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Context-free grammars are widely used for the simple form of their rules. A derivation step
consists of the choice of a nonterminal of the sentential form and of an application of a rule
rewriting it. Several regulations of the derivation process have been studied to increase the
power of context-free grammars. In the resulting grammars, however, not only the symbols
to be rewritten are restricted, but also the rules to be applied. In this paper, we study
context-free grammars with a simpler restriction where only symbols to be rewritten are
restricted, not the rules, in the sense that any rule rewriting the chosen nonterminal can be
applied. We prove that these grammars have the same power as random context, matrix,
or programmed grammars. We also present two improved normal forms and discuss the
characterization of context-sensitive languages by a variant using strings of length at most
two instead of symbols.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and definitions

Context-free grammars are one of the most investigated families of grammars in formal language theory. We can see
that each derivation step can be characterized so that a nonterminal of the current sentential form is chosen, and any of the
rules rewriting this nonterminal is applied. On the other hand, however, it is well known that these grammars are not able
to cover all aspects of natural and programming languages. Therefore, many types of grammars with context-free rules and
with some additional mechanisms controlling the application of rules were defined. Such grammars can describe some of
the phenomena of natural and programming languages. For instance, in 1971, van der Walt [14] introduced random context
grammars as a type of regulated grammars which, e.g., can include the aspect that only declared variables are used in
programming languages. The basic idea is that a (context-free) rule can only be applied if certain nonterminals are present
or absent in the current sentential form. Formally, we have the following concept.

A random context grammar is a quadruple G = (N, T , P , S) where N is an alphabet of nonterminals, T is an alphabet of
terminals such that N ∩ T = ∅, S ∈ N is the start symbol, and P is a finite set of rules of the form (A → w, Q , R) with A ∈ N ,
w ∈ (N ∪ T )∗ , and Q , R ⊆ N . For a rule p = (A → w, Q , R) ∈ P , A → w is called the core rule of p, Q is called the permitting
context of p (or of A → w , for short) and R is the forbidding context of p (or of A → w). If for all rules (A → w, Q , R) ∈ P ,
Q = ∅, then G is said to be a forbidding random context grammar. Analogously, if for all rules (A → w, Q , R) ∈ P , R = ∅,
then G is said to be a permitting random context grammar. If (A → w, Q , R) ∈ P implies w ∈ (N ∪ T )+ is a non-empty
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string, then G is non-erasing. A sentential form x ∈ (N ∪ T )+ can directly derive a word y ∈ (N ∪ T )∗ , written as x 	⇒ y, if
and only if there is a rule (A → w, Q , R) ∈ P such that

1. x = x1 Ax2 for certain words x1, x2 ∈ (N ∪ T )∗ ,
2. x1 Ax2 contains each letter of Q and no letter of R , and
3. y = x1 wx2.

The language generated by G is defined as L(G) = {z ∈ T ∗ | S 	⇒∗ z}, where 	⇒∗ is the reflexive and transitive closure of
the relation 	⇒.

Denote the families of languages generated by random context grammars, non-erasing random context grammars, per-
mitting random context grammars, non-erasing permitting random context grammars, forbidding random context grammars,
and non-erasing forbidding random context grammars by L(RC), L(RC − λ), L(P ), L(P − λ), L(F ), and L(F − λ), respec-
tively.

A random context grammar G is a modified random context grammar if it satisfies the following requirement instead of
condition 2.

2′ . x1x2 contains each letter of Q and no letter of R .

Later we will see that these two conditions are equivalent.
It has been shown that the family L(RC) coincides with the family L(R E) of recursively enumerable languages whereas

the family L(RC − λ) is equal to the family of languages generated by matrix or programmed grammars with appearance
checking and without erasing rules and is a proper subfamily of the family L(C S) of context-sensitive or, equivalently,
monotone languages.

In the sequel, further variants of random context grammars have been defined. For instance, in 1985, Păun [13] discussed
semi-conditional grammars, where permitting and forbidding contexts are replaced with permitting and forbidding strings.
According to the length of these strings, semi-conditional grammars of degree (i, j), for i, j � 0, were defined. It was
shown that non-erasing semi-conditional grammars of degree (i, j), for 1 � i, j � 2, i �= j, characterize the family L(C S).
Furthermore, it is shown in [7] that degree (1,1) is sufficient for these grammars to characterize the family L(RC), or
L(RC − λ) if they are non-erasing (see also [10]). In addition, some further modifications are studied in [6,9]. The reader is
also referred to the monographs [2] and [11].

Consider a derivation step of the above discussed regulated context-free grammars. This derivation step can be char-
acterized so that a set of applicable rules is determined according to symbols appearing in the sentential form, a set of
nonterminals that can be rewritten is determined according to the set of applicable rules, one of these nonterminals is
chosen and rewritten by an applicable rule rewriting this nonterminal. Obviously, there are two types of rules rewriting
the chosen nonterminal. The one consists of rules that cannot be applied to the current sentential form, while the other
consists of those that can be applied. For instance, for a sentential form ABC and rules (B → α, {A},∅) and (B → β,∅, {C}),
the former rule is applicable, while the latter is not. Note that this is not how context-free grammars behave. If context-free
grammars can rewrite a nonterminal, then this nonterminal can be rewritten by an arbitrary rule rewriting it.

Motivated by these observations, we define a new, simpler type of regulated context-free grammars.

Definition 1. A restricted context-free grammar is a quintuple G = (N, T , P , S, f ) where N is an alphabet of nonterminals, T
is an alphabet of terminals such that N ∩ T = ∅, S ∈ N is the start symbol, P is a finite set of context-free rules (i.e., rules
of the form A → w with A ∈ N and w ∈ (N ∪ T )∗), and f : N → {+,−} × N is a function which maps every nonterminal to
a signed nonterminal. The grammar G is non-erasing if all its rules are non-erasing.

We say that x directly derives y in G , written as x 	⇒ y, if the following two conditions are satisfied:

1. x = x1 Ax2, y = x1 wx2, A → w ∈ P ,
2. f (A) = (+, B) implies that x contains B , and f (A) = (−, B) implies that x does not contain B .

The language generated by G consists of all words z over T with S 	⇒∗ z, where 	⇒∗ is the reflexive and transitive closure
of the relation 	⇒, i.e., L(G) = {z ∈ T ∗ | S 	⇒∗ z}.

By this definition, a rule can only be applied if the condition given by the function f is satisfied. We note the differences
to random context grammars mentioned above.

