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Abstract

We show that the Hilbert–Kunz multiplicity of ad-dimensional non-regular complete intersect
over Fp, p > 2 prime, is bounded by below by the Hilbert–Kunz multiplicity of

∑d
i=0 x2

i
= 0,

answering positively a conjecture of Watanabe and Yoshida in the case of complete intersect
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let (R,m) be a local ring containing a field of positive characteristicp > 0. If I is
an ideal inR, thenI [q] = (iq : i ∈ I ), whereq = pe is a power of the characteristic. L
R◦ = R \⋃

P , whereP runs over the set of all minimal primes ofR. An elementx is said
to belong to thetight closureof the idealI if there existsc ∈ R◦ such thatcxq ∈ I [q] for all
sufficiently largeq = pe. The tight closure ofI is denoted byI ∗. By aparameter idealwe
mean an ideal generated by a full system of parameters inR. For anm-primary idealI , one
can consider the Hilbert–Samuel multiplicity and the Hilbert–Kunz multiplicity. A ringR

is called unmixed if dim(R/Q) = dim(R) for all associated primesQ of R.
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Definition 1.1. Let I be anm-primary ideal in ad-dimensional local ring(R,m). In what
follows, λ(−) denotes the length function.

The Hilbert–Kunz multiplicity ofR at I is defined by

eHK(I ) = eHK(I,R) := lim
q→∞

λ(R/I [q])
qd

.

Monsky has shown that this limit exists and is positive. IfI = m, then we calleHK(m,R)

the Hilbert–Kunz multiplicity ofR and denote it byeHK(R).
The Hilbert–Samuel multiplicity ofR at I is defined by

e(I ) = e(I,R) := lim
n→∞d!λ(R/In)

nd
.

The limit exists and it is positive and similarlye(m,R) is simply denotede(R) and called
the Hilbert–Samuel multiplicity ofR.

It is known that for parameter idealsI , one hase(I ) = eHK(I ). The following sequenc
of inequalities is also known to hold:

max

{
1,

1

d! e(I )

}
� eHK(I ) � e(I )

for everym-primary idealI .
By a result of Watanabe and Yoshida [9], an unmixed local ringR of characteristic

p > 0 is regular if and only if the Hilbert–Kunz multiplicity,

eHK(R) = 1.

A short proof of this was given by Huneke and Yao in [5].
In [1], Blickle and Enescu have started a first investigation of the number

εHK(d,p) = inf
{
eHK(R) − 1: R non-regular, unmixed, dimR = d,charR = p

}
.

by showing thatεHK(d,p) is alwaysstrictly positive, i.e., the Hilbert–Kunz multiplicity o
a non-regular ring of fixed dimension and characteristic cannot be arbitrarily close t
They have raised the natural question whetherεHK(d,p) is attained. And if this is the cas
what is the significance of such rings with minimal Hilbert–Kunz multiplicity?

In [10], Watanabe and Yoshida have formulated the following conjecture.

Conjecture (Watanabe–Yoshida). Letd � 2 andp �= 2 prime. Put

Rp,d := k�X0, . . . ,Xd�
/(

X2
0 + · · · + X2

d

)
.

Let (R,m, k) be ad-dimensional unmixed local ring and letk = Fp. Then the following
statements hold:
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(1) If R is not regular, theneHK(R) � eHK(Rp,d).
(2) If eHK(R) = eHK(Rp,d), then them-adic completion ofR is isomorphic toRp,d as

local rings.

The cased = 2 has been solved affirmatively (see [1,9]). The casesd = 3,4 are more
difficult and have been answered affirmatively by Watanabe and Yoshida [10]. The
d = 1 is easy to interpret sinceeHK(A) = e(A).

In this paper we would like to prove part (1) of the conjecture for complete inte
tions.

We would like to finish the introduction by mentioning two results that will be nee
later.

Proposition 1.2 (Kunz ([6, 3.2] and [7, 3.9])). Let (R,m, k) → (S,n, k) be a flat local
homomorphism of Noetherian rings of characteristicp such thatS/mS is regular.

(1) If x is part of a system of parameters onR theneHK(R) � eHK(R/xR).
(2) eHK(R) = eHK(S).

We should note that Watanabe and Yoshida [9] gave an alternate proof of (1) und
assumption thatx is non-zero-divisor onR.

An elementf ∈ A�t� over a local ring(A,m) is called adistinguished polynomialif
f = a0 + a1t + · · · + an−1t + tn, for some integern andai ∈ m, i � 0.

In what follows we will need the following classical result.

Theorem 1.3 (Weierstrass Preparation Theorem [4]). Let (A,m) be a complete local ring
and letB = A�t�. If f = ∑∞

i=0 ait
i ∈ B and if there existsn ∈ N such thatai ∈ m for all

i < n andan /∈ m, thenf = uf0 whereu is a unit inB andf0 is a distinguished polynomia
of degreen. Also,u andf0 are uniquely determined byf .

