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ABSTRACT

This paper deals with the existence of bases of class C” of the kernel and the
image of a rectangular matrix function of ¢ real variables. Fundamental results on
this subject, extended from matrix functions to operator functions, have already been
established by 1. C. Gohberg and J. Leiterer, by means of general properties of
cocycles in algebras of operator functions. This paper was prepared independently,
and new elementary methods were found, using three tools of general interest: The
first is a condition which guarantees the existence of global solutions defined on RY of
problems possessing local solutions. The second is the property that every subset of
C™*" consisting of all the matrices of the same rank is analytically arcwise connected.
The third is the smoothness of the Moore-Penrose inverse of a matrix function of class
C?. Applications to equivalences of class C”, to linear equations on matrix functions of
class C”, to QR decomposition of class C”, and to simultaneous unitary diagonaliza-
tion of class C” of a basis family of projector functions are expounded. Several results
are established in the more general case of matrix functions defined on an open
subset of a Banach space. This paper suggests problems on the generalization of its
results from matrix functions to operator functions.

1. INTRODUCTION

The subject of this paper originates from the study of the nonlinear
matrix differential equation

X()X'(t)=X(t)X(t), teQcCR,
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and the results established here are likely to justify substitutions in matrix
differential equations of order p. For example, the above equation was solved
by 1. ]J. Epstein [4] by substituting into it

X(t)=P()J(t)P(1) ",

where J(t) is in Jordan form and P(#) is invertible. This substitution raises
the problem of the differentiability of P and J. This differentiability has been
established by J.-M. Gracia [8, Theorem 1] in the case where X is a matrix
function of class C' and of constant Segre characteristic, defined on an open
interval in R. The proof of the existence of P of class C” amounts to that of
the existence of bases of class C? of the spectral subspaces of X, which have
the form Ker(X ~ £1)", where £ is an eigenvalue of class C? of X.

The existence of bases of class C? of the kernel and the image of a square
matrix function of one real variable of constant rank and of class C” was
established by V. Dolezal [3], and this result has been improved in [16-18]. A
huge extension of this result to the case where A is an operator function
satisfying very usual hypotheses, and defined on a contractible compact
subset Q0 of RY, has been achieved by 1. C. Gohberg and ]J. Leiterer {7], by
means of general properties of cocycles in algebras of operator functions.
Moreover, these authors have shown that the hypothesis that  is con-
tractible is necessary if and only if ¢ > 3. In the more general case where ()
is compact, but not necessarily contractible, they have reduced the problem
from the differentiable case to the continuous case. The present paper was
prepared independently, and its main result, on the existence of bases of
class C” of the kernel and the image of a rectangular matrix function defined
on a not necessarily bounded domain 2 € RY, has been established by means
of new elementary methods.

The main result of this paper is established in Section 8, by means of
several preliminary results of general interest. Section 2 presents a general-
ization of a result of Y. Hirasawa [11] on the smoothness of the coefficients of
a linear combination of vector functions. Section 3 is devoted to the QR
decomposition of class C” of a matrix function. Section 4 deals with the
smoothness of the Moore-Penrose inverse of a matrix function and its
immediate applications. Section 5 furnishes an example of a 2 X2 hermitian
matrix function of rank 1 and of class C* defined on R*® \ {0}, whose image
does not possess any continuous basis, even when it is restricted to the unit
sphere. Section 6 establishes, under usual hypotheses, the existence of global
solutions defined on RY of problems possessing local solutions. Section 7
proves that every subset of C"*" consisting of all the matrices of the same
rank is analytically arcwise connected. Section 8 contains the main result of
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this paper, namely Theorem 8.2, which establishes the existence of orthonor-
mal bases of class C” of Ker A, Im A, (KerA)*, and (Im A)*, when A is a
rectangular matrix function of constant rank and of class C”, defined on a
domain C”-diffeomorphic to RY. As the results of [7], this theorem general-
izes that of V. DoleZal [3], by a quite different proof, and it answers the
question raised by T. Kato [12, footnote, p. 136]. Section 9 expounds
applications of this theorem, notably, on the general form of the solutions of
class C? of the linear matrix equation

A(t)X(t) = B(t);

on equivalences of class C” between matrix functions:
I. 0O
A=l deo. vwrw-vouar-,

on the rank decomposition of class C” of matrix functions of rank r:

A(H) =U)P(t), U(t)eCm . P(t)eC™, U(t)*U(t)=1,;

and on the simultaneous unitary diagonalization of class C” of a basis family
(P,,..., P) of projector functions:

P(t) = U(t)diag[0,1,,0] U(t)"".

This paper deals with rectangular matrix functions of class C” (p=
0,1,2,...,%) defined on a domain Q. In Sections 2, 3, 4, the domain  is an
open subset of a Banach space and the proofs are also valid in the analytic
case. In Sections 8 and 9, the domain Q is C”-diffeomorphic to R?, and the
proofs are not valid in the analytic case, because they are based on the
existence of partitions of unity of class C?, and the analytic continuation
theorem implies that analytic partitions of unity do not exist. However,
results on the analytic case have been established in [6], [12], [13], [15], [16],
and [17].

Through this paper, the standard notation and terminology of [13] are
used, with the following adjunctions and modifications:

*=lteR|t> 0}, Cr*n={MeC""frank M = r},
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I, and 0, respectively denote the identity matrix and the null matrix of
C"*" and (x|y) denotes the scalar product of any x,y in C". If S is a vector
subspace of C”, then Py & C"*" denotes the orthogonal projector on S. Let
Q be a set. If A is a map from Q into C™*", then A* denotes the map
t— A(t)* from  into C"*™ If A is a map from ( into C"*", then A™!
does not denote any inverse map of A from C}*" into (1, but denotes the
map t = A(#)”! from Q into C**". If A is a map from € into C™*", then
KerA and Im A do not denote the sets {t € Q|A(t) =0} and A(Q), but
denote the maps ¢t — Ker A(t) and ¢t — Im A(t) respectively. If for every
t €, S(t) is a vector subspace of C”, then S+ and P denote the maps
t— S(t)* and t > Py, respectively. If Q, and Q, are topological spaces,
then C°(£,,Q,) denotes the set of continuous maps from Q, into Q,. If
pe{l,2,...}, & F are R-normed spaces, and () is an open subset of [, then
cr(Q. P Aamnfpc the set of maps from Q into F of class €7, that is to say

(Q, wtes the set of maps from () into F of class C7, that is to say,
maps which are p times continuously Fréchet dlfferentlable (when [ is an
R-normed space and F is a C-normed space, then, relative to the Fréchet
differentiation, F is considcred as an R-Banach space), and finally,

@

CH(Q,F)= () C"(.F).

p=0

Through this paper, p €{0,1,2,...}U{x}.

2. SMOOTHNESS OF THE COEFFICIENTS
OF A LINEAR COMBINATION OF VECTOR FUNCTIONS

Let us recall the two following well-known lemmas, which will be
extensively used throughout this paper.

Lemma 2.1, Let A€ C™"*", Then

(@) KerA =(Im A®)™" and Im A = (Ker A*)™*;
(b) Ker{A*A)= Ker A and Im(AA*)=Im A;
(c) rank(A*A) = rank(AA*) = rank A = rank A*.

Proof. See [2, Propositions 0.2.1 and 0.2.2, p. 31]. [ ]
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Lemma 2.2 (Expression of the unique solution of the linear matrix
equations AX = B and XA = B in the full rank case).

