantly, in terms of model selection, the cbDDM provided

a statistically stronger fit than the standard DDM, even after

adjusting for the number of free parameters using the Bayesian

Information Criterion (BIC) (BIC: 7.61 ± 1.06; p = 0.005, t test;

p = 0.002, Wilcoxon sign-rank test). Model simulations also re-

vealed that the cbDDM provided a significantly better fit than

a stochastic model with collapsing bounds, when tested against

our data from 11 subjects (p = 0.0044, paired t test).

Temporal Evidence Integration Is Unique to OFC
With data across two experiments suggesting that humans

integrate perceptual evidence over time, we next sought to char-

acterize where this integration occurs in the brain. Although

information might be expected to accumulate linearly over

time, when the cbDDM is used to simulate the mean accumu-

lated signal for trials of different lengths, it is evident that the

time course of integration is nonlinear, increasing more rapidly

closer to the time of decision (Figure 5A). Therefore, the behav-

iorally derived parameters from the cbDDM (including drift

rate, diffusion coefficient, and collapse rate) were used, on

a subject-by-subject basis, to model the expected temporal

profile of information integration. These in turn were used to

generate subject-specific fMRI regressors of interest in an

event-related finite-impulse-response (FIR) model, enabling us

to characterize within-trial temporal changes in the fMRI time

series. Note that the absolute value of the integration profile
Neuron 75, 916–927, September 6, 2012 ª2012 Elsevier Inc. 919



Figure 4. Longer Trial Length Is Associated with Collapsing Decision Bounds

(A) Behavioral accuracy conditional on sniff number is shown for four different mixture difficulty levels (100%: red; 87.5%: green; 75%: blue; 62.5%: purple), from

the open-sniff paradigm in Experiment 2. Data are averaged across subjects and across mixture difficulty (e.g., 87.5% lemon trials and 87.5% clove trials

represented as 87.5%).

(B) Model simulation of a collapsing-bounds DDM resembles the behavioral profiles in (A), demonstrating that, for the same mixture difficulty level, choice

accuracy declines with longer trials.

(C) Cumulative distribution functions (CDFs) of the behavioral RTs (blue) significantly differed from the CDF of modeled RTs (red) based on a fixed-bounds DDM

(p < 0.001; Kolmogorov-Smirnov test; two-sample). Mean, solid lines; ± SEM, dashed lines.

(D) In contrast, no significant difference was observed between the CDF of behavioral RTs and the CDF of modeled RTs from the collapsing-bounds DDM

(p > 0.05).
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was used to represent evidence toward either decision bound,

and only trials of three, four, and five sniffs were included to

ensure that sufficient numbers of trials across subjects were

available for estimating the imaging data.

This approach revealed significant bilateral activity in centro-

medial OFC (p < 0.05 small-volume corrected), near the ante-

rior-medial portion of area 13l, (following the nomenclature of

Ongür et al., 2003), and situated within the putative human olfac-

tory OFC (Gottfried and Zald, 2005) (Figure 5B). To characterize

the temporal profile of these activations as a function of trial

length, deconvolution techniques (Glover, 1999; Zelano et al.,

2009) were used to remove the low-pass effect of the fMRI

hemodynamic response function on the mean time series in

OFC. These plots show that activity increased at slower rates

for longer trials, peaked at the time of decision, and had lower

peaks for longer trials, suggestive of collapsing bounds (Figures

5C and 5D). Statistical analyses demonstrated a main effect of

time (sniff number) in OFC (right mOFC, p = 0.007; left mOFC,

p = 0.021; repeated-measures ANOVA) and a significant interac-

tion between condition and time in right mOFC (p = 0.032) and at

trend level in left mOFC (p = 0.081), demonstrating faster rates of

increase for shorter trials. Additionally, a leave-one-subject-out

cross-validation technique (Kriegeskorte et al., 2009) was used

to obtain unbiased estimates of peak voxel activity in left and

right OFC, and resulted in similar time series responses (Fig-

ure S2; Supplemental Experimental Procedures). These patterns

conform closely to the temporal profiles predicted from the

cbDDM model (cf. Figure 5A) and are consistent with olfactory

information accumulation in human OFC.