(i) The condition is associated with the nonterminal which is replaced by the rule under application, not with the rule.
Thus, the context is the same for all rules with the same left-hand side.

(ii) For every nonterminal, there is only a forbidding context or only a permitting context. Moreover, the context is a sin-
gleton.
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Thus, each derivation step of restricted context-free grammars can be characterized so that a set of applicable nonterminals
is determined according to symbols appearing in the sentential form, an applicable nonterminal is chosen and rewritten by
an arbitrary rule rewriting this nonterminal. Note that except for the context checking, these grammars behave like context-
free grammars. Therefore, we believe that restricted context-free grammars are the simplest type of grammars where the
derivation is controlled by the structure of the sentential form.

In [8], it is shown that every recursively enumerable language is generated by a restricted context-free grammar with
erasing rules, but the power of the non-erasing variant was left open. In this paper, we prove that this variant has the same
power as random context (matrix, programmed) grammars. In addition, we improve some normal forms proved in [8].

Analogously to the case of random context grammars, we define two special types of restricted context-free grammars
– permitting and forbidding restricted context-free grammars – so that we define f : N → {+} × N or f : N → {−} × N ,
respectively. We denote the families of languages generated by restricted context-free grammars, non-erasing restricted
context-free grammars, permitting restricted context-free grammars, permitting non-erasing restricted context-free gram-
mars, forbidding restricted context-free grammars, and forbidding non-erasing restricted context-free grammars by L(rC F ),
L(rC F − λ), L(rC F+), L(rC F+ − λ), L(rC F−), and L(rC F− − λ), respectively.

In [4], Gazdag proved that L(rC F+ − λ) and L(rC F−) properly contain the family L(C F ) of context-free languages. It is
easy to modify Example 1 of [4] to show the proper containment L(C F ) ⊂ L(rC F− − λ).

2. Hierarchy results

The aim of this section is to characterize the generative power of restricted context-free grammars. First, however, we
prove the following lemma.

Lemma 2. For every (permitting, forbidding) random context grammar G, there is a (permitting, forbidding) modified random context
grammar G ′ such that L(G) = L(G ′), and vice versa. Moreover, G is non-erasing if and only if G ′ is non-erasing.

Proof. Let G = (N, T , P , S) be a (permitting, forbidding) random context grammar. Construct the modified random context
grammar G ′ = (N, T , P ′, S) of the same type so that

P ′ = {(
A → x, Q \ {A}, R

) ∣∣ (A → x, Q , R) ∈ P and A /∈ R
}
.

The derivation step x1 Ax2 	⇒ x1 wx2 made by an application of (A → w, Q , R) ∈ P in G means that A /∈ R . Thus, x1 Ax2 	⇒
x1 wx2 can also be generated in G ′ by an application of the rule (A → w, Q \{A}, R) ∈ P ′ . Conversely, given a sentential form
over N ∪ T in G ′ , every derivation step is of the form x1 Ax2 	⇒ x1 wx2 made by an application of (A → w, Q \ {A}, R) ∈ P ′ .
Then, x1 Ax2 	⇒ x1 wx2 is generated by an application of the rule (A → w, Q , R) ∈ P in G because A /∈ R . Thus, L(G) =
L(G ′).

On the other hand, let G = (N, T , P , S) be a modified (permitting, forbidding) random context grammar. Construct the
random context grammar G ′ = (N ∪ N ′, T , P ′, S) of the same type, where N ′ = {A′ | A ∈ N}, N ∩ N ′ = ∅, and P ′ is defined as
follows:

1. P ′ = {(A → A′,∅, N ′) | A ∈ N}∪{(A′ → x, Q , R) | (A → x, Q , R) ∈ P } for G being a modified (forbidding) random context
grammar, or

2. P ′ = {(A → A′,∅,∅) | A ∈ N} ∪ {(A′ → x, Q ,∅) | (A → x, Q ,∅) ∈ P } for G being a modified permitting random context
grammar.

The derivation step x1 Ax2 	⇒ x1 wx2 in G is simulated by the two step derivation x1 Ax2 	⇒ x1 A′x2 	⇒ x1 wx2 in G ′ . Thus,
L(G) ⊆ L(G ′) is satisfied.

Conversely, given a sentential form over N ∪ T in G ′ , the only possible two step derivation in a (forbidding) random
context grammar G ′ is of the form x1 Ax2 	⇒ x1 A′x2 	⇒ x1 wx2, where x1 Ax2 	⇒ x1 wx2 is a derivation in G . Therefore, we
also get L(G ′) ⊆ L(G).

In the case of permitting random context grammars, we can obtain sentential forms with some occurrences of primed
letters, since we can change any nonterminal B to B ′ at any time. Let g : (N ∪ N ′)∗ → N∗ be a homomorphism defined by
g(B) = g(B ′) = B , for B ∈ N . Then, x1 A′x2 	⇒ x1 wx2 with x1, x2 ∈ (N ∪ N ′)∗ holds in G ′ according to (A′ → w, Q ,∅) only
if g(x1)Ag(x2) 	⇒ g(x1)wg(x2) holds in G . Hence, L(G ′) ⊆ L(G) is shown.

Summarized, we have shown that L(G) = L(G ′). �
The following lemma is the key statement to prove the main result of this paper.

Lemma 3. For every (non-erasing) modified random context grammar G = (N, T , P , S) and every symbol d ∈ T , there is a (non-
erasing) restricted context-free grammar G ′ such that L(G ′) = {d}L(G).
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Proof. Let G = (N, T , P , S) be a modified random context grammar, and let N = {A1, A2, . . . , An}, for some n � 1. For A ∈ N ,
let mA be the number of rules of the form (A → w, Q , R) in P . We set

m = mA1 + mA2 + · · · + mAn .