(a) Let A€ C™ ", BEC™™*, and X € C"**. Then
AX=B & X=(A*A) 'A*B and InBCImaA.

(b) Let A€C**, BEC**", and X € C**™. Then

XA=B < X=BA*(AA*)"' and KerA CKerB.

Proof. (a): By Lemma 2.1(c), (A*A) is invertible. On the other hand, it
is well known that Im B € Im A if and only if there exists Y € C*** such that
B = AY, which implies (a).

(b): By (a) applied to A*, B*, and X*,

A*X*=B* o X*=(AA*)"'AB* and Im B* CIm A*.

On the other hand, by Lemma 2.1(a), Im B* C Im A* if and only if Ker A C
Ker B. Hence, the conclusion follows. [ |

The following theorem generalizes the theorem of [11], with a simpler
proof.

Tureorem 2.3 (Smoothness of the coefficients of a linear combination of
vector functions). Let Q be an open subset of an R-Banach space. Let
b,a,...,a,€CQ,C™), and for every t € Q, let x (t),...,x (t) € C be such
that b=x,a,+ - +x,a, and a(t),...,a,(t) are linearly independent, for
everyt € Q. Then x|,...,x, € C?(Q,0).

Proof. Let

A=[ar 4], x=

Then A is of class C”, of rank n, and Ax = b. By virtue of Lemma 2.2(a),

x=(A*A) " 'A*b e CP(Q,C"). [
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3. QR DECOMPOSITION OF CLASS C*
OF A RECTANGULAR MATRIX FUNCTION

Prorosition 3.1 (Gram-Schmidt orthonormalization of class C?).  Let Q
be an open subset of an R-Banach space. Let a,,...,a, € C’(Q,C™) be such
that at every point t € Q, a(t),..., a,(t) are linearly independent. Then there
exists a unique family of vector functions u,,...,u, € C*(Q,C™) such that for
every t€Q, i,j<(1,...,n},

span{al(t),...,a:(t)} = span{u,(t),...,u ()},

<ui(t)|uj(t)>=6ij> <ai(t)’ui(t)>eRi<'

Proof. 1t is easy to check by induction that a family (u,,...,u,) pos-
sesses the above properties if and only if for every t € Q, j€{1,...,n},

Uj(t)
O ool

where [[v]| denotes (v|v)!? for every v € C™, and

vi(t)=a,(t)+#0, i>1 = v(t)y=a,t)
i-1
-y <aj(t)|ul.(t)>ui(t)¢0. [ ]
i=1
Tueorem 3.2 (QR decomposition of class C? of a rectangular matrix

function with constant partial ranks). Let Q be an open subset of an
R-Banach space. Let r €(1,2,...}. Let

A=[al an]ECV(Q,C’rnX")

be such that for each j&{1,....n}, rankla,...a;] is constant. For each
ke{l,...,r}, let

jk=min{j€{1,...,n}lrank[”1 U 4] =k}

Then there exists a unique pair (Q,R =(r;})) € CP(Q,C"*")x C"(Q,CI*")



BASES FOR MATRIX FUNCTIONS 39
such that

A=QR, Q*Q=I,
and for every t €Q, j{1,...,n}, k€{l,...,r},

rgt)ERY,  j<ji = r=0.

Proof. It is easy to check by induction that a,(1),...,a,(t) are linearly
independent, and consequently constitute a basis of Im A(t), for every t € ().
Therefore, by Proposition 3.1, there exists a unique family of vector functions
Gy--->q, €CMQ,C™) such that for every t€ Q, i,k €{1,...,r},

span{q,(t),..., ()} = span{a, (t).....a, (1)}, (1)
(a:(B)|ar(t)) =8y, (2)

(a,(D)|qu(t)) e R (3)

Let Q=[g, ** q,]. By (@), Q*Q =1, hence Q is of rank r, and by (1),

ImA =ImQ. Therefore, by Lemma 22(a), there exists R = (rij) S
C’(Q,C™™") such that QR = A. Let t € Q. The equality R = Q*A implies
that

ri() = (1) a,(t) ={a,(D|g,(t))  Vie{l..rhje{l,...,n). (4)
In particular, by (3),
() ={a,(D|a (D)) ERY  Vke(l,...r).

Let k€{l1,...,r} and j€{l,...,n} be such that j < j,. If k =1, then, by the

definition of j,, a; = 0, which implies by (4) that r,; = 0. Let us suppose that

k > 1. By the definition of j;, and by (1) and (2),
a;)(t)e span{ajl(t),...,ajk_l(t)} =span{q,(t),...,q;_ ()} L g, (t);

hence by (4), rkj(t) =0.
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LetV=[v, -+ v,]€C”(Q,C"*)and S =(s;;) € C"(Q,C*") be such
that A=VS, V*V=1]_ and

s () ERE, j<jp= s,;,=0 VieQ, ke{l,...,r}, je(l,...,n}.
It proceeds from the quasitriangular form of § that
span{aj](t),...,ajk(t)} =span{v,(t),...,v,(t)} Vt€eQ, ke{1,...,r}.

On the other hand, S=V*A; hence (a;(D)|v,(8)) = s;;(t) ER} for every
teQ and k €{1,...,r}). By the uniqueness assertion of Proposition 3.1, it
follows that v, =gq,,..., v, = q,, that is to say V = Q. Therefore, § =V*A =
O*A = R. n

Cororrary 3.3 (QR decomposition of class C? of an m X n matrix
function of rank n). Let ) be an open subset of an R-Banach space. Let
A €CP(Q,C™*"). Then there exists a unique pair (Q,R) such that Q €
Ccr(Q,C*"), R=(r;)) € Cr(Q,C*") is upper triangular, and

A=QR, 0*Q0=1I, r(t)eRx YieQ,ic(l,. .., n).

Proof. For every j€{l,...,n}, let a; denote the jth column of A. By
hypothesis, for every t € Q, ay(¢),...,a,(t) are linearly independent. There-
fore,

rank[a,,...,a;]=j Vie{l,...,n},

and the conclusion follows by Theorem 3.2. [ ]

The following corollary deals with the local rank decomposition of a
matrix function defined on an open subset ) of a Banach space. A global
version of this decomposition will be furnished by Corollary 9.4, but only in
the particular case where ) is CP-diffeomorphic to RY.

Cororrary 3.4 (Local rank decomposition of class C”). Let Q be an
open subset of an R-Banach space. Let r €{1,2,...}, A€ C"(Q,C"*"), and
t, € Q). Then there exists an open neighborhood €, C ) of t,, and there exist
U,C € C"(Q,,C"*"), V, B € C"(Q,,Cr*"), such that

A()=U()B(t)=C(t)V(t) VteQ,, v*xU=1,, Vv*=],.
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Proof. For each jE€{1,...,n}, let a; denote the jth column of A. As A
is of rank r, there exist j,,...,j, €{1,.. n} such that (a,(t,),...,a;(t,)) is a
basis of Im A(¢,). By [5, Lemma 54] there exists an open nelghborhood
Q,cQ of t, such that for every t €, (a,(t),...,a;(t)) is a basis of
Im A(t). By Proposition 3.1, there exists U=[u, ... u,]€C’(Q,,C"*")
such that U*U = I, and Im U(t) = span{a,(?),..., a;(t)} = Im A(¢) for every
te Q) Let t € Q,. Let B(t) = U(¢)*A(¢). By Lemma22(a) U(t)B(t) = A(t),
Wthh implies that B(t) is of rank r. Thus B € CP(Q},,C7*").