2. Dense upper semi-continuity of the Hilbert–Kunz multiplicity

Let R be an equidimensional ring of characteristicp > 0 such thatR is finite overRp,
i.e.R is F -finite. Kunz has shown that ifR is F -finite, thenR is excellent.

We would like to discuss here several aspects of the Hilbert–Kunz multiplicity. E. K
has shown that the functionfe : Spec(R) → Q where

fe(P ) = λ
(
RP /P [pe]RP

)/
pe height(P )

is upper semi-continuous on Spec(R) [7, Corollary 3.4].

Definition 2.1. Let eHK : Spec(R) → R, defined by

eHK(P ) := eHK(PRP ,RP ).
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We caution the reader that, although one can talk about the Hilbert–Kunz multip
of an ideal primary to the maximal ideal in a local ring, the notation just introduced
always refer to the Hilbert–Kunz multiplicity of a local ring,RP , at its maximal ideal
Clearly,eHK(P ) = lime→∞ fe(P ).

Question. Is eHK an upper semi-continuous function on Spec(R)?

It is known thateHK(P ) � eHK(Q) if P ⊂ Q are prime ideals inR [7, Proposition 3.3].
However, this does not immediately imply thateHK is upper semi-continuous.

Definition 2.2. Let T be a topological space. A functionf :T → R is called dense uppe
semi-continuous if for everyx in T one can find a dense subsetU of T containingx such
thatf (y) � f (x) for everyy ∈ U .

We would like to introduce some more definitions before stating our next resu
what follows, by a variety, we always mean an irreducible, reduced scheme define
an algebraically closed field. For a linear systemΓ (complete or not) on a varietyX we
can define a rational mapφΓ :X ��� PN by sendingx ∈ X to [s0(x) : · · · : sN(x)], where
si form aK-basis of the system.Γ is said to be composed of a pencil if the image of t
map is one-dimensional.

Lemma 2.3 (First Theorem of Bertini [3, Theorem 3.4.10]). Let X be a variety overK
and letΓ be linear system which is not composed of a pencil such that its base locu
codimension at least2. Then the generic member ofΓ is irreducible.

Corollary 2.4. LetX be an-dimensional variety overK . Then for everyx, y in X there is
an irreducible curveC that passes throughx andy.

Proof. If X is a curve then there is nothing to prove. Assume that dimX � 2.
Consider the linear systemΓ consisting of all the hyperplane sections that pass thro

x and y. Then by Bertini there is an irreducible memberX1 ∈ Γ such thatx, y ∈ X1.
Take the reduced structure ofX1 so that it is a variety, denoted by(X1)red. Again apply
Bertini to (X1)red to get irreducibleX2 chosen from the linear system consisting of all
hyperplanes passing throughx, y in (X1)red. Keeping this procedure, we obtain the ch
of closed subvarieties, say

X ⊇ (X1)red⊇ · · · ⊇ (Xn−1)red

such that(Xn−1)red is one-dimensional, irreducible, and containsx, y.
Hence(Xn−1)red is our desired curve. �

Theorem 2.5. Let K be an uncountable algebraically closed field andR a finitely gener-
atedK-algebra which is equidimensional. LetSing(R) ⊂ Max(R) be the singular locus
TheneHK : Max(R) → R is dense upper semi-continuous on each component ofMax(R).
In particular,eHK : Max(R) → R is dense upper semi-continuous on each irreducible c
ponent ofSing(R).
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Proof. R is an excellent ring and hence the regular locus ofR is open.
The case whenR is a domain goes as follows: the regular locus is non-empty (the

ideal is in it) and, for eachQ as in the hypothesis, one can takeΛ = Reg(R) ∪ {Q}. This
is a dense set andeHK(P ) = 1� eHK(Q) for everyP ∈ Λ.

Now if R is not a domain (and in particular if the regular locus happens to be em
we have to argue differently:

We know that for everye there exists an open setQ ∈ Λe such thatfe(P ) � fe(Q) for
everyP ∈ Λe (see [6, Corollary 3.4]).

We will takeΛ := ⋂
e Λe and show thatΛ is dense.

In the following, since we work on one component of Max(R), we may assume
Max(R) is irreducible but may possibly be non-reduced.

We need to show that, for everyx ∈ Max(R) and every open setx ∈ U , U ∩ Λ �= ∅
holds. In other words,U ∩e Λe �= ∅. Then by corollary applied to Max(R)red there is an
irreducible curveC that passes throughx andQ and setλe = C ∩ Λe. Eachλe is open in
C and hence it is the complement of a finite set.