Of note, the only other significant activations (at p < 0.001

uncorrected) from this fMRI model were in anterior OFC, anterior

cingulate cortex (ACC), and cerebellum. In these instances, the

fMRI time series plots from these regions (Figure 6) bear little

resemblance to the integrating profiles in central OFC. Rather,
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these data show that activity ramped up either at the same

time, independent of trial length (e.g., anterior OFC and cere-

bellum), or at the same rate for all RTs (e.g., ACC). Indeed, while

analyses of these time series demonstrate amain effect of time in

each region (all p < 0.003), none of these regions exhibited

a significant interaction of condition and time (all p > 0.26).

Thus, these areas are likely involved in other aspects of odor

information processing, whereas only the centromedial OFC

appears to encode the accumulation of information over time

in a manner consistent with model-derived integration profiles.

Ongoing Sensory Report in Posterior Piriform Cortex
In addition to theOFC, the piriform cortex has been implicated as

a higher-order olfactory area involved in odor-quality coding,

categorization, and discrimination in a variety of animal electro-

physiological (Barnes et al., 2008; Schoenbaum and Eichen-

baum, 1995; Tanabe et al., 1975) and human imaging (Gottfried

et al., 2006; Howard et al., 2009; Small et al., 2008; Zelano et al.,

2009) studies. Akin to the hierarchical electrophysiological

dissociations between area MT and area LIP during visual

perceptual decision-making, we hypothesized that posterior piri-

form cortex (pPC) generates an ongoing report of olfactory

signals, whereas OFC integrates these signals. In order to deter-

mine the role that pPC plays in olfactory decision-making, we

constructed anatomically defined regions of interest (ROIs) for

both regions and then extracted and deconvolved the time series

averaged across all voxels in each ROI for each subject.

In pPC the magnitude of activity peaked shortly after trial

onset, and remained relatively sustained up until the time of

decision (Figures 7A and 7B). Notably, trial duration had little

effect on the time to peak: three-sniff, four-sniff, and five-sniff

trials all reached their peaks by the second sniff. Analysis of

the time series showed a main effect of time (p < 0.001), but no

condition-by-time interaction (p = 0.592), demonstrating that



Figure 5. Odor Evidence Integration in

Medial OFC

(A) Idealized time series profiles of evidence inte-

gration (mean, solid lines; SEM, dashed lines)

for three-, four-, and five-sample (sniff) trials were

generated from behaviorally derived parameters

from each subject’s collapsing-bounds DDM.

(B) Regression of the fMRI time series data against

the integration profiles in (A) revealed significant

activation in medial OFC (p < 0.05, small-volume

corrected). Images overlaid on coronal (top) and

axial (bottom) sections of the mean T1-weighted

MRI scan (display threshold, p < 0.005).

(C and D) Group-averaged deconvolved fMRI time

series (pooled across all significant voxels, p <

0.005) from right (C) and left (D) OFC demonstrate

that orbitofrontal activity increases over time and

peaks at the time of decision. All activations are

normalized to odor onset. *p < 0.05; y, p < 0.01,

differences from baseline. Error bars: SEM.

See also Figures S2, S3, and S5 and Table S1.
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within-trial activity did not change at different rates, by condition.

Thus, pPC appears to represent ongoing sensory information

rather than integrate it for the purpose of perceptual decision-

making. Activity from an anatomically defined ROI of anterior

piriform cortex was also extracted, though its time series profile

conformed neither to a representation of ongoing sensory infor-

mation nor to the integration of this information (Figure S3).

By comparison, and in line with the fMRI time series data

(Figure 5), condition-specific activity in OFC peaked only at the

time of decision (Figures 7C and 7D). These time-course profiles

also show that OFC activity gradually increased in magnitude up

to the time of decision. As predicted by the cbDDM, for trials in

which subjects took more time to make a decision, the response

in OFC generally increased with a shallower slope and com-

menced later in the trial. There was both a main effect of time

(p = 0.024) and a condition-by-time interaction (p = 0.027),

demonstrating faster rates of increase for shorter trials. Similar

OFC time series profiles were observed when the analysis was

restricted either tomixtures of the same difficulty level (Figure S4)

or to correct trials only (Figure S5), supporting the rationale

behind combining trials of different stimulus difficulty and further

confirming DDM predictions.

DISCUSSION

The current results suggest that humans integrate olfactory

perceptual evidence in order to enhance perceptual decision-
Neuron 75, 916–927, S
making. These findings were supported

across two independent psychophysical

experiments. First, in a fixed-sniff para-

digm, choice accuracy improved when

subjects were given an opportunity to

make more sniffs, especially for difficult

odor mixtures (Figure 1C). This behavioral

profile accords with temporal integration.