By the part of Corollary 3.4 proved so far applied to A*, there exists an
open neighborhood Q,C Q, of t, and there exist U € C"(Q,,C"*"), Be
CP(Q,,C7*™) such that

A()*=U)B(t), U)*U(t)=1 VteQ,.

The remainder of the conclusion is obtained with V= U* and C = B*. n

4. SMOOTHNESS OF THE MOORE-PENROSE
INVERSE OF A RECTANGULAR MATRIX
FUNCTION AND APPLICATIONS

Let us recall the following theorem, due to J. Z. Hearon and J. W. Evans,
on the smoothness of the Moore-Penrose inverse A* of a matrix function A.
As it is very useful, we prove it by a new short proof.

TueoreM 4.1 (Smoothness of the Moore-Penrose inverse A of a matrix
function A: J. Z. Hearon and J. W. Evans [10, Theorem 1]). Let Q be an
open subset of an R-Banach space. Let r €{0,1,...}. Let A € C"(Q,C"*").
Then A* € C"(Q,Crnx'”).

Proof. If r=0, then A=0, and A* =0 is of class C”. Let us suppose
that r > 0. It is sufficient to prove that A* is of class C? on a neighborhood
of every point of ). Let ¢, € Q. By Corollary 3.4, there exists a neighbor-
hood Q, < Q of ¢, and there exist U € C7({},,C"*"), B C"(Q,,CI*"),
such that U*U =1, and A(+)=U(t)B(t) for every t € . By virtue of [1,
Theorem 5, p. 23],

A"|q, = B*(BB*) 'U* e C?(Q,,Cr*"). m
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The following corollary deals with the existence of solutions of class C” of
the linear equation AX = B on matrix functions defined on an open subset
of a Banach space. The general form of the solutions of class C” of this
equation will be furnished by Corollary 9.1, but only in the particular case
where Q is CP-diffeomorphic to RY. Another complement of information lies
in Lemma 2.2.

CoroLrLary 4.2 (Existence of solutions of class C” of the matrix linear
equations AX =B and XA = B). Let Q) be an open subset of an R-Banach
space. Let A € CP(Q,C"*"). Then the following two assertions are true:

(a) Let B CP(Q,C™™*) be such that Im B(t) € Im A(t) for every t € Q.
Then there exists X € C"(Q2,C"**) such that AX = B.

(b) Let BeCP(Q,C**") be such that Ker A(t) C Ker B(t) for every
t € Q. Then there exists X € CP(Q,C*™"™) such that XA = B.

Proof. (a): Let X = A" B. By Theorem 4.1, X is of class C”. Let t € Q.
By [2, Theorem 1.1.1], A(t)X(#) = P, ,,,B(1), and since Im B(t) € Im A(t),
P, ayB(t) = B(t). Thus AX = B.

(b): By Lemma 2.1(a), Im B(#)* C Im A(#)* for every t € (). Therefore,
by (a), there exists Y € C”(Q,C™**) such that A*Y = B*, Hence XA = B,
where X =Y* e CP(Q,C**™). u

CorovrLary 4.3 [Smoothness of the orthogonal projectors on Ker A(t) and
Im A(t)]. Let Q be an open subset of an R-Banach space. Let A€
CP(Q,C"). Then Py 4, Py ayss Pierar and Py 4,2 are of class C.

Proof. By [2, Theorem 1.1.1], P, .= AA™ and P, .. = ATA. Hence by
Lemma 2.1(a),

P(K(-rA)J‘ =leA*:‘L‘+14’ PKL‘I'A=IH_A+A’ P(lmA)l =Im_AA+‘

By Theorem 4.1, A™ is of class C”, and therefore the conclusion is a direct
conscequence of the above relations. ]

CoroLLARY 4.4 (Smoothness of the orthogonal projector on the intersec-
tion of two vector subspaces). Let ) be an open subset of an R-Banach
space. Let P, P, €CP(Q,C"™") be orthogonal projector valued functions



BASES FOR MATRIX FUNCTIONS 43

(that is to say, P(t)* = P(t)= P(t)* for every i (1,2}, t € Q) such that
rank( P, + P,) is constant. Then

x
P(Im PN (Im Py) € C,)(Q,(]:" n).

Proof. By Theorem 4.1, (P, + P2)+ is of class C?. On the other hand,
by virtue of [1, Theorem 3, p. 199] (theorem due to W. N. Anderson and R. J.
Duffin),

+
P(lmPl)ﬁ(lsz)z 2Pl(Pl + Pz) P,

and hence the conclusion follows. n

5. EXAMPLE OF A 2x2 HERMITIAN MATRIX FUNCTION
OF RANK 1 AND OF CLASS C* DEFINED ON R®\ {0}
WHOSE IMAGE DOES NOT POSSESS ANY CONTINUOUS BASIS

This section is devoted to an example of a hermitian matrix function A of
class C* and of rank 1 defined on R® \ {0} whose image does not possess any
continuous basis, not even when it is restricted to the unit sphere. A very
similar (but nonhermitian) example, defined on CU{%}, was published in
1976 by 1. C. Gohberg and J. Leiterer [7, §5, Counterexample 1]. This
example shows that in [6, Corollary 13.6.5], it is necessary to suppose that K
is contractible (except when K c R? [7, Corollary 4.2)).

In this section, £ = R®\ {0} and the following notation will be used. Let

It =ye2+t2+82 Ye=[t, ¢, t;]" eR?, $* = {t e R?||t)| = 1}.

The matrix A(#) that we will define will depend only on the direction of
t €R3. In order to show easily that A is of class C*, we will first define a
matrix function A(#,¢) of the angular coordinates of t € R In order to
make the bases of Im A discontinuous around the poles of the unit sphere
without destroying the smoothness of A, we will make A constant on a
neighborhood of the poles by means of a function n € C*(R,R) such that

n(0)=1 Voe]-oo ir], n(8)=0 Ve [im, [,

0<n(8)<1 Vo )in, inl,
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whose existence is well known. Let

o(6 <P)=[ n(8) }

[1-n(6)]e "
where i? = —1, and let A € C*(R? C2%?) be defined by
A(8.¢)=[n(6)e(8.0) [1-n(B)]e*0(6,9)]

:[ 7(6)’ n(0)[1-n(8)]e*
n(6)[1-n(6)] e~ [1-7(6)]?

} Y(0,¢) € R2.
Let

Ql={[tl t ts]"eR3‘t2¢Oortl>0},

Q. ={[t tB]TeR3‘t2¢Oortl<0},

QS=Qluﬂ2={[tl ty t3]" ew\(tl,tz) + (0,0)}.