We have that(U ∩ C) is an open set inC containingx and so(U ∩ C) ∩ λe �= ∅.
Otherwise,U ∩ C is contained in the union of the complements ofλe which is a countable
set. ButU ∩ C is open inC and hence it is definitely uncountable and therefore dense

We have shown that(U ∩ C) ∩ λe �= ∅ which shows thatU ∩e Λe �= ∅ must also be
true. The second statement follows from the similar argument by applying Bertini to
irreducible component of Sing(R)red. �

Let R0 = k�x1, . . . , xn�/(f ) be an(n − 1)-dimensional hypersurface ring and defi
an n-dimensional hypersurface ringR = k�x1, . . . , xn�[t]/(f + tg), whereg is a formal
power series withg �= 0, g(0) = 0, g /∈ k · f . Obviously,t is a non-zero-divisor onR.

In this section, we would like to study the behavior of the Hilbert–Kunz multiplicity
the fibers of the natural homomorphismk[t] → R = k�x1, . . . , xn�[t]/(f + tg). We will
assume thatk is an uncountable algebraically closed and so all the maximal ideals ok[t]
are of the form(t − α), with α ∈ k. Let tα = t − α. One can note thatR/(tα) is a local ring
isomorphic toRα = k�x1, . . . , xn�/(f +αg) which is a(n− 1)-dimensional hypersurface
This makestα a non-zero-divisor onR, for everyα ∈ k. We would also like to note tha
every maximal ideal ofR is of the formmα = (x1, . . . , xn, t − α) with α ∈ k.

Theorem 2.6. Assume that we are in the situation described above.
One can find a dense subsetΛ ⊂ k such that, for everyα ∈ Λ,

eHK
(
(R/tα)mα

) = eHK

(
k�x1, . . . , xd�

(f + αg)

)
� eHK

(
(R/tR)m0

) = eHK

(
k�x1, . . . , xd�

(f )

)
,

wherem0 = (x1, . . . , xn, t).

Proof. As remarked earlier,R/tαR is already local with maximal idealmα .
If (A,m) is a local ring of dimensiond , theneHK(A) = limq→∞ λ(A/m[q])/qd . Since

R/tαR andR/tR have the same dimension, to prove the inequality in the stateme
need to prove the inequality between the corresponding lengths.
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Let us observe that, for everyα, R/(m
[q]
α + tα)R = R/(x1, . . . , xn)

[q] ⊗k[t] k[t]/(tα).
Moreover, letA = R/(x1, . . . , xn)

[q] and note that this is a finitely generated mod
over k[t]. So, if we localize at the multiplicative setk[t] \ (tα) we get thatA(tα) is a fi-
nitely generated module overk[t](tα). Moreover,A/(tα) is already local and we have th
A/(tα) 
 (A/(tα))(tα).

Sincek is algebraically closed,λ(R/(m
[q]
α + tα)R) equals the dimension of thek-vector

spaceR/(m
[q]
α + tα)R = A/(tα). This, by NAK lemma, equals the minimal number

generators of(R/(x1, . . . , xn)
[q])(tα) = A(tα) overk[t](tα).

So, if we start with a set of minimal generators ofA(t) overk[t](t) we can find an open
setΛq in k, containing 0, where we can extend these generators.

Let Λ = ⋂
q Λq . Sincek is uncountable and the complements ofΛq are all finite we

see thatΛ must be an uncountable set and hence dense ink in the Zariski topology.
For allα ∈ Λ, we have that, for allq,

λ
(
R/

(
m[q]

α + tα
)
R

)
� λ

(
R/

(
m

[q]
0 + t0

)
R

)
,

and this gives the inequality that we want.�
We would like to close this section by discussing an example by Monsky that s

that one cannot hope to replace dense upper semi-continuity by upper semi-contin
Theorem 2.6.

First we would like to recall Monsky’s example [8]:

Theorem 2.7 (Monsky). Let k be an algebraically closed field of characteristic2 and
Rα = k�x, y, z�/(f + αg), wheref = z4 + xyz2 + (x3 + y3)z, g = x2y2 and0 �= α ∈ k.

TheneHK(Rα) = 3 + 4−mα , wheremα is computed as follows: Write α = β2 + β with
β ∈ k.

(1) If α is algebraic overZ/2Z, thenmα is the degree ofβ overZ/2Z.
(2) If α is not algebraic overZ/2Z, then letmα = ∞.

We would like to consider the case whenk is the algebraic closure of(Z/2Z)(w), where
w is an indeterminate. LetR = k�x, y, z, t�/(f + tg). We see thatRα = R/(t − α), where
α ∈ k.

We would like to show thateHK is not necessarily upper semi-continuous in fib
over k[t]. More precisely, we will findα0 ∈ k such that there exists no open subseU

in k containingα0 such thateHK(Rα) � eHK(Rα0) for everyα ∈ U . If such U exists, it
would imply thateHK(Rα) > eHK(Rα0) only for finitely manyα. However, if one takes
α0 = w, we see thateHK(Rα0) = 3, becausew is not algebraic overZ/2Z. However, there
are infinitely many elementsα in k that are algebraic overZ/2Z and henceeHK(Rα) > 3
for all theseα.