Second, in an open-sniff paradigm, a

drift-diffusion model of integration ac-
counted for the resulting RT distributions significantly better

than did a nonintegrative (stochastic) model (Figure 3D). This

effect was particularly true when the simulation model incorpo-

rated decision bounds that collapsed over time (Figure 4).

The use of two complementary paradigms was necessary to

establish that information accumulates in the human olfactory

system. In the open-sniff paradigm, subjects only make a choice

once a decision bound is reached, effectively clamping perfor-

mance accuracy. This has the benefit of generating RT distribu-

tions that can be compared to model-derived RT distributions,

such as the DDM, to provide evidence for or against integration.

However, the open-sniff task is unable to demonstrate the type

of choice-accuracy profiles that would be in keeping with inte-

gration. On the other hand, in the fixed-sniff paradigm, subjects

make a response at a specified time, effectively disengaging

their choices from a decision criterion. This has the potential

benefit of eliciting behavioral accuracy profiles reflective of inte-

gration over time, although the resulting RT distributions (arising

from imposed trial lengths) cannot be used to model integrative

processingmechanisms. Together these two paradigms provide

converging evidence that the human olfactory system, like other

sensory systems, can integrate perceptual information.

Brain imaging data highlighted a corresponding fMRI sig-

nature of temporal integration in the OFC. Using a regionally

unbiased approach, we found that odor-evoked activity in both

right and left medial OFC conformed closely to integration

profiles as predicted from the DDM (Figure 5). Specifically,
eptember 6, 2012 ª2012 Elsevier Inc. 921



Figure 6. Time Series Profiles of Increasing

fMRI Activity in Other Brain Areas

Correlations between the integration model and

the FIR imaging data set identified several other

regions with fMRI activity that increased over time

(p < 0.001 uncorrected), including right anterior

OFC (A), anterior cingulate cortex (B), right lateral

cerebellum (C), and medial cerebellum (D). These

time series, averaged across subjects (mean ±

SEM, deconvolved) are not compatible with

temporal integration, as predicted by the DDM.

See also Table S1.
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time series increased at slower rates for longer trials, peaked at

the time of decision, and had lower peaks for longer trials. Of

note, the anatomical locus of this response overlapped with

the putative olfactory projection site in human OFC (Gottfried

and Zald, 2005). Ramp-like activity patterns were also seen in

cerebellum, ACC, and anterior OFC (Figure 6). However, none

of these other regions exhibited a time-course profile in accor-

dance with integration. These findings suggest that the medial

OFC is selectively involved in the accumulation of olfactory

perceptual evidence.

By comparison, fMRI activity in pPC reached a plateau soon

after odor onset, and trial duration had negligible impact on the

activation slopes (Figure 7). The distinct temporal response

patterns in pPC andOFC suggest that olfactory system process-

ing can be conceptualized as a two-stage mechanism in which

odor evidence is represented in pPC and integrated in OFC. In

elucidating a neurobiological mechanism that explicitly links

sensory inputs with perceptual states and decision criteria, our

findings help fill an important empirical gap in the human imaging

literature on perceptual decision-making, and they bring models

of human perceptual decision-making closely in line with animal

single-unit recording studies. The functional dichotomy between

pPC and OFC mirrors the respective roles played by areas MT

and LIP in the encoding and integration of visual perceptual

evidence in monkeys (Britten et al., 1992; Shadlen and News-

ome, 2001), implying that common general mechanisms

subserve perceptual decision-making across different sensory

domains (Romo and Salinas, 2001).

Of course, there are important differences between our para-

digm and more classical paradigms such as the visual motion

discrimination task. Nevertheless, it is worth pointing out that

conceptually, the dot-motion task and our task align in an impor-
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tant way: at any given point of time, the

central nervous systemprocesses a noisy

signal, whether this happens to be a snap-

shot of moving dots or a sniff of an odor

mixture. Ideally, both moving dot patterns

and odor quality information could be

identified perfectly without any integra-

tion to speak of. For example, seeing

a single pair of dots moving in the same

direction should perfectly disambiguate

the direction, yet intrinsic limitations

originating in nervous system processing
means that the brain has noisy access to this signal and therefore

lacks the precision to arrive at a perceptual decision from just

a brief glimpse (see, for example, Tassinari et al., 2006 and their

Figure 3). That the signal fidelity of information (evidence) in the

brain is not perfect is ultimately what gives rise to the need for

integration. That being said, it is true that odor stimuli in general

cannot be controlled nearly as precisely as can visual stimuli, nor

are the stimulus adaptation characteristics as well defined in the

olfactory system, thereby introducing less quantifiable stimulus

noise. As mentioned above, a distinct advantage of using odors

is that integration is relatively slow, which makes it ideal for visu-

alizing with fMRI techniques.

