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Abstract

We show that the Hilbert—Kunz multiplicity of &dimensional non-regular complete intersection
overFp,, p > 2 prime, is bounded by below by the Hilbert—Kunz multiplicity E?:oxiz =0,
answering positively a conjecture of Watanabe and Yoshida in the case of complete intersections.
0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let (R,m) be a local ring containing a field of positive characterigtic- 0. If I is
an ideal inR, then 19! = (i9: i € I'), whereq = p° is a power of the characteristic. Let
R° = R\ |J P, whereP runs over the set of all minimal primes &f An elementx is said
to belong to theight closureof the ideall if there exists: € R° such thatx? e 119! for all
sufficiently largeg = p¢. The tight closure of is denoted by *. By aparameter idealve
mean an ideal generated by a full system of parametetskor anm-primary ideall, one
can consider the Hilbert—-Samuel multiplicity and the Hilbert—Kunz multiplicity. A rihg
is called unmixed if dinfiR/ Q) = dim(R) for all associated primeg of R.
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Definition 1.1. Let I be anm-primary ideal in ad-dimensional local ringR, m). In what
follows, A (—) denotes the length function.
The Hilbert—Kunz multiplicity oR at / is defined by

) R/ 4]
e (1) = e (1. R) == lim_ %

Monsky has shown that this limit exists and is positivel ¥ m, then we calleqk (m, R)
the Hilbert—-Kunz multiplicity ofR and denote it bk (R).
The Hilbert—Samuel multiplicity a® at I is defined by

AR/IT)
nd

el)=¢el,R) = Ii_)mood!

The limit exists and it is positive and similargm, R) is simply denote@(R) and called
the Hilbert—Samuel multiplicity oR.

It is known that for parameter ideals one has(/) = eqk (I). The following sequence
of inequalities is also known to hold:

max{l, %e(l)} <eqk () <e)

for everym-primary ideall.
By a result of Watanabe and Yoshida [9], an unmixed local #hgf characteristic
p > 0is regular if and only if the Hilbert—Kunz multiplicity,

ek (R)=1.

A short proof of this was given by Huneke and Yao in [5].
In [1], Blickle and Enescu have started a first investigation of the number

erk (d, p) = inf{enk (R) — 1: R non-regular, unmixeddimR = d, charR = p}.

by showing thatk (d, p) is alwaysstrictly positive, i.e., the Hilbert—Kunz multiplicity of
a non-regular ring of fixed dimension and characteristic cannot be arbitrarily close to one.
They have raised the natural question whethgr(d, p) is attained. And if this is the case,
what is the significance of such rings with minimal Hilbert—Kunz multiplicity?

In [10], Watanabe and Yoshida have formulated the following conjecture.
Conjecture (Watanabe—Yoshida).etd > 2 and p # 2 prime. Put

Rpa=k[Xo....,Xa]/(X5+ -+ X3).

Let(R, m, k) be ad-dimensional unmixed local ring and let= F_p. Then the following
statements hotd
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(1) If R is not regular, thereqk (R) > ek (Rp.q).
(2) If enk(R) = enk (Rp q), then them-adic completion ofR is isomorphic toR, 4 as
local rings.

The casal = 2 has been solved affirmatively (see [1,9]). The cakes3, 4 are more
difficult and have been answered affirmatively by Watanabe and Yoshida [10]. The case
d =1 is easy to interpret sin@k (A) = e(A).

In this paper we would like to prove part (1) of the conjecture for complete intersec-
tions.

We would like to finish the introduction by mentioning two results that will be needed
later.

Proposition 1.2 (Kunz ([6, 3.2] and [7, 3.9]))Let (R, m, k) — (S,n, k) be a flat local
homomorphism of Noetherian rings of characterigtisuch thatS/msS is regular.

(1) If x is part of a system of parameters &theneyk (R) < ey (R/xR).
(2) enk(R) = ek (S).

We should note that Watanabe and Yoshida [9] gave an alternate proof of (1) under the
assumption that is non-zero-divisor orR.

An elementf € A[t] over a local ring(A, m) is called adistinguished polynomiaf
f=aop+ait +---+a,_1t +t", for some integer anda; € m, i > 0.

In what follows we will need the following classical result.