In conclusion, this example shows that if one wants to study the upper semi-con
of the Hilbert–Kunz multiplicity of the fibers ofk[t] → R, a weaker notion of upper sem
continuity must be considered. One example is our notion that replaces open sets b
sets.
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In what follows, we will show how this notion can be exploited to prove a conjectu
Watanabe and Yoshida on the minimal Hilbert–Kunz multiplicity of non-regular rings

3. Minimal Hilbert–Kunz multiplicity: the hypersurface case

Lemma 3.1. Let k be a field such that1/2 ∈ k and putA = k�x1, . . . , xd�. ConsiderB =
A�x0� and F = x2

0 + · · · + x2
d + G with G ∈ m3

B , wheremB is the maximal ideal ofB.
Then there exist a unitv0 in B, a0 ∈ (x1, . . . , xd)B andG1 ∈ (x1, . . . , xd)3B such that

F = v0(x0 + a0)
2 + x2

1 + · · · + x2
d + G1.

Proof. Write

G =
∞∑
i=0

cix
i
0,

such thatci ∈ A andc0 ∈ m3
A, c1 ∈ m2

A andc2 ∈ mA. Let v0 = (1+ c2)+∑∞
i=1 ci+2x

i
0 and

note that this is a unit inB. Moreover,

F = v0x
2
0 + c1x0 + c0 + x2

1 + · · · + x2
d .

Now, leta0 = 2−1v−1
0 c1 andG1 = c0 − v0a

2
0 and note that the conclusion of the lemm

follows. �
Theorem 3.2. For any d-dimensional singular hypersurfacek�x0, . . . , xd�/(f ) over an
uncountable algebraically closed fieldk of characteristic different than2, we have that

eHK

(
k�x0, . . . , xd�

/(
d∑

i=0

x2
i

))
� eHK(R).

Proof. We can assume thatf = ∑∞
i=0 fi where eachfi is a homogeneous polynomial

degreei andf0 = f1 = 0.
Since the characteristic ofk is different from 2, we can make a change of variable

have thatf2 = ∑l
i=0 x2

i for some−1� l � d wherel = −1 means thatf2 = 0.
Let us takegα := α(x2

l+1 + · · · + x2
d) with α ∈ k. By Theorem 2.6, the Hilbert–Kun

multiplicity of f is greater or equal than that ofFα = f + gα for a dense set ofα’s in k.
We can rescale our indeterminates and assume thatFα = x2

0 + · · · + x2
d + G, where theG

contains only terms of degree greater than or equal to 3.
Apply Lemma 3.1 toFα and writeFα = v0(x0 + a0)

2 + x2
1 +· · ·+ x2

d +G1, with G1 an
element of(x1, . . . , xd)3. We can continue now withx2

1 + · · · + x2
d + G1 and by applying

Lemma 3.1 recursively we see that eventually we can writeFα = ∑d
i=0 vix

2
i , wherevi are

all units, after a suitable change of variables.
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Since we are working over an algebraically closed field of characteristic different th
we can findwi units ink�x0, . . . , xd� such thatw2

i = vi (see Lemma 3.3). This allows u

to transformFα isomorphically into
∑d

i=0 x2
i .

In conclusion, we get that

eHK

(
k�x0, . . . , xd�

/(
d∑

i=0

x2
i

))
� eHK(R). �

Lemma 3.3. If A is a ring such thatf = ∑
uix

i is a formal power series inA�x� and
u0 is a unit inA that admits a square root inA and1/2 ∈ A, we can findg ∈ A�x� such
that g2 = f . In particular, if f ∈ k�x0, . . . , xd� is a unit andk is algebraically closed o
characteristic different than2, then there existsg ∈ k�x0, . . . , xd� such thatg2 = f .

Proof. The first statement amounts to solving a system of equations where the unk
are the coefficients ofg.

The second statement reduces to the first, by thinking off ∈ A�xd� where A =
k�x0, . . . , xd−1�. First, we apply induction ond : sincef is a unit, by induction we se
that its constant term (when thinking of it as a power series inxd only) has a squar
root in A = k�x0, . . . , xd−1�. Applying the first statement now, we can find a power
riesg ∈ A�xd�= k�x0, . . . , xd� such thatg2 = f . �

Using an argument similar to the one in the proof of Theorem 3.2, one can sho
following:

Theorem 3.4. Let (R,m, k) be ad-dimensional singular hypersurface complete local r
of characteristicp > 0 andp �= 2,3. Then one of the following is true:

(1) R ∼= k�x0, . . . , xd�/(
∑d

i=0 x2
i ), or

(2) eHK(R) � eHK(k�x0, . . . , xd�/(x
2
0 + · · · + x2

d−1 + x3
d)).