Given that the DDM makes no specific assumptions about

what is being integrated, it is important to ask what the mOFC

signal represents. In a 2AFC task, this noisy sensory information

gives rise to a probability that one or the other of the two percep-

tual categories dominates the stimulus. At each sampling step,

it is this probability that is integrated with past-accumulated

probabilities. Thus, in the framework of the DDM, signal accumu-

lation in mOFC can be interpreted as the temporal integration

of perceptual evidence toward a criterion bound, which when

reached results in a decision. Interestingly, our data suggest

that in OFC, these bounds collapse over time, underscoring

a mechanism by which subjects are willing to accept an increas-

ingly lower quality of sensory information to arrive at a decision.

The idea of adaptable decision bounds, especially for error-

prone trials, is supported by recent psychophysical data

showing that new bound settings in the postdecision period

may be used to either affirm or change a decision (Resulaj

et al., 2009). Of course, the tendency for decision bounds to

change will depend on task demands, with an emphasis on

accuracy favoring bound constancy, and an emphasis on speed



Figure 7. Dissociable Representations of

Odor Content and Odor Evidence Integra-

tion in pPC and OFC

(A and B) An ROI analysis depicts the deconvolved

time series of fMRI activity in posterior piriform

cortex (pPC), aligned either to odor onset (A) or to

response choice (B). These profiles demonstrate

an early response take-off in pPC after odor onset

and an early time to peak, with activity levels that

remain sustained throughout the odor presenta-

tion period.

(C and D) In contrast, an ROI analysis of the

deconvolved time series from olfactory OFC, also

aligned to odor onset (C) or response time (D),

shows ramp-like responses that peak at the time

of decision, with shallower slopes for longer trials.

Data at each time point for each sniff-length

condition are averaged across subjects (mean ±

SEM). All activations are normalized to odor onset.

*p < 0.05; y, p < 0.01, differences from baseline.

See also Figure S2.
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favoring bound collapse. These results highlight an intrinsic

mechanism of speed-accuracy tradeoff, whereby the brain natu-

rally relaxes decision criteria to avoid the loss of time associated

with noisy evidence.

Investigations into the role that OFC plays in olfactory

decision-making have been previously carried out in rodents.

In a study by Kepecs and colleagues (Kepecs et al., 2008),

single-unit recordings from OFC were made in awake, behaving

rats engaged in a 2AFC discrimination task involving mixtures of

two pure odorants. On each trial, rats sampled an odormixture at

a central port, and then responded by moving to either a left or

right choice port, where it waited to receive a water reward

for a correct response. Interestingly, during this postchoice,

reward-anticipation period, orbitofrontal neurons fired more

strongly on incorrect (versus correct) trials, as if OFC could

gauge the quality of the decision even prior to receipt of reward,

and neural responses in OFC mirrored a behavioral measure of

decision confidence across mixture stimuli. These findings

suggest that rodent OFC may encode confidence, whereby

less confidence is associated with higher OFC activity. Indeed

our OFC activity could possibly be interpreted as a confidence

signal, insofar as increased evidence could theoretically be

paralleled by an increase in confidence, but our study was not

designed to address this specifically.

The idea that the signal in OFC reflects evidence integration

toward a probability bound partially rests on ruling out other

alternatives. For example, associative learning studies show

that in the period leading up to reward delivery, OFC activity

increases with reward magnitude, reward delay, and effort cost

to earn reward (Kennerley et al., 2009; Roesch and Olson,
Neuron 75, 916–927, S
2003, 2004; Schoenbaum et al., 1998;

Schoenbaum and Eichenbaum, 1995;

Tremblay and Schultz, 1999). This

begs the question of whether a build-up

of reward-related expectancy signals

toward a decision could underlie our

findings. However, subjects in our study
were not rewarded for correct trials or given response feedback.