Theorem 1.3 (Weierstrass Preparation Theorem [4]¢t (A, m) be a complete local ring
and letB = A[r]. If f =) 2qa;t" € B and if there exista € N such thata; € m for all
i <nanda, ¢ m,thenf = ufowhereu is a unitinB and fy is a distinguished polynomial
of degreen. Also,u and fp are uniquely determined by.
2. Dense upper semi-continuity of the Hilbert—Kunz multiplicity

Let R be an equidimensional ring of characterigic- O such thatr is finite overr?,
i.e. R is F-finite. Kunz has shown that R is F-finite, thenR is excellent.

We would like to discuss here several aspects of the Hilbert—Kunz multiplicity. E. Kunz
has shown that the functiofy : Spe¢R) — Q where

fo(P) = )L(RP/P[pe]Rp)/thEigh(P)

is upper semi-continuous on Sg&g [7, Corollary 3.4].

Definition 2.1. Let eyk : Spe¢R) — R, defined by

ek (P) :==euk (PRp, Rp).
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We caution the reader that, although one can talk about the Hilbert—Kunz multiplicity
of an ideal primary to the maximal ideal in a local ring, the notation just introduced will
always refer to the Hilbert—Kunz multiplicity of a local rin&p, at its maximal ideal.
C|eaf|y,a-|K(P) = |ime—>oo fe(P)-

Question. Is ey an upper semi-continuous function on S@Rx?

It is known thateqk (P) < eqk (Q) if P C Q are prime ideals iR [7, Proposition 3.3].
However, this does not immediately imply thepik is upper semi-continuous.

Definition 2.2. Let T be a topological space. A functigh: T — R is called dense upper
semi-continuous if for every in T one can find a dense subgébf T containingx such
that f(y) < f(x) foreveryy e U.

We would like to introduce some more definitions before stating our next result. In
what follows, by a variety, we always mean an irreducible, reduced scheme defined over
an algebraically closed field. For a linear systén{complete or not) on a varietf we
can define a rational mafy- : X --» P by sendingx € X to [so(x) : - -- : sy (x)], where
s; form a K -basis of the systent” is said to be composed of a pencil if the image of this
map is one-dimensional.

Lemma 2.3 (First Theorem of Bertini [3, Theorem 3.4.10)et X be a variety ovelk
and letI” be linear system which is not composed of a pencil such that its base locus has
codimension at leagt. Then the generic member Bfis irreducible.

Corollary 2.4. Let X be an-dimensional variety ovek . Then for every, y in X there is
an irreducible curveC that passes through andy.

Proof. If X is a curve then there is nothing to prove. Assume thatdim?2.

Consider the linear systeim consisting of all the hyperplane sections that pass through
x andy. Then by Bertini there is an irreducible memb®y € I such thatx, y € Xj.
Take the reduced structure &f so that it is a variety, denoted X 1)reg. Again apply
Bertini to (X1)req to get irreducibleX, chosen from the linear system consisting of all the
hyperplanes passing throughy in (X1)reg. Keeping this procedure, we obtain the chain
of closed subvarieties, say

X2 (Xred2 2 (Xu—1red

such that(X,,_1)req is one-dimensional, irreducible, and containg .
Hence(X,,_1)req is our desired curve. O

Theorem 2.5. Let K be an uncountable algebraically closed field aRa finitely gener-
ated K -algebra which is equidimensional. L8ing(R) C Max(R) be the singular locus.
Theneyk : Max(R) — R is dense upper semi-continuous on each compondviagtR).

In particular, eqk : Max(R) — R is dense upper semi-continuous on each irreducible com-
ponent ofSing(R).
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Proof. R is an excellent ring and hence the regular locug @ open.

The case wherR is a domain goes as follows: the regular locus is non-empty (the zero
ideal is in it) and, for eacl® as in the hypothesis, one can take= Reg R) U {Q}. This
is a dense set arglik (P) = 1 < eqk (Q) for every P € A.

Now if R is not a domain (and in particular if the regular locus happens to be empty)
we have to argue differently:

We know that for every there exists an open séte A, such thatf.(P) < f.(Q) for
everyP € A, (see [6, Corollary 3.4]).

We will take A := ("), A, and show that is dense.

In the following, since we work on one component of Max(R), we may assume that
Max(R) is irreducible but may possibly be non-reduced.