Moreover, for 1 � i � mA , let(
A → wi,A, {Bi,A,1, Bi,A,2, . . . , Bi,A,ri,A }, {Ci,A,1, Ci,A,2, . . . , Ci,A,si,A }) (1)

be the ith rule with a core rule with left-hand side A. We construct the restricted context-free grammar G ′ =
(N ′, T , P ′, S ′, f ) where

N ′ = N ∪ {
S ′, Y

} ∪ {
(A, i)

∣∣ A ∈ N, 1 � i � mA
} ∪ {

(A, i)′
∣∣ A ∈ N, 1 � i � mA

}
∪ {

(A, i, j)
∣∣ A ∈ N, 1 � i � mA, 1 � j � 2m + ri,A + si,A + 1

}
,

P ′ consists of all rules given in the following enumeration, and f is defined as in the following enumeration:

1. for S ′ , we have the rule S ′ → Y S and f (S ′) = (+, S ′),
2. for A ∈ N , we have the rules A → (A, i) with 1 � i � mA and f (A) = (+, Y ),
3. for (A, i) with A ∈ N , 1 � i � mA , we have the rule (A, i) → (A, i)′ and f ((A, i)) = (−, (A, i)′),
4. for (A, i)′ with A ∈ N , 1 � i � mA , we have the rule

(A, i)′ → wi,A and f
(
(A, i)′

) = (+, (A, i,2m + ri,A + si,A + 1)
)
,

5. for Y , we have the rules Y → (A, i,1) with A ∈ N , 1 � i � mA , Y → d and f (Y ) = (+, Y ),
6. for (A, i, j) with A ∈ N , 1 � i � mA ,

∑k−1
t=1 mAt + 1 � j �

∑k
t=1 mAt , 1 � k � n, we have the rule

(A, i, j) → (A, i, j + 1) and f
(
(A, i, j)

) =
(

−,

(
Ak, j −

k−1∑
t=1

mAt

))
,

7. for (Ah, i, j) with 1 � i � mAh , m + ∑k−1
t=1 mAt + 1 � j � m + ∑k

t=1 mAt , 1 � k � h − 1, we have the rule

(Ah, i, j) → (Ah, i, j + 1) and f
(
(Ah, i, j)

) =
(

−,

(
Ak, j − m −

k−1∑
t=1

mAt

)′)
,

8. for (Ah, i, j) with 1 � h � n, 1 � i � mAh , m + ∑h−1
t=1 mAt + 1 � j � m + i − 1 + ∑h−1

t=1 mAt , we have the rule

(Ah, i, j) → (Ah, i, j + 1) and f
(
(Ah, i, j)

) =
(

−,

(
Ah, j − m −

h−1∑
t=1

mAt

)′)
,

9. for (Ah, i,m + i + ∑h−1
t=1 mAt ) with 1 � h � n, 1 � i � mAh , we have the rule(

Ah, i,m + i +
h−1∑
t=1

mAt

)
→

(
Ah, i,m + i + 1 +

h−1∑
t=1

mAt

)
and

f

((
Ah, i,m + i +

h−1∑
t=1

mAt

))
= (+, (Ah, i)′

)
,

10. for (Ah, i, j) with 1 � h � n, 1 � i � mAh , m + ∑h−1
t=1 mAt + 1 + i � j � m + ∑h

t=1 mAt , we have the rule

(Ah, i, j) → (Ah, i, j + 1) and f
(
(Ah, i, j)

) =
(

−,

(
Ah, j − m −

h−1∑
t=1

mAt

)′)
,

11. for (Ah, i, j) with 1 � h � n, 1 � i � mAh , m + ∑k−1
t=1 mAt + 1 � j � m + ∑k

t=1 mAt , h + 1 � k � n, we have the rule

(Ah, i, j) → (Ah, i, j + 1) and f
(
(Ah, i, j)

) =
(

−,

(
Ak, j − m −

k−1∑
t=1

mAt

)′)
,

12. for (A, i, j) with 1 � i � mA , 2m + 1 � j � 2m + ri,A , we have the rule

(A, i, j) → (A, i, j + 1) and f
(
(A, i, j)

) = (+, Bi,A, j−2m),
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13. for (A, i, j) with 1 � i � mA , 2m + ri,A + 1 � j � 2m + ri,A + si,A , we have the rule

(A, i, j) → (A, i, j + 1) and f
(
(A, i, j)

) = (−, Ci,A, j−2m−ri,A ),

14. for (A, i,2m + ri,A + si,A + 1) with 1 � i � mA , we have the rule

(A, i,2m + ri,A + si,A + 1) → Y and f
(
(A, i,2m + ri,A + si,A + 1)

) = (−, (A, i)′
)
.

The rule of group 1 generates Y S from S ′ , S derives words of L(G) and Y derives d. Assume that we have a sentential
form Y x with some sentential form x of G . As long as Y is present we can apply the rules of group 2, i.e., we replace some
nonterminals A by (A, i) with 1 � i � mA . Moreover, we can replace exactly one occurrence of (A, i) by (A, i)′ , see the rules
of group 3. Thus, the sentential form can contain at most one occurrence of (A, i)′ for each A ∈ N and 1 � i � mA . Now
assume that we change Y according to the rules of group 5. Then, we obtain a sentential form which starts with (A, i,1),
for some A ∈ N and 1 � i � mA , or with d. Assume that we applied Y → (Ah, i,1), i.e., we choose a nonterminal Ah and
the ith rule with a core rule with left-hand side Ah . By our above settings, this ith rule has the form given in (1). Now we
essentially have to apply the rules given in groups 6–13. Rules of group 6 check the absence of nonterminals

(A1,1), (A1,2), . . . , (A1,mA1), (A2,1), (A2,2), . . . , (A2,mA2), . . . , (An,1), (An,2), . . . , (An,mAn ).

We mention that these checks have not been done in succession because we can replace some (A, i) by (A, i)′ as long as
the absence of (A, i) was not checked. Rules of group 7 check the absence of nonterminals

(A1,1)′, (A1,2)′, . . . , (A1,mA1)
′, (A2,1)′, . . . , (A2,mA2)

′, . . . , (Ah−1,1)′, . . . , (Ah−1,mAh−1)
′.

Rules in group 8 check the absence of (Ah,1)′ , (Ah,2)′ , . . ., (Ah, i − 1)′ . The rule in group 9 checks the presence of the
nonterminal (Ah, i)′ . Rules of group 10 check the absence of nonterminals (Ah, i + 1)′, (Ah, i + 2)′, . . . , (Ah,mAh )

′ , and rules
of group 11 check the absence of nonterminals

(Ah+1,1)′, . . . , (Ah+1,mAh+1)
′, (Ah+2,1)′, . . . , (Ah+2,mAh+2)

′, . . . , (An,1)′, . . . , (An,mAn )
′.