Therefore, in the absence of explicit access to value or outcome

information, the generation of a signal that encoded, and

integrated, expected value over time would likely have been

negligible.

Another alternative is that the within-trial increase in OFC

activity represents a motor readiness signal, or an impetus to

act, that increases over time as subjects converge on a decision.

These ‘‘myoeconomic’’ arguments (Maunsell, 2004; Roesch and

Olson, 2003, 2004) contend that the neuronal signatures of

reward value in areas such as LIP or premotor frontal cortex

more accurately represent motivational and motor preparatory

responses engaged as an effect of reward anticipation. Again,

because our subjects received no feedback or reward, there

would not have been an opportunity for reward-based induction

of motor readiness signals. Finally, whether the OFC signal

reflects attention or arousal effects seems unlikely, because

more difficult mixtures (more attentionally demanding) elicited

the same magnitude of OFC activity as less difficult mixtures

(see Supplemental Experimental Procedures).

The identification of olfactory evidence integration in OFC

broadly accords with findings from a wide range of studies

showing that integrative mechanisms are at the core of much

of OFC function, including multisensory integration, associative

(cue-outcome) learning, and experience-dependent perceptual

plasticity. It also fits soundly with its suggested role in integrating

information about unique outcomes in real time (Schoenbaum

and Esber, 2010; Takahashi et al., 2009), particularly when

experience alone is insufficient to formulate predictions about

future events. Our new findings highlight the capacity of OFC
eptember 6, 2012 ª2012 Elsevier Inc. 923
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to maintain and integrate perceptual evidence online, enabling

the olfactory system to extract meaningful perceptual signals

from noisy inputs. As noted above, the fact that OFC stands at

the transition between the olfactory system, limbic and paralim-

bic areas, and prefrontal cortex (Ongür et al., 2003) has impor-

tant implications for understanding its unique role in higher-order

control of odor-based behavior. The temporal instantiation of an

odor percept in OFC could serve to orchestrate downstream

effector systems, providing network coordination of autonomic,

affective, and motor preparatory responses. In turn, centrifugal

inputs from prefrontal executive areas to OFC could help regu-

late the decision boundary settings for integration. It remains

to be determined whether orbitofrontal integration of perceptual

evidence also plays a guiding role in nonolfactory paradigms of

perceptual decision-making.

EXPERIMENTAL PROCEDURES

Subjects

Ten subjects (six women; age 23–27 years) participated in Experiment 1 and 12

subjects (six women aged 22–29 years) participated in Experiment 2. All were

right-handed, without known neurological or olfactory deficits, and all

provided informed consent to take part in the study, which was approved by

the Northwestern University Institutional Review Board. One subject was

excluded from Experiment 2 due to poor behavioral performance.

Odorants and Odorant Delivery

Two odorants were selected that were relatively familiar, similar in pleasant-

ness, and easily discriminable from each other: eugenol (‘‘clove’’) and citral

(‘‘lemon’’). All subjects were highly familiar with these odor categories, and

were introduced to both stimuli prior to the main experiment so that they

could easily associate names with the stimulus percepts. Odorants were

diluted in diethylphthalate and matched for perceptual intensity (concen-

trations: citral, 50% v/v; eugenol, 33% v/v). Odorants were presented

using an eight-channel MRI-compatible air-dilution olfactometer (airflow,

10 L/min), permitting precise delivery of two-odorant mixtures through a nasal

mask. The ratio of the two odorants was modified by adjusting the relative

proportion that each odorant channel contributed to the total airflow. Nine

different odorant mixtures were used, morphing between 100% eugenol

and 100% citral in 12.5% steps. Follow-up analyses ensured that odor inten-

sities were the same across this mixture continuum and did not change during

a trial or over the course of the experiment (Supplemental Experimental

Procedures).

Respiratory Monitoring

Subjects were instructed to keep their sniffs as similar as possible for each

trial. Sniffs weremeasuredwith a spirometer attached to the nasalmask during

Experiment 1, and with a pair of breathing belts affixed around the chest and

abdomen (Howard et al., 2009) during Experiment 2. The output from

these devices was processed using a PowerLab 8/30 data acquisition system

(ADInstruments). Mean inspiratory volume in Experiment 2 did not significantly

differ across odor mixtures (F3.24,32.36 = 1.356; p = 0.273; repeated-measures

ANOVA) or across sniff number (F1.43,14.25 = 1.576; p = 0.238, three-, four-, and

five-sniff trials).