We need to show that, for everye Max(R) and every open sete U, U N A # ()
holds. In other wordsly N, A, # . Then by corollary applied to Ma&R),eq there is an
irreducible curveC that passes throughand Q and set., = C N A,. Eachi, is open in
C and hence it is the complement of a finite set.

We have thatU N C) is an open set irC containingx and so(U N C) N A, # @.
Otherwise U N C is contained in the union of the complements.pfvhich is a countable
set. ButU N C is open inC and hence it is definitely uncountable and therefore dense.

We have shown thatU N C) N A, # @ which shows that/ N, A, # @ must also be
true. The second statement follows from the similar argument by applying Bertini to each
irreducible component of Sii®)req. O

Let Ro = k[x1, ..., x,]/(f) be an(n — 1)-dimensional hypersurface ring and define
an n-dimensional hypersurface rinQ = k[x1, ..., x,][t]1/(f + tg), whereg is a formal
power series witly £ 0, g(0) =0, g ¢ k- f. Obviously,r is a non-zero-divisor omR.

In this section, we would like to study the behavior of the Hilbert—Kunz multiplicity of
the fibers of the natural homomorphisiir] — R = k[x1, ..., x,][#1/(f + tg). We will
assume that is an uncountable algebraically closed and so all the maximal ideals]of
are of the form(r — «), with « € k. Let#, =t — . One can note that/(z,) is a local ring
isomorphic toRy = k[x1, ..., x,]/(f + @g) which is a(n — 1)-dimensional hypersurface.
This makes,, a non-zero-divisor oIR, for everya € k. We would also like to note that
every maximal ideal oR is of the formmy = (x1, ..., x,, ¢t — «) With o € k.

Theorem 2.6. Assume that we are in the situation described above.
One can find a dense subsgic k such that, for everg € A,

k[x1, ..., xd]

ek ((R/1a)m, ) =eHK< F o

klxq,...,
) < @k ((R/1R)mg) = €1k (M)

(f)

wheremg = (x1, ..., X, 1).

Proof. Asremarked earliel?/z, R is already local with maximal ideat,, .

If (A, m) is alocal ring of dimensiod, thenewk (A) = lim,_, oo A(A/ml4)/q?. Since
R/tyR and R/t R have the same dimension, to prove the inequality in the statement we
need to prove the inequality between the corresponding lengths.
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Let us observe that, for evesy, R/(mi¥ + t,)R = R/(x1, ..., x) ) @y k[11/(ta)-

Moreover, letA = R/(x1, ..., x,)!4! and note that this is a finitely generated module
over k[r]. So, if we localize at the multiplicative séfr] \ (z,) we get that4,,) is a fi-
nitely generated module ovéfr],,. Moreover,A/(t,) is already local and we have that
A/(ta) = (A () (1)

Sincek is algebraically cIosed.(R/(mt[f] +1,) R) equals the dimension of titevector
spaceR/(m([f’] + ty)R = A/(ty). This, by NAK lemma, equals the minimal number of
generators ofR/(x1, ..., x,)!9) ) = Aq,) Overkltlq,)-

So, if we start with a set of minimal generatorsAyj, overk|t];) we can find an open
setA, in k, containing 0, where we can extend these generators.

Let A =[1, Aq. Sincek is uncountable and the complements/f are all finite we
see thatA must be an uncountable set and hence denkérithe Zariski topology.

For alla € A, we have that, for aly,

A(R/(wlf' + 1) R) < A(R/(mg" +10)R).
and this gives the inequality that we wanta

We would like to close this section by discussing an example by Monsky that shows
that one cannot hope to replace dense upper semi-continuity by upper semi-continuity in
Theorem 2.6.

First we would like to recall Monsky’s example [8]:

Theorem 2.7 (Monsky). Let k be an algebraically closed field of characteris&cand
Ry =k[[x,y.2]/(f + ag), wheref =z* + xyz2 + (x3 + )z, g =x?>y? and0 # « e k.

Thenenk (Ry) = 3+ 4=, wherem,, is computed as followsNrite « = 82 + B with
Bek.

(1) If « is algebraic oveZz /2Z, thenm,, is the degree of overZ/2Z.
(2) If « is not algebraic ove /2Z, then letm, = oco.