If all these checks are positive, then the derivation before the checks was of the form

Y w = Y x1 Ahx2 	⇒ Y x1(Ah, i)x2 	⇒ Y x1(Ah, i)′x2

(where the last step can be performed until the absence of (Ah, i) is checked by a rule of group 6). Now we check by the
rules of group 12 the presence of letters in the permitting context of the rule Ah → wi,Ah , and by the rules of group 13 the
absence of nonterminals in the forbidding context (note that we here need the assumption that G is a modified random
context grammar because we test only the occurrence/non-occurrence in x1x2). Now the only applicable rule is that of
group 4 which gives the following sentential form (Ah, i,2m + ri,Ah + si,Ah + 1)x1 wi,Ah x2. Then, we have to apply the rule
of group 14 which gives the sentential form Y x1 wi,Ah x2. Thus we have simulated one derivation step of G in G ′ .

Now, assume that we applied the rule Y → d of group 5, which gives the sentential form dw . If w contains a nonter-
minal, we can perform some replacements according to the rules of group 3, but the derivation cannot terminate (see the
rules of group 4). Therefore, every terminating derivation in G ′ has the form

S ′ 	⇒ Y S 	⇒∗ Y y1 	⇒∗ Y y2 	⇒∗ · · · 	⇒∗ Y yz 	⇒ dyz

where S 	⇒∗ y1 	⇒∗ y2 	⇒∗ · · · 	⇒∗ yz is a terminating derivation in G . Hence L(G ′) = {d}L(G). �
The following theorem is the main result of this paper.

Theorem 4. L(RC − λ) = L(rC F − λ) and L(RC) = L(rC F ).

Proof. (i) Let G = (N, T , P , S, f ) be a (non-erasing) restricted context-free grammar. We construct the (non-erasing) random
context grammar G ′ = (N, T , P ′, S) with

P ′ = {(
A → w, {B},∅) ∣∣ A → w ∈ P , f (A) = (+, B)

} ∪ {(
A → w,∅, {B}) ∣∣ A → w ∈ P , f (A) = (−, B)

}
.

It is easy to see that x1 Ax2 	⇒ x1 wx2 holds in G ′ if and only if it holds in G . Hence, L(G ′) = L(G), which proves the
inclusions L(rC F ) ⊆ L(RC) and L(rC F − λ) ⊆ L(RC − λ).

(ii) Let G be a random context grammar. By Lemma 2, there is a modified random context grammar G1 with L(G) =
L(G1). According to Lemma 3, we construct the restricted context-free grammar G ′

1 where we use the rule Y → λ instead
of Y → d in group 5. Then, we obtain that L(G ′

1) = L(G). Thus, we have shown that L(RC) ⊆ L(rC F ).
(iii) Let L ⊆ T ∗ be a language generated by a non-erasing random context grammar. For a ∈ T , let La = {w | aw ∈ L}.

Obviously,

L =
⋃

{a}La. (2)

a∈T
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By Lemma 2 and [2, Corollary of Theorem 1.3.2], La is generated by a non-erasing modified random context grammar Ga .
By Lemma 3, we construct a non-erasing restricted context-free grammar G ′

a = (Na, T , Pa, S ′, fa) such that L(G ′
a) = {a}La .

By the proof of Lemma 3, we can assume that Na ∩ Nb = {S ′}, for all a,b ∈ T , a �= b, and fa(S ′) = (+, S ′) for all a ∈ T . It is
easy to see that

G ′ =
( ⋃

a∈T

Na, T ,
⋃
a∈T

Pa, S ′, f

)

with f (X) = fa(X), for X ∈ Na , is a non-erasing restricted context-free grammar with L(G ′) = ⋃
a∈T {a}La . By Eq. (2),

L(G ′) = L holds. Thus, L(RC − λ) ⊆ L(rC F − λ) is shown.
By a combination of (i), (ii), and (iii), the statement is shown. �
In the following part of this section, we prove analogous results for permitting restricted context-free grammars. How-

ever, an analogous question concerning the power of forbidding restricted context-free grammars is an open problem.

Lemma 5. For every (non-erasing) permitting random context grammar G = (N, T , P , S) and every symbol d ∈ T , there is a (non-
erasing) permitting restricted context-free grammar G ′ such that L(G ′) = {d}L(G).

Proof. Let G = (N, T , P , S) be a permitting random context grammar, and let N = {A1, A2, . . . , An}, for some n � 1. For
A ∈ N , let mA be the number of rules of the form (A → w, Q ,∅) in P , and let m = mA1 + mA2 + · · · + mAn . For 1 � i � mA ,
let (

A → wi,A, {Bi,A,1, Bi,A,2, . . . , Bi,A,ri,A },∅)
(3)

be the ith rule with a core rule with left-hand side A. We construct the permitting restricted context-free grammar G ′ =
(N ′, T , P ′, S ′, f ) where

N ′ = N ∪ {
S ′, Y

} ∪ {
(A, i)

∣∣ A ∈ N, 1 � i � mA
} ∪ {

(Y , A, i)
∣∣ A ∈ N, 1 � i � mA

}
∪ {

(A, i, j,k)
∣∣ A ∈ N, 1 � i � mA, 1 � j � ri,A, 0 � k � mBi,A, j

}
,

P ′ consists of all rules given in the following enumeration, and f is defined as in the following enumeration:

1. for S ′ , we have the rule S ′ → Y S and f (S ′) = (+, S ′),
2. for A ∈ N , we have the rules A → (A, i) with 1 � i � mA and f (A) = (+, Y ),
3. for Y , we have the rules Y → (A, i,1,k) with A ∈ N , 1 � i � mA , 0 � k � mBi,A,1 , Y → d and f (Y ) = (+, Y ),
4. for (A, i, j,0) with 1 � i � mA , 1 � j � ri,A − 1, we have the rules

(A, i, j,0) → (
A, i, j + 1,k′) for 0 � k′ � mBi,A, j+1 and f

(
(A, i, j,0)

) = (+, Bi,A, j),

5. for (A, i, ri,A,0) with 1 � i � mA , we have the rules

(A, i, ri,A,0) → (Y , A, i) and f
(
(A, i, ri,A,0)

) = (+, Bi,A,ri,A ),

6. for (A, i, j,k) with 1 � i � mA , 1 � j � ri,A − 1, 1 � k � mBi,A, j , we have the rules

(A, i, j,k) → (
A, i, j + 1,k′) for 0 � k′ � mBi,A, j+1 and f

(
(A, i, j,k)

) = (+, (Bi,A, j,k)
)
,

7. for (A, i, ri,A,k) with 1 � i � mA , 1 � k � mBi,A,ri,A
, we have the rule

(A, i, ri,A,k) → (Y , A, i) and f
(
(A, i, ri,A,k)

) = (+, (Bi,A,ri,A ,k)
)
,

8. for A ∈ N and 1 � i � mA , we have the rule (A, i) → wi,A and f ((A, i)) = (+, (Y , A, i)),
9. and for (Y , A, i), we have the rule (Y , A, i) → Y and f ((Y , A, i)) = (+, (Y , A, i)).