It is easy to check that there exist ® € C*(R? \{0},[0,7]), ®, € C*(Q,,]-
m, 7D, and ®, € C*(Q,,]0,27[) such that 0|q, € C(Q;.10, 7)) and

t,=1t||sin ®(t)cos P,(t) Vie(l,2),t=[t, ¢, ts]TEQi,
t,=tllsin®(t)sin® (1)  Vie(l,2),t=[t, t, t;] eq,
t3 = ||tllcos O(2) vi=[t, t, t;,]"eRr>\{o0}.
For every t =[t, t, t,]' € Q, let

A(O(t),®(t)) if t,#0or t,>0,
A(O(t),®,(t)) if t,=0 and t,<0,

= 1 O .
A(t) [0 0] if t,=t,=0and t,>0,

[8 (1)] if t,=t,=0 and t,<0,
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and let
Q,={teQo<0(t) <in}, Q,={teQ|ir<0(t) <7}

As A8, +27)=A(6,¢) for every 6,9 €R, it follows directly from the
definitions that

A(t) = A(0(1),@,(1)) VteQ,,  A(t)=A(O(t),®,(t)) VieqQ,,

A(t)=[(1) 8] VieQ,, A(t)=[8 (1’] Vieq,

hence A € C*(),C{*?), because (Q,,Q,,Q,,Q,) is an open covering of Q.
Now let us show ad absurdum that the image of A does not possess any
continuous basis, even when it is restricted to $2c Q. Let v =[v, vz]r IS

C°(S2,C2 {0} be such that
Im A(t) = span{v(t)} Vte s2,

Let us show that if such a function v existed, the unit circle §'={z C|
|z| =1} in C would be contractible, in particular simply connected, by means
of a homotopy H(z,A) that we will define below. Let

s={res?jo<o(t) <in}, 3,-{tesir<0(t) <)

Let j €{1,2}. Let a; =[alj azj]T be the jth column of A. For every t € §2,
as a/(t) € Im A(t) = span{c(t)), there exists a,(t)eC such that a;(t)=
a(t)v(t). Then

al(t)ul(t)=a”(t)=[n(@(t))]zaﬁ(), v,(t) #0 Ve,
az(t)UQ(t)=a22(t)=[l—n(@(t))]zaéo, v(t)#0 Vtel,,

which allows us to define, for every i €{1,2}, u, €C%3,,8") by

ui(t) =

(1
uilt) vVies,.

[v:(2)]
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0] 0
mi=uf|lo|] €S, Ty =Uy ofles!,
1] -1

[ % = sin @
r(z.8)=| % zsinf VzeSs! geR.
cos 6

Let

It is easy to see that r € C*(S! X R, $2) and that for every (z,8) € S' X[0, 7],
O(r(z,0) =0,

60,27 = r(5,0)€2,, belir,m] = r(5,0)€X,,
which grounds the following definitions:

u,(r(z,Am))

H((z,A)= vVzes', Arelo,],
~2
su,(r(z, Am
Hz(:,)\)=—2(—)) Vzes!, reli ],
<2
H(z,A)=Hy(z,A) Vzes', rel0,2],
H(z.A)=H,(z,2) vzes', aeli1].

It is immediately seen that H, € CYS'x[0,2[,S") and H, < C%S' %
15,11,8Y.
Let us show that
H(5,A) = Hy(z,A) vzes' aeld 2.

Let z€S' and A€]}, %[ Let 6 =Am and t =r(z,0). Since z € St there
exists ¢ €[0,2m[ such that z = ¢’?. Then

Ir <o <7, 0<n(h)<1, O(t)=6, te3 N3, c,.

If z# 1, thent€Q, and ®,(t)=¢. [f s =1,thent € Q, and P ({)=0=¢.
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In both cases, A(t)= A(8,¢), and
ay(t)o(t) = a,,(¢) = [n(6)]* #0,
a,()oy(t) = ay(t) =n(8)[L—n(8)]e " #0,

which validates the following computation:

“1(t): a,(t)o(t) |a1(t)||02(t)|
uy(t) |a1(t)”l’1(t)| a,(t)vy(t)

_ (O] [n(&)[1-n(6)]e |
[[n(8)1?| m(8)[1—n(6)]e™

:el‘p=

o

Therefore,

uy(t) _ suy(t)

~ ~

~9 ~9

H(z,\)= = H,(z,1).

Thus H restricted to S' X[0, 2[ coincides with H,, and H restricted to §' X
1.1} coincides with H,; hence H € C%(S' x[0,1],S'). On the other hand,

H(z,0)0=ZeSs', H(z,1)=z Vzes',
o)

that is to say, §' is contractible. This implies that S' is simply connected
[9, Proposition (3.2), p. 12). But S! is not simply connected; therefore ¢ does
not exist.

Remarks. For every t € (), as A(t) is a 2 X2 hermitian matrix of rank 1,
Ker A(t) and Im A(t) are two orthogonal vector subspaces of C? of dimen-
sion 1. Therefore, the nonexistence of a continuous basis of Im A implies the
nonexistence of a continuous basis of Ker A. On the other hand, for every
t € Q, A(t) is diagonalizable, and Ker A(¢) and Im A(#) are the two eigen-
subspaces of A(#). It follows that there does not exist any continuous
eigenvector of A, in spite of the fact that the eigenvalues of A, namely 0 and
212 —27n +1, are of class C*. In other words, there exists a diagonal matrix
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function D of class C* such that A(#) is similar to D(¢) for every ¢t € (2, but
there does not exist any continuous matrix function P of rank 2 such that

A=PDP™ .

6. CONNECTION OF LOCAL SOLUTIONS
INTO GLOBAL SOLUTIONS

This section deals with the connection of local solutions into global
solutions of a problem (P) (in most cases the solutions will be required to be
functions of class C”). This problem is supposed to possess at every point
t €R? a solution f, defined on an open neighborhood V, of ¢, and to have
the following property: If f, and f, are solutions of (P) defined on open
subsets 0, and Q, of R? respectively, and if ;N £, is convex, then f;
and f, may be connected into a solution of (P) defined on ;U Q,. In fact,
we will only use the weaker hypothesis of the existence of this connection in
the particular case when , and ), are themselves convex.

The objective of this section is to show that these local solutions may be
connected into global solutions. A first difficulty lies in the fact that the
diameter of V, may be arbitrarily small. A second one lies in the fact that
C,UC, is not necessarily convex, even when C, and C, are. The first
difficulty is surmounted by Lemma 6.1 and the second one by Lemma 6.2
below.

The statements of this section are formulated in an axiomatic form, which
is to be understood in the following way: for every open subset (1 of RY,
A (Q) will represent the set of all the solutions of (P) defined on 2, and
Z(Q) will represent the assertion “there exists at least one solution of (P)
defined on 1”. The empty map defined on & will be considered as a solution
of (P) on Q =, that is to say, #() will be considered as true.

Leymwva 6.1 (Condition for a locally true property to be true on 1—r, r[?).
Let r €R*. Let #(Q) be a relation defined (either true or false) for every
open subset Q1 of RY, and satisfying the following conditions:

(a) For every t €[ —r,r]’, there exists an open neighborhood ), CRY of
t such that #(L,) is true.
(b) For all convex open subsets C, and C, of RY,

R(C,) and R(C,) = R(C,UC,).
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(c) For all open subsets 1, and €, of RY,
0,cQ, and Z(Q,) = #(Q,).
Then, under these conditions, Z(—r,r[?) is true.
Remark.  Conditions (a) and (c) imply that (D) is true.

Proof. This lemma will be proved by induction on the dimension ¢ of
R, and for this purpose, it will be denoted by .#(g). Let us first prove the
lemma when g =1. Since # satisfies hypotheses (a) and (¢) of .#(1), for
every t €[ —r,r] there exists an open interval I, CR such that ¢t €I, and
H(1,) is true. Since [— r,r] is compact and connected, it follows that there
exists a finite family (s,,..., s,,) of points of [ — r, r] (numbered in such a way
that for every k €{1,...,m}, I,U---UI_ isan interval) such that

[—r,r] CIslU RNV I.s,,,'
Then by induction and by (b), #(I, U --- UL ) is true for every k€
{1,....,m}. By (c¢), the validity of (I, U---UI ) implies that of
Z(-r,rD. Thus £(1) is true.