Experiment 1 Paradigm

Subjects performed a two-alternative forced-choice (2AFC) task, in which they

indicated which of two olfactory perceptual qualities (lemon and clove) was

dominant in an odorant mixture (citral and eugenol). Subjects completed

four blocks of 36 trials in which each of the nine odor mixtures was presented

four times in a random order (144 trials in total). At the beginning of each block,

subjects were instructed to take either one, two, or three sniffs (‘‘fixed-sniff’’

blocks), or as many sniffs as needed to make a reasonably confident decision

regarding which one of the odorants dominated the stimulus mixture (‘‘open-
924 Neuron 75, 916–927, September 6, 2012 ª2012 Elsevier Inc.
sniff’’ blocks). The order in which these blocks were completed was

counter-balanced across subjects. Each trial began with a visual countdown

cue (‘‘Prepare to sniff,’’ ‘‘3,’’ ‘‘2,’’ ‘‘1’’) presented on a computer monitor. A sniff

cue (red cross-hair) was then displayed for 667 ms, and recurred with a

stimulus-onset asynchrony of 2 s to prompt additional sniffs, as necessary.

On the open-sniff trials, subjects made a binary choice with the left or right

keyboard arrow once they had accumulated sufficient evidence that clove or

lemon was dominating the mixture. Subjects were instructed to emphasize

accuracy, ensuring that a decision would be made only when sufficient

evidence had been accumulated to the criterion threshold. This was the

primary instruction given to the subjects. They were incidentally reminded

that upon reaching their decision, they should respond by button press as

quickly as possible, so that recorded decision times closely reflected the

time that they reached their decision.

At the end of each trial, subjects also made a perceptual rating on a visual

analog scale ranging from pure clove to pure lemon, by moving a cursor

from the midpoint of this continuum (representing equal proportions of the

two odors). For the fixed-sniff trials, this estimate yielded binary choice

measures according to which side of the midpoint the rating fell on. The next

odor was presented 18 s after the end of the previous odor presentation, to

minimize olfactory habituation. Binary decisions, analog ratings, and odor

presentation times were recorded for each trial. Olfactory and visual stimuli

presentations were controlled using Cogent2000 (http://www.vislab.ucl.ac.

uk/cogent.php).

Experiment 2 Paradigm

This was the same as Experiment 1, except that all trials were of the open-sniff

type. Because this experiment took place in an MRI scanner, subjects re-

sponded using one of two button boxes held in either hand, one representing

clove, the other lemon (hand side counter-balanced across runs). These

buttons were also used to make the perceptual rating along a visual analog

scale. Subjects were not told the outcomes of their decision, to prevent

cognitive feedback or reward processing from confounding the neuroimaging

findings. Sniffs were visually cued, as before, but were back-projected from

a computer monitor onto a tilted mirror that was affixed to the MRI headbox

in front of the subject’s eyes. The letters ‘‘L’’ and ‘‘C’’ (lemon and clove)

were presented on opposite sides of the screen to indicate which side repre-

sented which odor, and this was counterbalanced across subjects and

sessions. Sniff rate was again set at two seconds in order to time-lock this

to the data-acquisition rate of theMRI scanner (2,000ms; see below). Subjects

completed two runs of 36 trials on 2 consecutive days (four runs total) to

minimize subject fatigue and odor habituation. Each of the nine mixtures

was presented eight times each day (144 trials in total over 2 days), and trials

were arranged in pseudorandom order such that every mixture preceded

every other mixture one time to minimize effects of mixture sequence.

Drift-Diffusion Modeling and Collapsing-Bounds Analysis

We determined the drift rate and the diffusion coefficient for each subject and

condition by maximizing the probability of all experimentally observed

responses, consisting of choices and RTs, given the drift and diffusion param-

eters. We assumed a symmetric drift-diffusion process (Resulaj et al., 2009),

i.e., the same amount of information in favor of a hypothesis should be neces-

sary for both lemon and clove choices. Moreover, given knowledge that drift

rate, diffusion coefficient, and decision bound overspecify the model (whereby

a doubling of these variables leads to identical behavior), we arbitrarily set the

fixed bounds at ±1. The remaining two parameters of the model, drift and

diffusion, define a joint probability distribution of choices and RTs that we

calculated using the method of images. We then used a multidimensional

unconstrained nonlinear minimization function (‘‘fminsearch’’ in Matlab) to

maximize the log probability of the actual RTs and choices. This led to a

maximum-likelihood estimate of drift and diffusion, which were used to char-

acterize behavior.