We would like to consider the case whirs the algebraic closure 62 /2Z)(w), where
w is an indeterminate. LR = k[x, y, z, t]/(f +tg). We see thaR, = R/(t — «), Where
aek.

We would like to show thatyk is not necessarily upper semi-continuous in fibers
over k[t]. More precisely, we will findxg € k£ such that there exists no open sub&et
in k containingag such thateqk (Ry) < exk (Rq) for everya e U. If such U exists, it
would imply thatenk (Ry) > €k (Rqy) Only for finitely many«. However, if one takes
ap = w, We see thagHk (Ry,) = 3, becausev is not algebraic over /2Z. However, there
are infinitely many elements in k that are algebraic ovet/2Z and henceyk (R,) > 3
for all theseu.

In conclusion, this example shows that if one wants to study the upper semi-continuity
of the Hilbert—Kunz multiplicity of the fibers df[t] — R, a weaker notion of upper semi-
continuity must be considered. One example is our notion that replaces open sets by dense
sets.
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In what follows, we will show how this notion can be exploited to prove a conjecture of
Watanabe and Yoshida on the minimal Hilbert—Kunz multiplicity of non-regular rings.

3. Minimal Hilbert—Kunz multiplicity: the hypersurface case

Lemma 3.1. Letk be a field such that/2 € k and putA = k[x1, ..., x4]]. ConsiderB =
Alxo] and F = x2 + --- + x2 + G with G € m3, wherem is the maximal ideal oB.
Then there exist a unity in B, ag € (x1, ..., x7)B andG1 € (x1, . .., x7)°B such that

F = vo(x0 + ag)® + x2 + - - + x5 + G1.

Proof. Write
o0
G= Zcixé,
i=0

such that; € A andco € m3, c1 € m4 andez € my. Letvg = (1+c2) + Y 524 ciqoxf and
note that this is a unit iB. Moreover,

F:v0x8+c1xo+co+xf+--~+x§.

Now, letag = 2-vyte1 andG1 = o — voag and note that the conclusion of the lemma
follows. O

Theorem 3.2. For any d-dimensional singular hypersurfaddxo, . .., x4]/(f) over an
uncountable algebraically closed fietdof characteristic different thag, we have that

d
eHK<k[[x0,...,xd]]/<in2>> < eqk (R).
i=0

Proof. We can assume thgt= Y72, f; where eacly; is a homogeneous polynomial of
degree and fo = f1 =0.

Since the characteristic @fis different from 2, we can make a change of variables to
have thatf, = Zf’:oxiz for some—1 <! < d wherel = —1 means thaj, = 0.

Let us takeg, := ar(x? 4 + -+ + x3) with o € k. By Theorem 2.6, the Hilbert—Kunz
multiplicity of f is greater or equal than that &}, = f + g, for a dense set af’s in k.
We can rescale our indeterminates and assumefthatx3 + - - - + x2 + G, where theG
contains only terms of degree greater than or equal to 3.

Apply Lemma 3.1 taF,, and writeFy, = vo(xo+ao)? +x2 + - - - +x3 + G1, with G1 an
element of(x1, ..., x4)3. We can continue now with? + - -- 4+ x2 + G1 and by applying
Lemma 3.1 recursively we see that eventually we can wijte- Z?:o vixiz, wherev; are
all units, after a suitable change of variables.



F. Enescu, K. Shimomoto / Journal of Algebra 285 (2005) 222—-237 229

Since we are working over an algebraically closed field of characteristic different than 2,
we can findw; units ink[xo, ..., x4] such thatwi2 =v; (see Lemma 3.3). This allows us
to transform¥F,, isomorphically intoZ?=0 xl?.

In conclusion, we get that

d
eHK(k[[xo,...,xd]]/<in2>> < eqk (R). O
i=0

Lemma 3.3. If A is a ring such thatf =) u;x’ is a formal power series im [x] and
ug is a unit in A that admits a square root il and1/2 € A, we can findg € A[x] such
that g2 = f. In particular, if f € k[xo, ..., x4] is a unit andk is algebraically closed of
characteristic different thag, then there existg € k[xo, . . ., x4] such thatg? = f.

Proof. The first statement amounts to solving a system of equations where the unknowns
are the coefficients qf.