Proof. Suppose thatR is defined by somef ∈ k�x0, . . . , xd�.
Assume(1) is not the case. Then as in the proof of Theorem 3.1, we can make c

of variables to have thatf2 = ∑l
i=0 x2

i for the homogeneous decompositionf = ∑∞
i=0 fi

of f . Since(1) is not the case, we have thatl < d .
Let us takegα := α(x2

l+1 + · · · + x2
d−1 + x3

d) with α ∈ k. ThenFα := f + gα is of the
form x2

0 + · · · + x2
l + αx2

l+1 + · · · + αx3
d + G for α �= 0, whereG contains only terms o

degree greater than 2.
Now we can keep track of the proof in Theorem 3.1 without any change to hav

Fα = v0x
2
0 + · · · + vd−1x

2
d−1 + vdx3

d , wherevi are all units. Since we can assume thatk is
an algebraically closed field, and the characteristic ofk is different from 2 and 3, we ca
apply Lemma 3.2 to solve the system of equations inwi ; w2

0 = v0, . . . ,w
2
d−1 = vd−1, and

w3
d = vd . (This is wherep �= 3 is used.) ThereforeFα can be transformed isomorphical

into x2 + · · · + x2 + x3.
0 d−1 d
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By dense upper semi-continuity, we get that

eHK(R) � eHK
(
k�x0, . . . , xd�

/(
x2

0 + · · · + x2
d−1 + x3

d

))
. �

Much has been learned about the Hilbert–Kunz multiplicity in Noetherian rings by
paring it to the more classical notion of Hilbert–Samuel multiplicity. It is true that in m
instances the behavior of these two multiplicities is similar to each other.

A natural way of approaching the conjecture of Watanabe and Yoshida is to sho
for any equidimensional local ringR there is a hypersurfaceS of same dimension such th
eHK(S) � eHK(R). A well-known result on the Hilbert–Samuel multiplicity says that
every ringR of dimensiond one can naturally construct, through Noether normalizat
a d-dimensional hypersurfaceS such thate(R) = e(S). In this section, we will show tha
for such anS, eHK(S) will turn out to be greater thaneHK(R) in many instances.

We would like to outline this construction in a specific example.
Let (R,m, k) be the ring obtained by killing the(2 × 3)-minors of a generic matrix

sayR = k�x, y, z,u, v,w�/(xv − uy,yw − vz, xw − uz). This ring is Cohen–Macaula
of dimension 4 withx, u − y, z − v,w a system of parameters. In fact,R is F -regular.

Let A = k�x,u − y, z − v,w�⊂ R be a Noether normalization. For computational p
poses, leta = u − y, b = z − v. With this change of variables,

A = k�x, a, b,w�⊂ R

= k�x, a, b,w,y, v�
/(

y2 − xv + ay, yw − vb − v2, xw − ab − yv − av − yb
)
.

Note thatQ(A) ⊂ Q(B) is a simple field extension generated byy. Indeed,v = 1
x
(y2 +

ay).
Look now atA�y� → R. The kernel of this map is a principal ideal generated

somef . Hence we have constructed a hypersurface(S,n, k) in R. It is known that
e(S) = e(R). We would like to compare the Hilbert–Kunz multiplicities ofR andS.

SinceR is finite overS, we have thateHK(n, S) = eHK(nR,R)/r , wherer is the rank
of Q(R) overQ(S) (by [9, Theorem 2.7]). ButQ(S) = Q(R) and sor = 1. We can also
note thatnR ⊂ m, which implies thateHK(nR,R) � eHK(m,R) = eHK(R). Moreover,R
is F -regular and sonR = (nR)∗ �= m, which shows thateHK(S) > eHK(R). (As the ref-
eree pointed out, the reader can note thateHK(R) = 13/8 by applying the results of [11
Section 5].)

Examples like this are likely to abound. We have only used thatR is F -regular and tha
the finite extensionS ↪→R has rank 1.

4. Complete intersections

In this section, we give an affirmative answer to the Conjecture 1.1(i) in the ca
complete intersections. We do this by reducing the study of complete intersections
of hypersurfaces, a case that was solved in the previous section.

We would like to state first prime avoidance result that will be used later in this se
[2, Exercise 3.19].
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Lemma 4.1 (Prime avoidance). Suppose thatR is a ring containing a fieldk, and let
I1, . . . , Im be ideals. Iff1, . . . , fn ∈ R are such that(f1, . . . , fn) � Ii for eachi, then there
exists a non-zero homogeneous polynomialH(Z1, . . . ,Zn) ∈ k[Z1, . . . ,Zn] such that

n∑
i=1

aifi /∈
⋃
i

Ii

for all (a1, . . . , an) ∈ kn with H(a1, . . . , an) �= 0.

The lemma will be used in the proof of the following proposition.

Proposition 4.2. Letk be an uncountable algebraically closed field of characteristicp > 0.
LetA = k�X1, . . . ,Xn� andR̃ := A/(f1, . . . , fl) a complete intersection ring andf,g ∈ A

such that they form a regular sequence onR̃. Let0 �= h ∈ R̃. Then there exist a dense sub
V ⊂ k such thatah + f,g form a regular sequence oñR and

eHK
(
R̃/(f, g)

)
� eHK

(
R̃/(ah + f,g)

)
for all a ∈ V.