Let g,<{2,3,...} be such that _Z(1),...,.#(gq,—1) are true. Let us
prove the lemma when g =gq,. Since q,> 2, there exist q,,q, €{1,...,
go — 1} such that q, = g, + g,. For every open subset { of R?, let

RUQ)=2(Qx]—r,r[?).

Let us show that %, satisfies the hypotheses of #(q,). Let ¢, €[—r,r]".
Since # satisfies hypotheses (a) and (¢) of #(q,), for every t&[—r,r]?
there exist open intervals I,,...,1, ,CR such that t&;, X -+ X1, , and
R, X - X, ) is true. Let

vee[-r,r]".

C,=1,x - xI Cor=1, 41, X " XI

qt’ qot
Since the set {¢,} X[ —r,7]"? is compact, it possesses a finite number m of
points s,,...,s,, such that

*m

(LIx[=r.r]”c €y X, (%)

i=1
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Let C,=C,, N - NCy, . Let us show that # (C)) is true, by means of
the followmg relatlon K. For every open subset Q of RY=, let

R, (Q) = R(C, X Q).

Let us show that %, satisfies the hypotheses of .#(q,). Let t, €[—r,r]"
By the inclusion (#), there exists k €{1,...,m} such that t, € C, . Since #
satisfies hypothesis (c) of .£(q,). the validity of #(C,, X C,, ) implies that
of #,(C,,,). Thus %, satisfies hypothesis (a) of _/(qz) Since .# satisfies
hypotheses (b) and (¢) of #(q,) and C, is convex, #, satisfies hypo-
theses (b) and (c) of #(q,). As g, <gq, -£(gq,) is true, and therefore
R r, ") =R2(C,) is true. Thus %, satisfies hypothesis (a) of .#(q)).
It is easy to check that %, satisfies the other hypotheses of #(q,). As
4, < qq, -2(q,) is true, and therefore, Z (1~ r,r[") = Z(—r,r[*) is true.
Thus .#(q,) is true. It follows that .#(q) is true for all ¢ €{1,2,...}. [ |

LemMma 6.2 (Connection of solutions defined on domains of the form
RY X B X C, into solutions defined on RY XRX C,). Let ¢,,q, €{0,1,...}.
Let g=q,+1+q,. If q,#0, let C, be a convex open subset of R. For
every subset S of R, let

RUXSXC, if q,.q45>0,

RN xS if q,>0=yq,,
e(S) = e

SXC, if q,=0<q,,

S if g=0=gq,

Let F be a set. Let .# be a map which associates every open subset £} of RY
with a set #(Q) of maps from Q into F and satisfies the following
conditions:

(a) For every bounded open subset B of R, #(¢(B)) is not empty.
(b) For all convex open subsets C,,C, of RY and for dll f, €.#(C)),
£, € A(Cy), there exists f € #(C U C,) such that

f(t)=fi(t) VteC, \C,, f(t)=fo(t) Vt€C,NCy.
(¢) For all open subsets Q,, Q, of RY, and for dll f,

Q,cQ, and f€.7(Q;) = flg,€A()).
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(d) For every open subset Q) of RY, for every map f from Q into F, and

e
pen covering (Q ), e; of Q,

flu€ A(Q) Viel = feA(Q).

Then, under these conditions, . (¢(R)) is not empty.
Remark.,  Condition (a) implies that () is not empty.

Proof. Let us define the following convex open subsets of R?: Let
D, =3, and let

D, .= e¢(lm,n[) VmeZ, ne{m+1l,m+2,..},

D,=D Vne(l.2,...).

—n,n

Let us show by induction that there exists a sequence ( f})x en such that for
every k €{0,1,...},

fr € A(Dyy 1), Sen(t)=fi(t), VteD;. (1)

By (a), for all me Z, ne{m+1,m+2,...}, there exists g, ,€ A(D, ).
Let fy=g_,,. Let n€{0,1,...} be such that the existence of f,...,f,
satisfying (1) is established. By (b) applied to f, and g, .., there exists
he A(D_,_,,.,,) such that

W)= £(t)  VIED, D, ...
By (b) applied to k and g_,_, _,, there exists f,,, € A(D,,,) such that
furi(8) =h(t) VteD_, 2 ND_,_, _,.
These relations imply that

fn+l(t)=fn(t) VtEDn
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It follows directly from the definitions that (D, \ D;_,)i~ is a partition
of @(R), which allows us to define the following map f from ¢(R) into F by

f(t)=£f(t) Vke{l,2,...},teD, \D,_,.

Let us show that
)= f£.(t) Vne{l,2,...},teD,. (2)

Let n€{1,2,...} and t € D,. Since (D, \ D,_,)i-1 is a partition of D,,
there exists one i €{1,...,n} such that ¢ € D, \ D,_,, and by the definition
of f, f(t)=f(t). If i <n, then by (1), f(t)=f,, (t)="--- = f(t). Thus
f(#)= £,(¢). By (2) and (0),

lek=fk|DkE/(Dk) Vke{1,2,...},

and since (D, )x-; is an open covering of @(R), it follows by (d) that
f € A(e(®). [ ]

Tueorem 6.3 (Connection of local solutions into global solutions defined
on RY). Let F be a set, and . be a map which associates every open subset
Q of RY with a set .#(Q) of maps from Q into F and satisfies the following

conditions:

(a) For every t € RY, there exists an open neighborhood Q, CRY of t such
that . (Q,) is not empty.

(b) For all convex open subsets C,,C, of RY, and for dll f € #(C)),
fs € A(C,), there exists f € #(C, U C,) such that

f(t)=fi(t) VteC \C,, f(t)=fa(t) VieCy\C.
(c) For all open subsets (1,,Q, of RY, and for all f,
Q,cQ, and f€.A(Q,) = flg,€A(2).

(d) For every open subset Q) of RY, for every map f from Q into F, and
for every open covering (Q},); < of £,

flg,€7(Q) Viel = fe./(Q).

Then, under these conditions, #(RY) is not empty.

Remark. Conditions (a) and (c) imply that (&) is not empty.
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Proof. For every open subset ) of RY, let Z2(Q) denote the assertion
“A(Q) is not empty.” Let 7(0) denote the assertion “for every bounded
open subset B of RY, #(B) is true,” and if g > 1, for every m€{(1,...,q — 1},
let 27(m) denote the assertion “for every bounded open subset B of R¢™™,
FP(R™ X B) is true.”

Let us show by induction that 7(0),..., 97(g —1) are true. Hypotheses
(a), (b), and (c) imply that .# satisfies all the hypotheses of Lemma 6.1, with
any r € R*. Therefore, by virtue of this lemma, H#(]—r,r[?) is true for
every r € R*, which implies, by (c), that &/(0) is true. If ¢ =1, then the
proof by induction is finished. Let us suppose that g >1. Let m€(1,...,
g — 1} be such that 27(m — 1) is true, and let us show that &7(m) is true. Let
B, be a bounded open subset of R?™™. Then there exists r, € R* such that
By Cl—ry, 1ol ™ Let Cy=1—ry,r l* ™ For every subset S of R, let

R™!'xsxcC, if m>l,
SXC, if m=1.