Let U = T ∪ N ∪ {S ′} ∪ {(A, i) | A ∈ N, 1 � i � mA}. The rule of group 1 derives Y S from S ′ , S derives words of L(G) and
Y derives d. Consider a sentential form Y x with x ∈ U∗ such that g(x) is a sentential form of G for the homomorphism
g : U∗ → (N∗ ∪ {S ′}) defined as g(A) = A, for A ∈ T ∪ N ∪ {S ′}, and g((A, i)) = A, for A ∈ N and 1 � i � mA . As long as Y
is present we can apply the rules of group 2, i.e., we replace some nonterminals A by (A, i) with 1 � i � mA . Now assume
that we change Y according to the rules of group 3. Then, we obtain a sentential form which starts with (A, i,1,k), for
some A ∈ N , 1 � i � mA and 0 � k � mBi,A,1 , or with d. Assume that we apply Y → (A, i,1,k), which means that we choose
a nonterminal A and the ith rule with a core rule with left-hand side A. This ith rule has the form given in (3). Now we
essentially have to apply rules of groups 4–9. Rules of groups 4–5 check the presence of nonterminals

Bi,A,1, Bi,A,2, . . . , Bi,A,r
i,A
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and rules of groups 6–7 check the presence of nonterminals

(Bi,A,1,k1), (Bi,A,2,k2), . . . , (Bi,A,ri,A ,kri,A )

for certain numbers ku , 1 � u � ri,A . Essentially, we check that all the symbols Bi,A,1, Bi,A,2, . . . , Bi,A,ri,A occur in g(x). If all
these checks are positive, then we can replace (A, i) by wi,A by the rule of group 8 simulating the rule A → wi,A . Now the
only applicable rule is a rule of group 9 replacing (Y , A, i) by Y . Thus, we have simulated one derivation step of G in G ′ .

Note that we can replace some nonterminals (A, i) by rules of group 8 which means that we simulate some applications
of A → wi,A . If no rule with left-hand side (A, i) is applied, then, by the application of a rule of group 9, we return to the
sentential form we started from.

If we use the rule Y → d of group 3, we get the sentential form dw . In that case, however, if w contains a nonterminal,
the derivation cannot terminate (see the rules of group 8). Therefore, every terminating derivation in G ′ has the form S ′ 	⇒
Y S 	⇒∗ Y y1 	⇒∗ Y y2 	⇒∗ · · · 	⇒∗ Y yz 	⇒ dyz where S 	⇒∗ g(y1) 	⇒∗ g(y2) 	⇒∗ · · · 	⇒∗ g(yz) = yz is a terminating
derivation in G . Hence, L(G ′) = {d}L(G) is shown. �
Theorem 6. L(P − λ) = L(rC F+ − λ) and L(P ) = L(rC F+).

Proof. (i) Let G = (N, T , P , S, f ) be a (non-erasing) permitting restricted context-free grammar. We construct the (non-
erasing) permitting random context grammar G ′ = (N, T , P ′, S) with

P ′ = {
(A → w, {B},∅)

∣∣ A → w ∈ P , f (A) = (+, B), A �= B
}

∪ {
(A → w,∅,∅)

∣∣ A → w ∈ P , f (A) = (+, A)
}
.

It is easy to see that x1 Ax2 	⇒ x1 wx2 holds in G ′ if and only if it holds in G . Hence L(G ′) = L(G), which proves the
inclusions L(rC F+) ⊆ L(P ) and L(rC F+ − λ) ⊆ L(P − λ).

(ii) Let G be a permitting random context grammar. According to Lemma 5, we construct the restricted context-free
grammar G ′ where we use the rule Y → λ instead of Y → d in group 3. Then, L(G ′) = L(G). Thus, L(P ) ⊆ L(rC F+) is
shown.

(iii) Let L ⊆ T ∗ be a language generated by a non-erasing permitting random context grammar. For a ∈ T , let La =
{w | aw ∈ L}. Obviously, L = ⋃

a∈T {a}La . By [2, Corollary of Theorem 1.3.2], La is generated by a non-erasing permitting
random context grammar Ga . By Lemma 5, we construct a non-erasing permitting restricted context-free grammar G ′

a =
(Na, T , Pa, S ′, fa) such that L(G ′

a) = {a}La . We can assume that Na ∩ Nb = {S ′}, for all a,b ∈ T , a �= b, and fa(S ′) = (+, S ′),
for all a ∈ T . Then, G ′ = (

⋃
a∈T Na, T ,

⋃
a∈T Pa, S ′, f ) with f (X) = fa(X), for X ∈ Na , is a non-erasing permitting restricted

context-free grammar satisfying L(G ′) = ⋃
a∈T {a}La = L. This proves L(P − λ) ⊆ L(rC F+ − λ). �

As an immediate consequence of Theorems 4 and 6, we have the following corollary.

Corollary 7. Let L(C F ) and L(R EC) denote the families of context-free and recursive languages, respectively. Then, the following
holds:

1. L(C F ) ⊂ L(rC F+) = L(P ) = L(P − λ) = L(rC F+ − λ) ⊂ L(RC − λ),
2. L(C F ) ⊂ L(rC F−) ⊆ L(F ) ⊂ L(R EC), and
3. L(C F ) ⊂ L(rC F− − λ) ⊆ L(F − λ) ⊂ L(RC − λ).

Proof. First, note that the equation L(P ) = L(P − λ) has recently been shown in [16]. In addition, it is not hard to con-
struct a permitting random context grammar G ′ generating a non-context-free language L(G ′) = {anbncn | n � 1} (see [2,
Example 1.1.7]). By Lemma 5, there is a permitting restricted context-free grammar G such that L(G) = {danbncn | n � 1}, for
d ∈ {a,b, c}. Thus, we have L(C F ) ⊂ L(rC F+ − λ). Proofs of the remaining proper inclusions can be found in [1,3,4,15]. �
3. Consequences concerning normal forms

In this section, we present some consequences for normal forms of random context and matrix grammars. We first start
with the definition of the latter type of grammars.