The second statement reduces to the first, by thinking’ af A[x,;] where A =
k[xo, ..., xq—1]. First, we apply induction o@: since f is a unit, by induction we see
that its constant term (when thinking of it as a power series ironly) has a square
root in A = k[xo, ..., xg—1]. Applying the first statement now, we can find a power se-
riesg € Axq] =k[xo, ..., xq] suchthag?=f. O

Using an argument similar to the one in the proof of Theorem 3.2, one can show the
following:

Theorem 3.4. Let (R, m, k) be ad-dimensional singular hypersurface complete local ring
of characteristicy > 0 and p # 2, 3. Then one of the following is true

(1) RZk[xo, ..., xa] /(X4 gx?), or
(2) ek (R) = enk (k[xo, ..., xg]/(xE + - +x2_ +x3)).

Proof. Suppose thar is defined by som¢ € k[xo, ..., x4].

Assume(l) is not the case. Then as in the proof of Theorem 3.1, we can make change
of variables to have thaf, = Zﬁzoxl? for the homogeneous decompositign=) 7 f;
of f. Since(1) is not the case, we have that d.

Let us takegy := (x4 + -+ +x3_; +x3) With o € k. ThenF,, := f + g, is of the
formxZ + -+ x? + ax?, + -+ axl + G for a # 0, whereG contains only terms of
degree greater than 2.

Now we can keep track of the proof in Theorem 3.1 without any change to have that
Fy =vox2 + -+ v4_1x2_| + vax3, wherey; are all units. Since we can assume thét
an algebraically closed field, and the characteristi¢ @f different from 2 and 3, we can
apply Lemma 3.2 to solve the system of equation&linwg =V0,..., wdz_1 =v4_1, and

wg’ =vy. (This is wherep # 3 is used.) Therefor&, can be transformed isomorphically

; 2 2 3
Intoxg +---+x7_4 +x;.
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By dense upper semi-continuity, we get that
enk (R) > enk (k[xo, - .., xa] / (¥§ + -+ +x2_1 +x3)). O

Much has been learned about the Hilbert—Kunz multiplicity in Noetherian rings by com-
paring it to the more classical notion of Hilbert—-Samuel multiplicity. It is true that in many
instances the behavior of these two multiplicities is similar to each other.

A natural way of approaching the conjecture of Watanabe and Yoshida is to show that
for any equidimensional local ring there is a hypersurfacgof same dimension such that
eqk (S) < eyk (R). A well-known result on the Hilbert—Samuel multiplicity says that for
every ringR of dimensiond one can naturally construct, through Noether normalization,
ad-dimensional hypersurfacg such that(R) = e(S). In this section, we will show that,
for such anS, ey (S) will turn out to be greater thaeyk (R) in many instances.

We would like to outline this construction in a specific example.

Let (R, m, k) be the ring obtained by killing th€2 x 3)-minors of a generic matrix,
sayR =k[x, y,z,u,v, w]/(xv — uy, yw — vz, xw — uz). This ring is Cohen—Macaulay
of dimension 4 withe, u — y, z — v, w a system of parameters. In fa@t,is F-regular.

Let A=k[x,u —y,z—v,w] C R be a Noether normalization. For computational pur-
poses, let: = u — y, b = z — v. With this change of variables,

A=k[x,a,b,w] CR

:k[[x,a,b,w,y,v]]/(yz—xv—}—ay,yw—vb—vz,xw—ab—yv—av—yb).

Note thatQ(A) C Q(B) is a simple field extension generated jyindeed,y = 1(y2 +
ay).

Look now atA[y] — R. The kernel of this map is a principal ideal generated by
some f. Hence we have constructed a hypersurfaen, k) in R. It is known that
e(S) = e(R). We would like to compare the Hilbert—Kunz multiplicities BfandSs.

SinceR is finite oversS, we have thatqk (n, S) = eqk (nR, R)/r, wherer is the rank
of Q(R) over Q(S) (by [9, Theorem 2.7]). Bup(S) = Q(R) and sor = 1. We can also
note thatnR C m, which implies thateqk (nR, R) > eqk (m, R) = ek (R). Moreover,R
is F-regular and ssmR = (nR)* # m, which shows thagyk (S) > eqk (R). (As the ref-
eree pointed out, the reader can note tyat(R) = 13/8 by applying the results of [11,
Section 5].)