¢(S)={

Since &/(m —1) is true and C, is bounded, #(¢(B)) is true for every
bounded open subset B of R, that is to say, (¢, ) satisfies hypothesis (a) of
Lemma 6.2, with g, =m —1 and g, = g — m. As hypotheses (b), (¢), (d) of
Lemma 6.2 and Theorem 6.3 are the same, and C, is convex and open,
(¢, ) satisfies all the hypotheses of Lemma 6.2. Therefore, by virtue of this
lemma, Z(e(R)) = Z(R™ X C,) is true. Hence, by (c), Z(R™ X B,) is true.
So 7(m) is true. Thus 27(0),..., 97(q — 1) are true.
For every subset S of R, let

Ri"'xS if g>1
5(S) = ,
#() { s if g=1.
Since &7(q —1) is true, #($(B)) is true for every bounded open subset B of
R. Hence, like (¢, ') above, (§, .#) satisfies all the hypotheses of Lemma
6.2, with g, = g —1 and g, = 0. Therefore, by virtue of this lemma, Z($(R))
= Z(RY) is true. |

~1

EVERY SUBSET OF C™*"* CONSISTING
OF ALL THE MATRICES OF THE SAME RANK
IS ANALYTICALLY ARCWISE CONNECTED

Lemma 7.1, The subset C'*" of C"*" is analytically arcwise con-
nected, that is to say, for all A, B, € C"*", there exists an analytic map Z
from R into C**" such that Z(0)= A, and Z(1) = B,,.
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Proof. Let A,,B,€C"*" Let C,=B,A,". Since every matrix of C"*"
is triangularizable, there exist Py, T, € C"*" such that P, is invertible, T, is
upper triangular, and

C,=P,T,P,".

Since T, is upper triangular, there exist Dy, N, € C"*" such that D, is
diagonal, N, is strictly upper triangular, and

Ty=D,+ N,.

Since A, and B, are invertible, so are C,, T,, and D,. Consequently, there
exist

dors--, do, €CN{0}, Pors--Pon ERE, Oo1>--- 0o, €[0,27[
such that
D, =diag[d,,....,d,,]. doy=poe,..., dy,=py.e’,
where i = —1. Let

1—cost

n(t)=—F— ViR

It is immediately seen that 7 is an analytic map from R into R such that
n(0)=0, n(1)=1, 0<n(t)<l VieR.
For every t €R, let
d;(t) = [1=m(t)+ n(t)py;|e™ P Vje(L,...,n),
D(t) = diag[d (t).....d,(1)],

T(t)=D(t)+n(t)N(,, Y(t)=P0T(t)P()_l’ Z(t)=Y(t)A0~
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Then

D(0)=1,, T0)=1,, Y(0)=1,, Z(0)=A,,

D(1) = D,, T(l)=T,, Y(1)=C,, Z(1)=B,,.

On the other hand, for every t €R, j€{1,...,n},

|d;(t)|=[1=n()] + n(t)po; > 0;
therefore,
detZ(t)=d(t) - d (t)detA, #0 VieR.

Thus Z has the required properties. ]

In the proof of the next theorem, we will denote by I**" the following
matrix of C>":

[I" 0] if 0<r<m,n,
0 0
[I, 0] if O0<r=m<n,
Im><n=
r I .
[r] if 0<r=n<m,
0
I, if 0<r=m=n,
0 if r=0.

Tueorem 7.2. The subset C'*" of C™*" is analytically arcwise con-
nected, that is to say, for all Ay, B, € C"*", there exists an analytic map Z
from R into C"*" such that Z(0) = A, and Z(1) = B,

Proof. Let Ay, B, € C"" By[13,28, p. 53], there exist A,, B, € C"*™,
A,, B, € C"*" such that

Ag=A["TA,, B,=BI;"*"B,.

By Lemma 7.1, there exist analytic maps Z, from R into C**™ and Z, from

m
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R into C}™" such that
Z,(0)=A,, Z,(1)=B,, Zy(0) = A, Z,(1) = B,.

Then Z = Z,1"*"Z, has the required properties. ]

8. EXISTENCE OF BASES OF CLASS C*

Lemma 8.1 (Connection of two bases of class C” defined on two convex
sets). Let C, and C, be convex open subsets of a separable Hilbert space.
Let A€ CP(C,,C"*") and B € C"(C,,C"*") be such that

Im A(t) = Im B(¢) VteC, NC,.
Then there exists V € C’(C, U C,,C"*") such that
V(t)=A(t) VieC \C,, V(t)=B(t) VteC,\C,,
ImV(t)=Im A(t) = ImB(t) Vt€C,NC,.

Proof. 1If C,cC, or C,cC, or C,NC, =, then V=B or V=A or
(V|¢,= A and V| = B) is suitable, respectively. Let us suppose that C; \ C;,
C,\C,, and C,NC, are not empty, and let ¢, €C N C,. By Corollary
4.2(a), there exists X € C"(C, N C,,C™") such that

B(t)X(t)=A(¢) YteC, NC,.
Since rank A = r and rank X < r, this relation implies that rank X = r. Con-
sequently, by virtue of Theorem 7.2, there exists an analytic map Y from R
into C7*" such that
Y(0)=X(t())> Y(1)=1,.

By [14, corollary of Theorem 11.3.2, p. 36], there exists a partition of unity
(1,1~ n) of class C* on C, U C,, subordinated to the open covering (C,,C))
of C,UC,. That is to say, there exists n € C*(C, U C,,{0,1] such that

n(t)=0 VieC \C,, n(t)=1 VieC,\C,. )
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Let

Q,={teCUC|li<n(t)<}j} Vi, je(-%,0,1,2,3,4,5,%},
OQ,={teCucCllisn(t)<ij} Vi, je{0,1,2,3,4,5)

(Q),; is not necessarily equal to the closure of €1,)). As above for 7, there
exist a, B € C*(C, U C,,[0,1]) [subordinated to (Q,,, Q _.,) and (5., Q __,)]
such that

a(t)=0 VieQ,, a(t)=1 VieQ,,

B(t)=0 Viey,, B(t)=1 Ve,
The relations (1) imply that
Q__.cqC, 0, CC,, N cCiNGCy,
and since C; N C, is convex,
[1-a(t)]t +a(t)t,€C,NC,  Vie Q.
These observations allow us to define
V(t) = A(t) VeeQ,,,
V(t)=B(t)X([1—-a(t)]t +a(t)t,) Vi,
V(t) = B(t)X(t,) Vie Q,,,
V(t)=B(t)Y(B(t)) Vte Q,,,

V(t) = B(t) VieQ,..
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It follows directly from the definitions that

V(t) = A(t) VieQ_,,,
V(1) = B(OX([1-a(D)]t +a(t)t,)  Vtey,, 2)
V(t) = B(¢)Y(B(1)) VieQ,,,

which shows that V is of class C” on Q_,;,Q;,8,,, and therefore V &
CP(C,UC,,C" 7). By (1), C,\C, CQ, and C, \ C,; © ) 5; consequently

V()= A(t) YteC, \C,, V(t)=B(t) VYteC,\C,.

On the other hand, A, B, X, and Y are of rank r; consequently, V is of rank
r, and by (2),

ImV(t)=1Im A(¢) or ImV(¢)=Im B(t) YteC,UC,.
Hence,
ImV(¢)=Im A(t)=Im B(t) VteC,NC,. n

The following theorem (the main result of this paper) deals with the
existence of bases of class C” of the kernel and the image of a matrix
function defined on a domain CP”-diffeomorphic to RY. A similar result on
operator functions defined on a contractible compact subset of RY has been
established by I. C. Gohberg and J. Leiterer (direct consequence of [7,
Theorem 3.6 and Proposition 4.1]). Both results furnish an extended version
of [6, Corollary 13.6.5], where it is necessary to suppose the domain con-
tractible, because of the counterexamples produced in [7, Counterexample
5.1] and in Section 5 of the present paper.