Proof. Sincef,g form a regular sequence oñR, we note that(h,f ) �⊆ P for every as-
sociated primeP of R̃/(g). Hence, we can find a non-zero homogeneous polyno
H(Z1,Z2) such that

ah + f /∈ P

for everyP associated prime of̃R/(g) and everya in the open non-empty subsetU :=
{a ∈ k: H(a,1) �= 0}. That is,ah+f andg form a regular sequence oñR. Let us conside
the natural ring homomorphism

k[t] → R̃[t]/(th + f,g).

The fiber over eacha ∈ U is of dimensionn − l − 2. As in the proof of Theorem 2.6, w
can find a dense subsetV in U such that

eHK
(
R̃/(f, g)

)
� eHK

(
R̃/(ah + f,g)

)
for all a ∈ V. �

Theorem 4.3. Let (R,m, k) be a non-regular complete intersection whose residue
is an uncountable algebraically closed field of characteristicp > 0. Then there exists
non-regular hypersurfacek�X1, . . . ,Xd+1�/(F ) such that

eHK
(
k�X1, . . . ,Xd+1�/(F )

)
� eHK(R).

Proof. Let R be a non-regular complete intersection of dimension d. Since we can
pleteR, R is isomorphic to

k�X1, . . . ,Xd+e�/(f1, . . . , fe),
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where(f1, . . . , fe) is a regular sequence.
(e = 1). In this case, sinceR is already a hypersurface, so we are done.
(e > 1). We will give a proof based on induction on the length of a regular sequence

idea of the proof is to work on the regular sequence. In each step, we try to obtain a
regular sequence whose corresponding residue ring is of dimensiond , non-regular, and ha
multiplicity smaller than equal to that of the residue ring corresponding to regular seq
obtained in the previous step.

First of all, we will apply the following procedures to the ringR.
(1) Suppose that somefi (1 � i � e) defines a regular hypersurface ring, then by C

hen’s structure theorem, there is an isomorphism

k�Y1, . . . , Yd+e−1�∼= k�X1, . . . ,Xd+e�/(fi),

wherek�Y1, . . . , Yd+e−1� is the power series ring. Then there is an isomorphism

k�Y1, . . . , Yd+e−1�
/(

f ′
1, . . . , f

′
i−1, f

′
i+1, . . . , f

′
e

) ∼= k�X1, . . . ,Xd+e�/(f1, . . . , fe),

wheref ′
j is the inverse image offj . Note that(f ′

1, . . . , f
′
i−1, f

′
i+1, . . . , f

′
e) is a regular

ideal and its length is equal toe − 1.
Following this procedure, we can shrink the length of the regular sequence as sm

possible, therefore we can assume that none offi ’s defines a regular hypersurface.
(2) After (1) is done, by making some linear change ofX1, . . . ,Xd+e, we can assum

that eachfi contains a term,ciX
ti
1 with 0 �= ci ∈ k, and that the order offi is equal toti

for eachi. The coefficients ofXti
1 are of the formci + mi with mi in the maximal idea

of k�Y2, . . . , Yd+e−1�. Then by Weierstrass preparation theorem, eachfi can be written
uniquely in the form

fi = ui

(
X

ti
1 + as−1X

ti−1
1 + · · · + a0

)
,

whereui is a unit, andai is in the maximal ideal ofk�Y2, . . . , Yd+e−1�.
Since we consider ideals, so we can ignore the unitui , hence again, we may put

fi = (
X

ti
1 + as−1X

ti−1
1 + · · · + a0

)
, R := k�X1, . . . ,Xd+e�/(f1, . . . , fe).

To apply the induction step, let us prove the following proposition.

Proposition 4.4. Let R̃ := k�X1, . . . ,Xn�/(f1, . . . , fl) be a complete intersection andf ,
g be elements ofA := k�X1, . . . ,Xn� that form a regular sequence oñR. Assume that bot
A/(f ) andA/(g) are non-regular, andf , g are distinguished polynomials with respectX1,
that is, they can be written asf = (Xt

1 + at−1X
t−1
1 + · · · + a0), g = (Xs

1 + bs−1X
s−1
1 +

· · · + b0), whereai , bi are in the maximal ideal ofk�X2, . . . ,Xn�.
Then, there exists a regular sequencef ′, g′ ∈ k�X1, . . . ,Xn� in R̃ such that

eHK
(
R̃/(f, g)

)
� eHK

(
R̃/(f ′, g′)

)
,
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and such thatf ′ (or g′) contains a linear term inX1; that is,f ′ = u′X1 + v′ with u′ unit
in R̃ andv′ ∈ k�X2, . . . ,Xn�.

Moreover, one can arrange that̃R/(f ′, g′) is non-regular.