In order to test whether the response time data are better explained by

collapsing bounds than by the standard fixed-bound DDM, an additional

parameter of bound collapse rate was added to the DDM. The bounds were

allowed to collapse linearly from 1 and �1, until they reached zero, at a rate

determined by the model. Both models produced log-likelihood scores of

http://www.vislab.ucl.ac.uk/cogent.php
http://www.vislab.ucl.ac.uk/cogent.php
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the model fit to the data, which were then compared to each other. Log-likeli-

hood scores for a collapsing-bound stochastic model were also compared

with those of the collapsing-bound DDM.

Accuracy Modeling

The cbDDM randomly samples simulated ‘‘information’’ that has a normal

distribution with a mean (signal) and variance (noise). It then integrates this

information from trial to trial, and if the sum of the information crosses one of

the decision bounds (arbitrarily chosen to start at ±1), a choice is recorded

and the simulated trial ends. In this model, a value of 0 represents information

with no evidence for either choice; if the integrator reached the positive bound,

the trial was counted as a correct choice, and if it reached the negative bound,

the trial was counted as an incorrect choice. The cbDDM-derived drift rate

(signal), diffusion coefficient (noise), and bound collapse rate were used to

simulate the decision process for each odor-mixture difficulty, for each

subject, yielding accuracy for different RTs.

Model-Based Integration Profiles

Integration profiles are nonlinear, due to a selection bias that skews which

trials are more likely to cross the decision bound: trials in which integrated

information has deviated farther from baseline are more likely to cross the

decision bound as a result of the next sample; trials closer to baseline will

be more likely to require more than one additional sample to reach the bound.

Such bias results in an accumulation of information that on average is curvi-

linear, with a later take-off from zero for longer trials. Thus, to calculate

temporal accumulation profiles (for regression against the fMRI data), we input

drift rate (signal), diffusion (noise), and bound collapse rate into the DDM to

generate time series of mean integrated evidence for each mixture group

and each subject. We then generated mean time series for each condition

(three, four, and five-sniffs) by weighting these mixture-based time series

according to the relative number of trials for each sniff number (cf. Figure 5A).

fMRI Data Acquisition

Functional imaging was performed using a Siemens Trio 3T MRI scanner to

acquire gradient-echo T2*-weighted echoplanar images (EPIs) with blood-

oxygen-level-dependent (BOLD) contrast, using a 12-channel head coil and

an integrated parallel acquisition technique known as GRAPPA (GeneRalized

Autocalibrating Partially Parallel Acquisition) to improve signal recovery in

medial temporal and basal frontal regions.

Image acquisition was tilted 30� from the horizontal axis to reduce suscep-

tibility artifact in olfactory areas. Four runs of �450 volumes each were

collected in an interleaved ascending sequence (24 slices per volume).

Imaging parameters were as follows: repetition time (TR), 2 s; echo time,

20 ms; slice thickness, 2 mm; gap, 1 mm; in-plane resolution, 1.72 3

1.72 mm; field of view, 220 3 206 mm; matrix size, 128 3 120 voxels.

Whole-brain high-resolution T1-weighted anatomical scans (1 mm3) were

acquired after functional scanning, coregistered to the mean functional image,

normalized, and averaged across subjects to aid in localization.

fMRI Data Preprocessing

Data preprocessing and analysis were achieved using SPM5 (http://www.fil.

ion.ucl.ac.uk/spm/). After the first six ‘‘dummy’’ volumes were discarded to

permit T1 relaxation, images were spatially realigned to the first volume

of the first session and slice-time adjusted. This was followed by spatial

normalization to a standard EPI template, resulting in a functional voxel size

of 3 mm3, and smoothing with a 6-mm Gaussian kernel, aiding multisubject

comparisons.

fMRI Time Series Analysis

In Experiment 2, two different fMRI models were implemented to investigate

the neural basis of olfactory evidence accumulation in the human brain.

Three-, four-, and five-sniff conditions were selected for analysis because

these contained sufficient numbers of trials across each subject for meaningful

comparisons to be made. This method also ensured that data were not simply

averaged across subjects with different response times, which would have

introduced smoothing artifacts in the time-course data. It is important to reit-
erate that the behavioral data (from which drift rates and integrator models

were computed) were collected simultaneously during fMRI scanning.