TueoreM 8.2 (Existence of orthonormal bases of class C” of the kernel
and the image of a rectangular matrix function of ¢ real variables: generaliza-
tion of the theorem [3] due to V. DoleZal). Let Q CRY be CP-diffeomorphic
to RY. Let A € CP(Q,C"*"). Then there exist

uy,...,u,, €C’(Q,C™), Cys-..,0, ECP(Q,CH)
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such that for every t € (1,

(@ if r>0, then (u(#),...,u (1)) is an orthonormal basis of 1Im A(t),

®) if r<m, then (u,, (0),...,u, (t)) is an orthonormal basis of
[Im A(] ",

(©) if r> 0, then (v,(t),...,0,(t)) is an orthonormal basis of [ker A()]*,

(D if r <n, then (v, (1),...,v,(t)) is an orthonormal basis of Ker A(t).

m

Proof. The conclusion is obvious in the particular case where r = 0, that
is to say, where A = 0. Let us suppose that r > 0. By hypothesis on Q, there
exists a C”-diffeomorphism ¢ from RY into Q. Let

B=[b1 bn]=A0¢€Cl’(Rf1’C:31xn).
For every open subset A of R, let

A(A)={W e C?(A,C")ImW(t)=Im B(t) Vt € A}.

Let us show that ./ satisfies the hypotheses of Theorem 6.3. Let t, € RY.
Since B(t,) is of rank r, there exist j,,...,j €{1,...,n} such that
b;(t,),...,b;(t,) are linearly independent. Let

1§=[b_,», bj,]-

By [5, Lemma 5.4], there exists an open neighborhood A, CR? of ¢, such
that for every t € A,, B(t) is of rank r. This implies that Bl,, € A(Ay).
Thus . satisfies hypothesis (a) of Theorem 6.3. By Lemma 8.1, .# satisfies
hypothesis (b) of this theorem, and it is obvious that . satisfies hypotheses
(¢) and (d). Therefore, by virtue of Theorem 6.3, there exists W € _~(RY).
Let

V=[Ul Ur]=W°QD—1€C’)(Q,C'r"xr).
Let ¢ € Q). It follows directly from the definitions that

ImV(t)=ImW(e~'(t))=Im B(¢~'(¢)) = Im A(t);
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consequently, (v,(¢),...,v,(¢)) is a basis of Im A(t). Therefore, by Proposi-
tion 3.1, there exist u,,...,u, € CP(},C™) such that, for every t&Q,
(u(#),...,u(t)) is an orthonormal basis of Im A(¢).

By Corollary 4.3,

F

may+ € C7(Q,CM7M), Pyerar Pigeray: € C7(£2,€777).

Since A is of constant rank, so are these three projector valued functions. By
applying to them Theorem 8.2(a) just proved above, the conclusions (b), (¢),
and (d) are obtained. [ |

Cororrary 8.3 (Existence of bases of class C” of a vector subspace
valued function E and of E*). Let Q) CRY be CP-diffeomorphic to RY. Let
r€1{1,2,...}. Let E be a map from Q) into the set of all the vector subspaces of
dimension r of C" possessing the following property: for every t € Q, there
exists an open neighborhood Q,C} of t and there exist v,,....,v, €
C"(Q,,C") such that for every u € Q,, (v,(v),...,v,(u)) is a basis of E(u).
Then there exist u,,...,u, € C"(Q,C") such that for every t < (),
(u(t),...,ut)) is an orthonormal basis of E(t) and if r < n,
(u, . (t),...,u,(t) is an orthonormal basis of E(t)*.

Proof. The corollary is obvious if r = n. Let us suppose that r < n. Let
t € Q). By hypothesis, there exists an open neighborhood Q,cQ of ¢ and
there exists V, € C”(Q,,C?*") such that ImV,(u) = E(u) for every u <€ Q,.
By Corollary 4.3,

PElQ, = PImV, € Cl’(Q[’C:an)’
Since (,),eq is an open covering of ), it follows that P, € C"(),Cr™"),

and the conclusion is obtained by applying Theorem 8.2(a) and (b) to P,.

9. APPLICATIONS

The following corollary furnishes an extension of Corollary 4.2, as indi-
cated just before it.

CororLrary 9.1 (General form of the solutions of class C” of the linear
equation AX = B on matrix functions). Let 8 CRY be C’-diffeomorphic to
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RY Let n<{2,3,...} and r€{l,....,n —1} (see Lemma 2.2(a) for the case
r=n). Let d=n—r. Let A€ C"(Q,C"*") and B € CP(Q,C™**) be such
that Im B(t) C Im A(t), for every t € (). Then there exist X € Cr(Q,C™)
and U € CP(Q,C%*?) such that

and for all X,

XecC’(Q,C") and AX=B o 3JAYecCr(Q,C¥), x=X+Uy.

Proof. By Corollary 4.2, there exists X € ¢"(Q,C"**) such that AX = B.
By Theorem 8.2(d), there exist u,,...,u,; € CP({},C") such that for every
teQ, (ut),...,uy,(t)) is an orthonormal basis of KerA(t). Let U=
[u, -+ uyl It follows directly from the definition of U that U€
CP(Q,C1*%), AU=0, and U*U=1,. Let X € C”(€,C"™) be such that
AX = B. Then A(X — X)=0; hence

Im[X(¢)- X(t)] CKerA(t) =ImU(¢) Vi€ Q.

By virtue of Corollary 4.2, there exists Y € C?(2,C4**) such that UY =
X — X. The converse is obvious. [ |

Remark. The general form of the solutions of class C” of the equation
XA = B may be obtained by applying Corollary 9.1 to the equation A*X* =
B*, as in Corollary 4.2.

CororLary 9.2 (Equivalences of class C” to the rank canonical form).
Let Q CRY be CP-diffeomorphic to R9. Let A€ C’(Q,C"*"). Then there
exist

PVeCH(Q.Cv).  Q.UeCH(R.C%),

m

and if r > 0, there exist B,C € C?(Q},C7™") such that (using the notation



62 JEAN-CLAUDE EVARD
defined just before Theorem 7.2)

A=PICU=VI"Q,  URU=UU*=1,, V*V=VV¢=]

I, if r=0,
P*P={ diag[B,I,_,], if 0<r<m,
B, if r=m,
I, if r=0,
QQ*={ diag[C,1,_,], if 0<r<n,
C, if r=n,

and if r > 0, B(t),C(¢) are positive definite for every t € Q). Moreover, if for
every t € ), A(t) is a partial isometry, then P and Q may be chosen such that
P(t) and Q(t) are unitary for every t € 0.