A matrix grammar is a construct G = (N, T , M, S, F ) where N , T , and S are as in a restricted context-free grammar, M is
a finite set of sequences (matrices) of the form [r1, r2, . . . , rn], where n � 1 and ri is a context-free rule, for 1 � i � n, and F
is a finite set of context-free rules. For u ∈ (N ∪ T )+ , v ∈ (N ∪ T )∗ , and [r1, r2, . . . , rn] ∈ M , u 	⇒ v holds if and only if there
are words x0, x1, . . . , xn−1 ∈ (N ∪ T )+ and xn ∈ (N ∪ T )∗ such that

1. x0 = u and xn = v ,
2. for 1 � i � n, xi−1 	⇒ xi by an application of ri , or ri is not applicable to xi−1, ri ∈ F and xi = xi−1.
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The language of G is defined as L(G) = {z ∈ T ∗ | S 	⇒∗ z}, where 	⇒∗ is the reflexive and transitive closure of the relation
	⇒.

Intuitively, in a matrix grammar, the rules have to be applied in the order given by the matrices (and rules of F can be
ignored if they are not applicable).

We denote the families of languages generated by matrix grammars with and without erasing rules by L(M) and
L(M − λ), respectively. It is well known (see [2]) that

L(M) = L(RC) = L(R E) and L(M − λ) = L(RC − λ) ⊂ L(C S). (4)

We recall here the following known normal form for matrix grammars (see [2, Lemmas 1.2.3 and 1.3.1]). For every
L ∈ L(R E) (L ∈ L(M − λ)), there is a (non-erasing) matrix grammar G = (N ∪ {Z}, T , M, S, F ), for some Z /∈ N ∪ T , such that
L(G) = L, all matrices have the form

• [A → w] or [X → Y , A → w] with A, X, Y ∈ N , w ∈ (N ∪ T )∗ , and |w| � 2, and
• F consists only of rules of the form A → Z , where A ∈ N .

Using the simulation of matrix grammars by random context grammars (see [2, Proof of Theorem 1.2.3]), we obtain that,
for any language L ∈ L(R E) (resp. L ∈ L(RC − λ)), there is a (non-erasing) random context grammar G = (N, T , P , S) with
L(G) = L such that all rules are of the form (A → w, Q , R) with A ∈ N , w ∈ (N ∪ T )∗ , |w| � 2, and R, Q are two disjoint
subsets of N .

In [8], another normal form is given where the length of the right-hand sides is restricted by 3, but the forms of the
chain rules in matrix grammars and the permitting and forbidding contexts in random context grammars are more restricted
than in the above cases. We now prove that both these features (the length at most two and a further restriction to the
rules/contexts) can be combined.

Corollary 8. For every language L ∈ L(R E) (resp. L ∈ L(RC − λ)), there is a random context grammar G = (N, T , P , S) such that
L(G) = L with the following properties:

• if (A → w, Q , R) ∈ P , then |w| � 2, Q ∩ R = ∅, and #(Q ∪ R) = 1, where #(Q ∪ R) denotes the cardinality of Q ∪ R, and
• if (A → w1, Q 1, R1) ∈ P and (A → w2, Q 2, R2) ∈ P , then Q 1 = Q 2 and R1 = R2 .

Proof. Let L ∈ L(R E) (resp. L ∈ L(RC −λ)). Then, there is a (non-erasing) random context grammar G ′ = (N ′, T , P ′, S ′) such
that all rules (A → w, Q , R) ∈ P ′ satisfy |w| � 2. We now construct the restricted context-free grammar G ′′ = (N ′′, T , P ′′, S ′′)
from G ′ as done in proofs of Lemma 3 and Theorem 4. For all rules A → w ∈ P ′′ , |w| � 2 holds. From G ′′ we construct a ran-
dom context grammar G according to the proof of Theorem 4, part (i). It is easy to see that G satisfies all the requirements
of the statement. �

Note that there is no simpler normal form for random context grammars with respect to the following parameters: the
number of contexts (Q , R) associated with a nonterminal or a rule, the size of the context, and the length of the right-hand
side of the core rules. If we restrict the length of the right-hand sides by one, then we can generate only sentential forms
of length at most one, i.e., not all random context languages. If we add no contexts to the nonterminals or rules or the
size of the context, i.e., #(Q ∪ R) is bounded by 0, we get only context-free grammars and languages. Moreover, if we omit
forbidding or permitting contexts, then we only get permitting or forbidding random context grammars which are weaker
than random context grammars.

Corollary 9. For every language L ∈ L(R E) (resp. L ∈ L(M −λ)), there is a (non-erasing) matrix grammar G = (N ∪{Z}, T , M, S, F ),
for some Z /∈ N ∪ T , such that L(G) = L with the following conditions:

• every matrix has the form [A → A, B → w] with A, B ∈ N, |w| � 2 or [A → Z , B → w] with A, B ∈ N, |w| � 2,
• [r1, A → w1] and [r2, A → w2] imply that r1 = r2 , and
• F consists of all rules of the form A → Z occurring in matrices of M.

Proof. By (4), there is a random context grammar G ′ = (N, T , P , S) which satisfies the requirement of Corollary 8. Now we
replace

• any rule of the form (B → w, {A},∅) by the matrix [A → A, B → w], and
• any rule of the form (B → w,∅, {A}) by the matrix [A → Z , B → w].

Let M be the set of all matrices and F the set of all rules of the form A → Z obtained in this way. It follows (see
the construction in the beginning of the proof of [2, Theorem 1.2.3]) that the matrix grammar G = (N ∪ {Z}, T , M, S, F )

generates L(G ′) and hence L. Obviously, G satisfies the required conditions. �
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4. String restricted context-free grammars

The case of regulated context-free grammars where a presence and absence of a string instead of a symbol is required in
the sentential form has also been widely discussed in the literature. As mentioned above, it is sufficient to consider strings
of length no more than two. This motivates the following discussion.

Definition 10. A string restricted context-free grammar is a quintuple G = (N, T , P , S, f ) where N is an alphabet of nontermi-
nals, T is an alphabet of terminals such that N ∩ T = ∅, S ∈ N is the start symbol, P is a finite set of context-free rules, and
f : N → {+,−} × (N ∪ N N) is a function which maps every nonterminal to a signed string of length one or two. We say
that x directly derives y in G , written as x 	⇒ y, if the following two conditions are satisfied:

1. x = x1 Ax2, y = x1 wx2, A → w ∈ P ,
2. f (A) = (+,b) implies that x contains b as a substring, and f (A) = (−,b) implies that x does not contain b as a

substring.