Finite Impulse Response Analysis

To investigate how region-specific fMRI time courses related to evidence inte-

gration, the preprocessed event-related fMRI data were analyzed using a finite

impulse response (FIR) model, enabling us to model temporal integrative

profiles. Selected conditions (three-, four-, and five-sniff trials) were specified

using 14 time bins each of 2 s duration. Another condition including trials of all

other sniff numbers was also included, as were six movement-related vectors,

derived from spatial realignment. The data were high-pass filtered (cutoff,

128 s) to remove low-frequency drifts, and temporal autocorrelations were

modeled using an AR(1) process.

Model estimation was carried out in two stages. First, subject-specific beta

values (regression coefficients) were estimated for each time point and

condition in a voxel-wise manner. From these first-level models, brain regions

involved in evidence accumulation were identified by correlating fMRI

activation time courses with model-based temporal profiles that estimated

the amount of evidence integrating at each time point. These time series

were convolved with a canonical hemodynamic response function (HRF)

and then used to weight each of the 14 fMRI time points for each condition

of interest (three, four, and five sniffs) with its corresponding integration

value, yielding a contrast image, or statistical parametric map, of temporal

integration.

In a second (random-effects) stage, the resulting subject-specific contrast

images were entered into a one-sample t test, constituting a group-level statis-

tical map, to identify brain regions potentially exhibiting temporal integration.

All voxels with significant activation (p < 0.001 uncorrected) were considered

for further analysis. For each region identified in this manner, time series plots

were computed by averaging fMRI activity across all contiguous voxels signif-

icantly activated at p < 0.005 for each of the 14 time bins. Reported significant

activations in OFC were corrected for multiple comparisons using small-

volume correction, based on spheres of 10 mm radius centered on previously

published coordinates (Gottfried and Zald, 2005).

Region-of-Interest Analysis

This approach allowed us to investigate how temporal activity varied in a pri-

ori regions of interest, including aPC, pPC, and OFC, which have been previ-

ously implicated in fMRI studies of olfactory perceptual processing (Howard

et al., 2009; Zelano et al., 2011). For this analysis, the realigned, slice-time

corrected, and normalized, but unsmoothed, fMRI data were used to obtain

raw time series on a voxel-by-voxel basis, thereby minimizing the influence of

neighboring voxels. ROIs were structurally defined on the subject-averaged

T1 structural scan using MRIcron (http://www.cabiatl.com/mricro/mricron/

index.html). For the putative olfactory OFC, a sphere of 10 mm radius was

drawn around the region’s locus (Gottfried and Zald, 2005), delimited to

gray matter using an MRIcron filter (threshold, 90–180; arbitrary units),

yielding a bilateral ROI of volume 5,184 mm3. Bilateral posterior and anterior

piriform cortex ROIs were defined using prior landmarks (Howard et al.,

2009; Zelano et al., 2011), yielding volumes of 2,106 and 1,485 mm3,

respectively.

ROI-specific time series were deconvolved using a regularized filter algo-

rithm (‘‘deconvreg’’ function in Matlab) to remove the low-pass filter properties

of the HRF. These deconvolved time series were then divided into trials of

different lengths. Mean time series were computed for all trials of the same

length from a given ROI. Each time series was Z-transformed for each subject,

using data from odor onset through the following 12 s, to include all relevant

time points for all trial lengths. Following this step, the time series were normal-

ized to activity at odor onset and linearly detrended. Mean activity was then

plotted across subjects by aligning either to time of odor onset or to time of

response (as in Figure 7).

Statistical Analyses

For analysis of the behavioral data, nonparametric statistics were used, as

follows: the Friedman test for more than two related samples, the Wilcoxon

sign-rank test for paired comparison between two samples, and the Kolomo-

gorov-Smirnov test for comparing actual and modeled RT distributions. All

data are presented as the mean ± SEM. Statistical testing of the fMRI data

and respiratory wave forms was implemented using one-tailed t tests (when
Neuron 75, 916–927, September 6, 2012 ª2012 Elsevier Inc. 925
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comparing activation to chance), two-tailed t tests (when comparing two

conditions), or ANOVAs (when comparing more than two conditions). Results

were considered significant at p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, one table, and Supplemental

Experimental Procedures and can be found with this article online at http://

dx.doi.org/10.1016/j.neuron.2012.06.035.
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