Proof. If r=0,then A=0=1_1/""I and the lemma is trivial. Let us
suppose that r > 0. By virtue of Theorem 8.2, there exist w,,...,w, &€
C7(Q,C") such that for every t €Q, (w(#),...,w . (t)) is an orthonormal
basis of [Ker A(t)]*, and if r < n, (w,, (¢),...,w (1)) is an orthonormal basis
of Ker A(t); moreover, if r <m, there exist p, ,,...,p,, € C’(Q,C") such
that for every t€, (p,, (t),...,p,(¢)) is an orthonormal basis of
[Im A(£)] " Let

wW=[w, - w,], U=WH*, p\=Aw,,...., p,=Aw,,
P=[Pi " Pul p=[m - P B=Prp,
and if r<m, Py=[p,,, " p,] Then
AW=[Aw, -+ Aw,]=PI"*", Wr*W=WW*=1],

U U=U0UU*=1,
hence

A — PI:_”X"W* —_ PI;”X"U.
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If r<m,

P* P*P, PP, B 0
*p = P, PJ1l= =
d [Pz*][ 1 2] [Pz*Pl PSP, 0 I,..J

and if » =m, P*P = Pj*P, = B. Let t € Q. Since w(¢),...,w,(t) are linearly
independent and belong to [Ker A()]*, p(2),..., p,(t) are linearly indepen-
dent too. Consequently, P(#) is of rank r, P(¢) is of rank m, and by Lemma
2.1(c), B(t) is of rank r. It follows that B(t) is positive definite. Moreover, if
A(#) is a partial isometry, then p,(¢),...p,(t) are orthonormal, and therefore
P(t) is unitary.

By the part of Corollary 9.2 proved so far applied to A* € C*(Q,C"**™)
(still with r > 0), there exist

PEC’)(Q,C:X"), (']'EC/)(Q’Cme), B’eC;I(Q’C:Xr)

m

such that

A*= P[0,  U*U=U00*=1

m?

Fap = c{iag[B,In_r] if r<n,
B if r=n,

and B(t) is positive definite for every t € ). Moreover, if for every t € Q,

A(t) is a partial isometry, then so is A(#)* [1, Theorem 6.3.3, p. 252], and

P*P = PP+ = I, 'l:he remainder of the conclusion is obtained with Q = P,
V=U* and C = B. [ |

The following corollary generalizes the main part of Corollary 9.2.

Cororrary 9.3 (Equivalences of class C?). Let Q CRY be C-diffeo-
morphic to RY. Let A,B& C"(Q,C"*"). Then there exist

P,VEC’}(Q,C,':X"'), Q,UECV(Q,C::X")
such that

A=PBU=VBQ, U*U=UU*=1, V*V=VV*=I
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Moreover, if for every t € Q, A(t) and B(t) are partial isometries, then P and
Q may be chosen such that P(t) and Q(t) are unitary for every t € Q).

Proof. The conclusion is obtained by applying Corollary 9.2 to A and to
B, and by composing the equivalence between A and I™*" with the
equivalence between 1**" and B. [

The following corollary furnishes a global version of Corollary 3.4, as
indicated just before it.

Cororrary 9.4 (Rank decomposition of class C?). Let Q) CRY be CP-
diffeomorphic to RY. Let r €{1,2,...}. Let A € CP(Q,C**"). Then there exist
U,CeC’(Q,C") and V,B& C"(Q,CI*") such that

A=UB=CV, U*U=I, VV*=1,.

Proof. By Theorem 8.2, there exist u,...,u, € C’(£2,C™) such that for
every t € Q, (u(#),...,u,(t)) is an orthonormal basis of Im A(#). Let U=
[u, -+ u,lecC’(Q,C"*). By Corollary 4.2(a), there exists B &
CP(Q,C™") such that UB = A. Then r =rank A < rank B < r implies that
rank B = r, and on the other hand, it is obvious that U*U = 1.

By the part of Corollary 9.4 proved so far applied to A*, there exist
UeC’(Q,C" ") and BeCP(Q,Cr*™) such that A*=UB, U*U=1,, and
the remainder of the conclusion is obtained with V= U* and C = B*. [ |

ReEmark. If ) is a connected topological space and P € C%(2,C" ") is
a projector valued function, then rank P is constant, because rank P =tr P is
a continuous function with values in {0,1,...}.

The following corollary furnishes an extension of [12, 11.4.5].

CoroLLaRy 9.5 (Simultaneous diagonalization of class C? of a basis family
of projector valued functions). Let Q CRY be C?-diffeomorphic to RY. Let
P,,..., P, e C"(Q,C""") be such that

PP=5,P, P,#0, Vi,je{l,...,s}, P +--+P=1I,.

ijhir

For every i €{l,...,s}, let r,=rank P, (cf. the remark above) and D, =
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diag[&illrl,.. 8,1 ). Then there exists U € CP(Q,C"*") such that

LST

P(t) =U(t)D,U(t)"' =U,(t)P(t,)U, ()"

Vie(l,...,s}, tt,€Q,

where U, (1) = UU(t,) ™", for every t,t, € Q. Moreover, if for every i €
{1,....s) and t€ Q, P(t) is an orthogonal projector (that is to say, P(t)* =
Pi(t)) then U(t) and U,(t) are unitary for every t,t, € Q.

Proof. 1Tt is well known that the hypothesis on (P,);_; implies that
ImP(t)+ - +ImP(t)=C" Viel. 1)
Consequently, r,+ -+ + r,=n. By virtue of Theorem 8.2, for every i €
{1,..., s}, there ex1st Ui € C"(£),C") such that for every t€Q,
(ull(t) o, (8)) is an orthonormal basis of Im P,(¢). Let
U=[®wa ] Vie{l,...,s}, Uv=[U, - U]

1

Let i€{l,...,s}. For every k€{l,...,s} we have P,U, =U,, because
Im P, = Im Uy; consequently

PU=P[U, -+ U]=p[PU, -+ PU]
=[PiPlUl PiP.s'Us]
=[8ilU1 T u 5]_UD

The relation (1) implies that rank U = n; consequently, P,=UD,U"", and
P(t)=U()D,U(t) "' =U(t)U(ty) ' P(t,)U(t,)U(2) "
=U, (1) P(t,)U,, ()" Vi, t, €,
where U, (t) = UU(t,) ™" for every t,t, € Q.
If for every t€ (), P(t),...,P(t) are orthogonal projectors, then the

direct sum (1) is orthogonal, and therefore U(t) is unitary for every t € Q.
|
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Revark.  Corollary 9.5 may be applied to the diagonalization of class C”
of a projector valued function P, by applving it to the basis family (P, 1, — P).

Cororrary 9.6 (Unitary rank block diagonalization of class C”).  Let
Q cRY be CP-diffeomorphic to RY. Let n€{2,3,...} and re{l,..., n—1}.
Let A€ CP(Q,Cr™") be such that

Im A(t) =[Ker A(t)] * Ve

(this condition is satisfied in particular when A(t) is normal ). Then there exist
UeC"(Q,C") and A, € C"(Q,CL™") such that

A =Udiag[A,,0,_,]U*, UxU=UU*=1,.

Proof. By Theorem 8.2, there cxist uy,...,u, € C’(£2,C") such that for
every t€Q, (ut),...,u (t)) is an orthonormal basis of Im A(t) and
(u,.(t),....u,(£)) is an orthonormal basis of [Im A()]". Let

U]:[lll ur]s ng[ul‘+l un], U=|:L7l Uzl
Then for every t € Q, U(t) is unitary, and
Im[A(t)U\(t)] € Tm A(t) = Im U,(¢t), rank U (t) = r;

therefore, by Corollary 4.2(a), there exists A; € C”(Q,C"*") such that U A,
= AU,. On the other hand, AU, =0, because, by hypothesis, (Im A)* =
Ker A. Thus,

AU=[AU, AU =[UA, 0]=Udiag[A,,0,_],
which implies the conclusion. [ ]

The author would like to express his gratitude to Professor J.-M. Gracia
for his strong encouragements in the generalization of the theorem due to V.
Dolezal [3), and for the communication of important references.
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