The language generated by G is defined as L(G) = {z ∈ T ∗ | S 	⇒∗ z}, where 	⇒∗ is the reflexive and transitive closure of
the relation 	⇒.

We denote the families of languages generated by string restricted context-free grammars and non-erasing string re-
stricted context-free grammars by L(srC F ) and L(srC F − λ), respectively. Note that from Theorem 4 it immediately follows
that L(srC F ) = L(R E). Thus, only the family L(srC F − λ) is of interest. In this section, we show that this family coincides
with the family of context-sensitive languages.

Recall that a monotone grammar is a quadruple G = (N, T , P , S) where N is an alphabet of nonterminals, T is an alphabet
of terminals such that N ∩ T = ∅, S ∈ N is the start symbol, and P is a finite set of rules of the form u → v , where
u ∈ (N ∪ T )∗N(N ∪ T )∗ , v ∈ (N ∪ T )+ and |u| � |v|. A sentential form x = x1ux2 directly derives a word y = x1 vx2 in G ,
written as x 	⇒ y, if there is a rule u → v ∈ P . The language generated by G is L(G) = {z ∈ T ∗ | S 	⇒∗ z}.

A monotone grammar G = (N, T , P , S) is in Penttonen normal form if all its rules are of the following forms: (1) AB → AC ,
(2) A → BC , (3) A → a, where A, B, C ∈ N and a ∈ T . It is well known that monotone grammars characterize the family of
context-sensitive languages, and that any monotone grammar can be transformed to an equivalent monotone grammar in
Penttonen normal form, see [12].

Lemma 11. For every monotone grammar G = (N, T , P , S) in Penttonen normal form and every symbol d ∈ T , there is a non-erasing
string restricted context-free grammar G ′ such that L(G ′) = {d}L(G).

Proof. Let G = (N, T , P , S) be a monotone grammar, and assume that N = {A1, A2, . . . , An}, for some n � 1. For AB ∈ N N ,
let mAB be the number of rules of the form AB → A X in P , for X ∈ N . For 1 � i � n and 1 � j � mAi B , let

Ai B → Ai X(i, j) (5)

be the jth rule with left-hand side Ai B , and let mB = mA1 B + mA2 B + · · · + mAn B . Let πB be a bijection defined so that

πB(i, j) = k =
i−1∑
r=1

mAr B + j,

then the rule Ai B → Ai X(i, j) is the kth rule with left-hand side in N{B}. Let m = ∑n
i=1 mAi . We construct the string re-

stricted context-free grammar G ′ = (N ′, T , P ′, S ′, f ) where

N ′ = N ∪ {
S ′, Y

} ∪ {
(B, i)

∣∣ B ∈ N, 1 � i � mB
} ∪ {

(B, i)′
∣∣ B ∈ N,1 � i � mB

}
∪ {

(B, i,k)
∣∣ B ∈ N, 1 � i � mB , 1 � k � 2m + 2

}
,

P ′ consists of all rules given below, and f is defined as below:

1. for S ′ , we have the rule S ′ → Y S and f (S ′) = (+, S ′),
2. for A → w ∈ P , we have the rule A → w and f (A) = (+, Y ),
3. for B ∈ N , we have the rules B → (B, i) with 1 � i � mB , and f (B) = (+, Y ),
4. for (B,k) with B ∈ N , 1 � k � mB , we have the rule (B,k) → (B,k)′ and f ((B,k)) = (−, (B,k)′),
5. for (B,k)′ with B ∈ N , 1 � k � mB , we have the rule

(B,k)′ → Xπ−1
B (k)

and f
(
(B,k)′

) = (+, (B,k,2m + 2)
)
,

6. for Y , we have the rules Y → (A, i,1) with A ∈ N , 1 � i � mA , Y → d and f (Y ) = (+, Y ),
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7. for (A, i, j) with A ∈ N , 1 � i � mA ,
∑k−1

t=1 mAt + 1 � j �
∑k

t=1 mAt , 1 � k � n, we have the rule

(A, i, j) → (A, i, j + 1) and f
(
(A, i, j)

) =
(

−,

(
Ak, j −

k−1∑
t=1

mAt

))
,

8. for (Ah, i, j) with 1 � i � mAh , m + ∑k−1
t=1 mAt + 1 � j � m + ∑k

t=1 mAt , 1 � k � h − 1, we have the rule

(Ah, i, j) → (Ah, i, j + 1) and f
(
(Ah, i, j)

) =
(

−,

(
Ak, j − m −

k−1∑
t=1

mAt

)′)
,

9. for (Ah, i, j) with 1 � h � n, 1 � i � mAh , m + ∑h−1
t=1 mAt + 1 � j � m + i − 1 + ∑h−1

t=1 mAt , we have the rule

(Ah, i, j) → (Ah, i, j + 1) and f
(
(Ah, i, j)

) =
(

−,

(
Ah, j − m −

h−1∑
t=1

mAt

)′)
,

10. for (Ah, i,m + i + ∑h−1
t=1 mAt ) with 1 � h � n, 1 � i � mAh , we have the rule(

Ah, i,m + i +
h−1∑
t=1

mAt

)
→

(
Ah, i,m + i + 1 +

h−1∑
t=1

mAt

)
and

f

((
Ah, i,m + i +

h−1∑
t=1

mAt

))
= (+, (Ah, i)′

)
,

11. for (Ah, i, j) with 1 � h � n, 1 � i � mAh , m + ∑h−1
t=1 mAt + 1 + i � j � m + ∑h

t=1 mAt , we have the rule

(Ah, i, j) → (Ah, i, j + 1) and f
(
(Ah, i, j)

) =
(

−,

(
Ah, j − m −

h−1∑
t=1

mAt

)′)
,

12. for (Ah, i, j) with 1 � h � n, 1 � i � mAh , m + ∑k−1
t=1 mAt + 1 � j � m + ∑k

t=1 mAt , h + 1 � k � n, we have the rule

(Ah, i, j) → (Ah, i, j + 1) and f
(
(Ah, i, j)

) =
(

−,

(
Ak, j − m −

k−1∑
t=1

mAt

)′)
,

13. for (B,k,2m + 1) with 1 � k � mB and π−1
B (k) = (i, j), we have the rule

(B,k,2m + 1) → (B,k,2m + 2) and f
(
(B,k,2m + 1)

) = (+, Ai(B,k)′
)
,

14. and for (B,k,2m + 2) with 1 � k � mA , we have the rule

(B,k,2m + 2) → Y and f
(
(B,k,2m + 2)

) = (−, (B,k)′
)
.