Examples like this are likely to abound. We have only used ghist F-regular and that
the finite extensior$ < R has rank 1.

4. Completeintersections

In this section, we give an affirmative answer to the Conjecture 1.1(i) in the case of
complete intersections. We do this by reducing the study of complete intersections to that
of hypersurfaces, a case that was solved in the previous section.

We would like to state first prime avoidance result that will be used later in this section
[2, Exercise 3.19].
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Lemma 4.1 (Prime avoidance)Suppose thaR is a ring containing a fieldk, and let
I,..., Iy beideals. Iff1,..., f, € Raresuchthat f1,..., f,) € I; for eachi, then there
exists a non-zero homogeneous polynorbiér¥, ..., Z,) € k[Z1, ..., Z,] such that

Yaifig\Jhi
i=1 i
forall (a1, ...,a,) € k" with H(ay, ..., a,) #0.
The lemma will be used in the proof of the following proposition.

Proposition 4.2. Letk be an uncountable algebraically closed field of characterigtie O.
LetA =k[X1,..., Xp] andR := A/(f1, ..., fi) acomplete intersection ring and g € A
such that they form a regular sequencerri_et0# h € R. Then there exist a dense subset
V C k such thatzh + f, g form a regular sequence ak and

ek (R/(f. ) > e (R/(ah + f.g)) forallaeV.

Proof. Since f, g form a regular sequence at, we note that, f) € P for every as-
sociated primeP of R/(g). Hence, we can find a non-zero homogeneous polynomial
H(Z1, Z») such that

ah+ f¢P

for every P associated prime oﬁ/(g) and everya in the open non-empty subsgt:=
{a €ek: H(a,1) #0}. Thatis,ah + f andg form a regular sequence @ Let us consider
the natural ring homomorphism

kl[t1 = R[t1/(th + f. g).

The fiber over each € U is of dimensiom — [ — 2. As in the proof of Theorem 2.6, we
can find a dense subsEtin U such that

en(R/(f, 8)) > eu(R/ah + f,g)) forallacV. O
Theorem 4.3. Let (R, m, k) be a non-regular complete intersection whose residue field

is an uncountable algebraically closed field of characterigtic- 0. Then there exists a
non-regular hypersurface[ X1, ..., X4+1]/(F) such that

ek (k[X1. ..., Xaq1]/(F)) < ek (R).

Proof. Let R be a non-regular complete intersection of dimension d. Since we can com-
pleteR, R is isomorphic to

k[[XJJ ey Xd+€]]/(fla LR fe),
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where(fi, ..., fe) is a regular sequence.

(e =1). In this case, since is already a hypersurface, so we are done.

(e > 1). We will give a proof based on induction on the length of a regular sequence. The
idea of the proof is to work on the regular sequence. In each step, we try to obtain another
regular sequence whose corresponding residue ring is of dimehanam-regular, and has
multiplicity smaller than equal to that of the residue ring corresponding to regular sequence
obtained in the previous step.

First of all, we will apply the following procedures to the riliyg

(1) Suppose that somg (1 < i < e) defines a regular hypersurface ring, then by Co-
hen’s structure theorem, there is an isomorphism

k[[Yl, e Yd+e—1]] %k[[Xl, e Xd+e]]/(ﬁ),

wherek[Y1, ..., Yg1e—1] is the power series ring. Then there is an isomorphism

kY1, oo Yagredl /(S oo floas flons oo ) Sk[X1 oo Xage] /(fLa - fo)s

where f/ is the inverse image of;. Note that(f;,..., f/_;, f{,1...., f,) iS a regular
ideal and its length is equal to— 1.
Following this procedure, we can shrink the length of the regular sequence as small as
possible, therefore we can assume that nong’sfdefines a regular hypersurface.
(2) After (1) is done, by making some linear changexaf ..., X .., we can assume
that eachf; contains a termq,-th" with 0 # ¢; € k, and that the order of; is equal tor;
for eachi. The coefficients otXﬁ are of the forme; + m; with m; in the maximal ideal
of k[Y2, ..., Ysr.—1]. Then by Weierstrass preparation theorem, eAcban be written
uniquely in the form

fi=ui(X] +as—1Xg_l + -+ +ao),

whereu; is a unit, andy; is in the maximal ideal of[Y2, ..., Yi4.—1].
Since we consider ideals, so we can ignore themnibence again, we may put

fi=(X7+ as—ng*l + - +ao), R:=k[X1,.... Xave]/(f1, ..., fo).
To apply the induction step, let us prove the following proposition.