Remark 4.5. By Proposition 1.2, we note thateHK(R̃/(f )), eHK(R̃/(g)) � eHK(R̃/(f, g)),
henceR̃/(f, g) is also non-regular. In the same manner, if one off ′ andg′ defines a non
regular hypersurface, theñR/(f ′, g′) is also non-regular.

Proof of Proposition 4.4. The plan is to start with the ideal(f, g) in R̃ and perform
transformations onf or g to decrease the degree ofX1 in eitherf or g until we come to
one of the cases described below.

The first step is natural and easy to describe: Without loss of generality, we may a
t � s. ThenF ′ := f − Xt−s

1 g has degX1
(F ′) < t , where degX1

denotes the degree wit
respect toX1. So we have(f, g) = (F ′, g) as ideals. Since everyai andbi is in the maximal
ideal, the top coefficient ofF ′ is also in the maximal ideal. We see thatF ′, g is a regular
sequence by the vanishing of Koszul homology. Let us putt ′ := degX1

(F ′), s′ := degX1
(g),

andG′ := g. So starting withf,g, we obtainedF ′,G′.
This first step fits under the general procedure that is described in the next:
We have two elementsF,G ∈ k�X1, . . . ,Xn� in R̃ such that

eHK
(
R̃/(f, g)

)
� eHK

(
R̃/(F,G)

)
,

and, at least one of them, sayF , has the leading term inX1 of the formuXs
1, with u a unit

in R̃.
We would like to show that one can constructF ′,G′ such that

eHK
(
R̃/(F,G)

)
� eHK

(
R̃/(F ′,G′)

)
,

and degX1
(F ) + degX1

(G) > degX1
(F ′) + degX1

(G′), such that eitherF ′ (or G′) has the

leading term inX1 of the formu′Xt ′
1 (or u′Xs′

1 ) with u′ a unit.
The first step described above is a particular case of the general procedure if on

F := f , G := g.
Let us explain now how to makeF ′,G′ from the givenF,G. Let degX1

(F ) = t and
degX1

(G) = s and, as above,F = uXt
1 + · · ·, with u a unit in R̃ andG = vXs

1 + · · ·, with
v not necessarily a unit.

We have two cases to consider for the ideal(F,G) as follows.
(α) If t � s, we can take

G′ := G − vXs−t
1 u−1F, F ′ := F,

and putt ′ := degX1
(F ′), ands′ := degX1

(G′). Then we see that degX1
(G) > degX1

(G′)
and that(F ′,G′) = (F,G). AgainF ′,G′ is a regular sequence oñR.

(β) If t � s, then we cannot useG to eliminate the leading term inX1 in F sincev might
not be a unit. Hence we will use Proposition 4.2 to replaceG by another power seriesG1
such thatG1 has the leading term inX1 of the formv1X

s wherev1 is a unit inR̃.
1
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Consider the sequenceaXs
1 + G, F , wherea ∈ k. Note that the top coefficient ofG1 :=

aX
s1
1 + G is a unit inA unlessa = 0.
We apply Proposition 4.2 forA, R̃ and the regular sequenceF,G on R̃: there is a dens

subsetV ⊆ Max(k[t]) 
 k for which

eHK
(
R̃/(F,G)

)
� eHK

(
R̃/(aXs

1 + G,F)
)

holds for alla ∈ V , andaXs
1 + G,F form a regular sequence.

Working with the new sequence(F,G1 = aXt
1 + G) for somea �= 0 anda ∈ V , we

obtain a new regular sequenceF ′,G′ such that

F ′ := F − uXt−s
1 v−1

1 G1, G′ := G1

wherev1 is the top coefficient ofG1. Also we remark that(F ′,G′) = (F,G1) as ideals,
and degX1

(F ) > degX1
(F ′).

One can see in either caseF ′ (or G′) has the leading term inX1 of the formu′Xt ′
1 (or

u′Xs′
1 ) with u′ a unit.

Moreover, the new pairF ′,G′ satisfies the property: degX1
(F ′) + degX1

(G′) <

degX1
(F ) + degX1

(G). We also note that whenever we apply Proposition 4.2, then
ideal(F ′,G′) is different than the ideal(F,G).

Once we haveF ′,G′, we continue by applying the procedure toF ′,G′ themselves. We
would like to show that by doing this repeatedly we will eventually reach one of the f
stated in the conclusion of the proposition.