By the rule of group 1 we get Y S from S ′ , where S derives words of L(G) and Y derives d. Consider the sentential form
Y x with a sentential form x of G . As long as Y is present we can apply the rules of group 2 and 3, i.e., to simulate
context-free rules or replace nonterminals A by (A,k) with 1 � k � mA . Moreover, we can replace exactly one occurrence
of (A,k) by (A,k)′ , see group 4. Thus, the sentential form can contain at most one occurrence of (A,k)′ for each A ∈ N and
1 � k � mA . Then, we rewrite Y according to the rules of group 6. We obtain a sentential form which starts with (A,k,1),
for A ∈ N and 1 � k � mA , or with d. Assume that we applied Y → (Ah,k,1), i.e., we choose a nonterminal Ah and the kth
rule with left-hand side in N{Ah}. For π−1

Ah
(k) = (i, j), this kth rule has the form given in (5). Now we essentially have to

apply the rules given in groups 7–14. Rules of group 7 check the absence of (A1,1), (A1,2), . . . , (A1,mA1 ), (A2,1), (A2,2),
. . . , (A2,mA2), . . . , (An,1), (An,2), . . . , (An,mAn ). These checks have not been done in succession because we can replace
(A,k) by (A,k)′ as long as the absence of (A,k) was not checked. Rules of group 8 check the absence of (A1,1)′ , (A1,2)′ ,
. . . , (A1,mA1 )

′ , (A2,1)′ , . . ., (A2,mA2 )
′ , . . . , (Ah−1,1)′ , . . . , (Ah−1,mAh−1 )

′ . Rules of group 9 check the absence of (Ah,1)′ ,
(Ah,2)′ , . . . , (Ah,k − 1)′ . The rule in group 10 checks the presence of (Ah,k)′ . Rules of group 11 check the absence of
(Ah,k + 1)′ , (Ah,k + 2)′ , . . . , (Ah,mAh )

′ . Rules of group 12 check the absence of (Ah+1,1)′ , . . . , (Ah+1,mAh+1 )
′ , (Ah+2,1)′ ,

. . . , (Ah+2,mAh+2 )
′ , . . . , (An,1)′ , . . . , (An,mAn )

′ . If all these checks are positive, then the derivation before the checks was
of the form Y w = Y x1 Ahx2 	⇒ Y x1(Ah,k)x2 	⇒ Y x1(Ah,k)′x2, where the last step can be performed until the absence of
(Ah,k) is checked by a rule of group 7. Now rules of group 13 check that the left context of Ah is the correct context
for the rule Ai Ah → Ai Xπ−1(k)

. Then, the only applicable rule is that of group 5 which gives the following sentential form

Ah
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(Ah,k,2m + 2)x1 Ai Xπ−1
Ah

(k)
x2. Then, the rule of group 14 has to be applied, which gives the sentential form Y x1 Ai Xπ−1

Ah
(k)

x2.

Thus, we have simulated one derivation step of a rule of G in G ′ .
Now, assume that we applied the rule Y → d of group 6, which gives the sentential form dw . If w contains a nonter-

minal, we can perform replacements according to the rules of group 4, but the derivation cannot terminate (see group 5).
Therefore, every terminating derivation in G ′ has the form S ′ 	⇒ Y S 	⇒∗ Y y1 	⇒∗ Y y2 	⇒∗ · · · 	⇒∗ Y yz 	⇒ dyz where
S 	⇒∗ y1 	⇒∗ y2 	⇒∗ · · · 	⇒∗ yz is a terminating derivation in G . Hence, L(G ′) = {d}L(G). �

The following theorem characterizes the language family L(srC F − λ).

Theorem 12. L(C S) = L(srC F − λ).

Proof. Let G = (N, T , P , S, f ) be a non-erasing string restricted context-free grammar. Using a standard technique, we con-
struct a linear bounded automaton [5] accepting L(G). Thus, L(srC F − λ) ⊆ L(C S).

On the other hand, let L ⊆ T ∗ be a language generated by a monotone grammar. For a ∈ T , let La = {w | aw ∈ L}.
Then, L = ⋃

a∈T {a}La . It is known that La is generated by a monotone grammar Ga . By Lemma 11, we construct a non-
erasing string restricted context-free grammar G ′

a = (Na, T , Pa, S ′, fa) such that L(G ′
a) = {a}La , and we can assume that

Na ∩ Nb = {S ′}, for all a,b ∈ T , a �= b, and fa(S ′) = (+, S ′), for all a ∈ T . Then, G ′ = (
⋃

a∈T Na, T ,
⋃

a∈T Pa, S ′, f ) with
f (X) = fa(X), for X ∈ Na , is a non-erasing string restricted context-free grammar with L(G ′) = ⋃

a∈T {a}La = L. Thus, it is
shown that L(C S) ⊆ L(srC F − λ). �

Finally, we mention the following immediate corollary of the previous construction.

Corollary 13. Every context-sensitive language is generated by a string restricted context-free grammar G = (N, T , P , S, f ) where
A → w ∈ P implies that |w| � 2, and for all A ∈ N,

• if f (A) = (−, x), then |x| = 1, and
• if f (A) = (+, x), then 1 � |x| � 2.

5. Conclusion

In this paper, we have discussed the simplest restriction placed on context-free grammars so that the derivation is con-
trolled by the structure of the sentential form. We have shown the following characterization of these systems based on
context-free rules that check for a presence and absence of symbols or strings in the sentential form. If such a restricted
context-free grammar can check only for a presence and absence of nonterminal symbols, then the generative power of
context-free grammars is increased to the power of van der Walt’s random context grammars or, equivalently, to the power
of matrix or programmed grammars. However, if such a restricted context-free grammar can check for a presence of non-
terminals or strings of nonterminals of length two, and for an absence of only nonterminals, then the generative power of
non-erasing context-free grammars is increased to the generative power of monotone grammars.

As a consequence of the definition of restricted context-free grammars and the main results of this paper, two new
normal forms for random context grammars and matrix grammars have been discussed. Recall also that the presented
normal form for random context grammars is the simplest possible.

Finally, the discussion concerning the generative power of special variants of these grammars, namely permitting and
forbidding restricted context-free grammars, is (except for the case of permitting restricted context-free grammars) left as
an open problem for the future investigation. Note, however, that from the theoretical point of view, the generative power of
these special cases is of particular interest especially in the case of the forbidding variants of (string) restricted context-free
grammars.
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