Both f,g belong tom2
A. We notice that ifF,G belong tom2

A, thenF ′,G′ will also
belong tom2

A unless min(degX1
(F ),degX1

(G)) = 1. Once this situation occurs, we st
our procedure at once; if say degX1

(F ) = 1, then by changing the coefficient ofX1 with
the help of Proposition 4.2 if necessary, we see that we end up in the case describe

If we never encounter the situation where min(degX1
(F ),degX1

(G)) = 1, then we even
tually end up withf ′ (or g′) ∈ k�X2, . . . ,Xn�. But then using Proposition 4.2, adduX1 to
f ′ or g′ and we end up in the situation described in the conclusion of our proposition

To end the proof, it is enough to say that at least one off ′ or g′ is in m2
A. Then this

guarantees that̃R/(f ′, g′) is non-regular. �
Now let us go back to the proof of the theorem. We apply the Proposition 4.4 forA :=

k�X1, . . . ,Xd+e�, l := e − 2 tof1, . . . , fe inductively.
Start withf1 andf2 and putR̃ := k�X1, . . . ,Xd+e�/(f3, . . . , fe). Then we can find suc

F1,F2 as stated in the proposition. Once we come to the conclusion in the proposition
we can find the desired hypersurface by applying the induction step on the length
regular sequence by eliminatingX1, so we are done. �

We would like to close this section by proving the part (1) of Conjecture of Wata
and Yoshida stated in the introduction for complete intersections

Theorem 4.6. Let d � 2, p �= 2 prime andk a field of characteristicp > 0. If (R,m, k) is
a complete intersection, not regular, theneHK(R) � eHK(Rd,p).
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Proof. We can enlarge the residue field such that we have an uncountable algebraic
field K .

By Theorems 3.2 and 4.3, we see that overK , eHK(R ⊗k K) � eHK(Rd,p ⊗k K) which
implies the result overk. �
Remark 4.7. Although we stated Propositions 4.4 and 4.2 for the case of comple
tersection only, this assumption was in fact not needed in their corresponding proo
kept this as hypothesis for the convenience of the reader, since this section deals on
complete intersections.

5. Remarks on the general case

In this section, we would like to show how using ideas related to the upper s
continuity of the Hilbert–Kunz multiplicity can provide insight into the general cas
the conjecture stated in Section 1. A local ringS such that dim(S)− depth(S) = 1 is called
almost Cohen–Macaulay.

Proposition 5.1. Let (R,m, k) be an catenary unmixed non-regular ring of positive ch
acteristicp > 0. Then there exists a non-regular unmixed ring of same dimension(S,n, k)

which is Cohen–Macaulay or almost Cohen–Macaulay such that

eHK(S) � eHK(R).

Proof. Let x1, . . . , xn be a maximal regular sequence onR and letP be a minimal prime
over (x1, . . . , xn). We have thateHK(RP ) � eHK(R) by [7, Theorem 3.8] (this is wher
we need catenary). IfRP is not regular, we are done since we can adjoin a finite num
of indeterminates toRP to obtain a Cohen–Macaulay ringS with eHK(S) = eHK(RP ) �
eHK(R) (the first equality comes from Proposition 1.2).

If RP is regular, then considerP ⊂ Q such that height(Q/P ) = 1. Localize atQ and
geteHK(RQ) � eHK(R). Sincex1, . . . , xn is a maximal regular sequence, we see thatRQ

is almost Cohen–Macaulay. As before, by adjoining a number of indeterminates oveRQ,
we obtain an example of same dimension asR. �

We would like to show that part (1) of the conjecture can be reduced to the case
isolated singularity:

Assume that(R,m, k) is excellent and unmixed. It is immediate thateHK(R) �
eHK(Rred) and hence we can pass toRred and assume thatR is excellent and reduced.

By induction on the dimension ofR, we can assume that for all non-regular unmix
ringsA of smaller dimension one can find a hypersurfaceB of same dimension such th
eHK(B) � eHK(A).

Let Sing(R) be the singular locus of(R,m, k). It is a non-empty closed set defined
an idealJ . If J is m-primary, then there is nothing to prove. Otherwise, letPi , i = 1, . . . , n,
be the collection of all minimal primes ofJ . Let P be one such minimal primePi with
height less than the dimension ofR.
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Then eHK(RP ) � eHK(R). By induction, we can find a hypersurfaceS such that
eHK(S) � eHK(RP ). By adjoining a finite number of indeterminates toRP , we obtain a
hypersurface, relabeledS, of dimension equal to dim(R) andeHK(S) � eHK(R).

Our result Theorem 3.2 shows that among hypersurfaces
∑d

i=0 x2
i is the one with mini-

mal Hilbert–Kunz multiplicity.
We would like to close now with an observation related to the questions addressed

paper: LetA be a finitely generatedK-algebra which is non-regular and locally unmixe
Is there a minimal value for the Hilbert–Kunz multiplicity ofAP whereP is a non-regular
prime?

Proposition 5.2. Let A be an excellent, non-regular and locally unmixed. TheneHK:
Spec(R) → R has minimum when restricted to the non-regular locus ofSpec(R).

Proof. A is excellent and hence its singular locus is defined by an idealJ . For any prime
containingJ we can find a minimal primeP of J , P ⊂ Q, such thateHK(AP ) � eHK(AQ).

Since there are only finitely many minimal primes overJ , we are done. �
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