Proposition 4.4. Let R := k[ X1, ..., X,]/(f1. ..., fi) be a complete intersection any
g be elements of := k[ X3, ..., X,] that form a regular sequence gt Assume that both
A/(f)andA/(g) are non-regular, and, g are distinguished polynomials with respéett,
that is, they can be written ag = (X] +a,—1 X 4+ 4+ a0), g = (X§ + by_1 X+ +
---+ bg), wherea;, b; are in the maximal ideal of[ X2, ..., X,].

Then, there exists a regular sequenfeg’ € k[X1, ..., X,] in R such that

ek (R/(f, 9)) = e (R/(f', &),
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and such thatf’ (or g’) contains a linear term irXy; that is, f' = u’ X1 + v’ with «’ unit
in R andv’ € k[X2, ..., Xn]. _
Moreover, one can arrange tha&/(f’, g’) is non-regular.

Remark 4.5. By Proposition 1.2, we note thagik (R/(f)). exk (R/(8)) < enk (R/(f. 8)),
henceR/(f, g) is also non-regular. In the same manner, if ong'oandg’ defines a non-
regular hypersurface, thety/(f’, g’) is also non-regular.

Proof of Proposition 4.4. The plan is to start with the idedlf, g) in R and perform
transformations ory or g to decrease the degree ¥i in either f or g until we come to
one of the cases described below.

The first step is natural and easy to describe: Without loss of generality, we may assume
t>s. ThenF' .= f — X’[sg has deg, (F') <t, where deg, denotes the degree with
respect ta(;. So we havé f, g) = (F', g) as ideals. Since every andb; is in the maximal
ideal, the top coefficient of”’ is also in the maximal ideal. We see tHa(t g is a regular
sequence by the vanishing of Koszul homology. Let uspet degy, (F'), s" := degy, (g),
andG’ := g. So starting withf, g, we obtainedr’, G'.

This first step fits under the general procedure that is described in the next:

We have two elementB, G € k[X1, ..., X,] in R such that

ek (R/(f, 9)) = enx (R/(F, G)),

and, at least one of them, sy has the leading term ilf; of the formu X7, with u a unit
in R.
We would like to show that one can constritt G’ such that

ek (R/(F, G)) > eux (R/(F', G),

and deg, (F) + degy, (G) > degy, (F') + degy, (G'), such that eitheF” (or G') has the
leading term inX4 of the formu’Xi’ (or u’Xi’) with " a unit.

The first step described above is a particular case of the general procedure if one takes
F:=fG:=g.

Let us explain now how to makeg’, G’ from the givenF, G. Let deg, (F) =t and
degy, (G) =s and, as abovel’ = uX} + -- -, with u a unit inR andG = vX} + - --, with
v not necessarily a unit.

We have two cases to consider for the idgal G) as follows.

(o) If t < s, we can take

G':=G-vX;"'u'F, F:=F,

and putt’ := degy, (F'), ands’ := degy, (G'). Then we see that dgg(G) > degy, (G")
and that(F’, G') = (F, G). Again F’, G’ is a regular sequence dh

(B) If t > s, then we cannot us@ to eliminate the leading term ki1 in F sincev might
not be a unit. Hence we will use Proposition 4.2 to repl@cey another power serigs;
such thatG; has the leading term ik of the formv; X3 wherev; is a unitin R.
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Consider the sequene&j + G, F, wherea € k. Note that the top coefficient @, :=
aXy' + GisaunitinA unlessa = 0.

We apply Proposition 4.2 fod, R and the regular sequenée G on R:there is a dense
subsetV C Max(k[t]) =~ k for which

enk (R/(F, G)) > eux (R/(aXi + G, F))

holds for alla € V, andaX{ + G, F form a regular sequence.
Working with the new sequendd”, G1 = aX] + G) for somea # 0 anda € V, we
obtain a new regular sequengg G’ such that

F':=F —uX"v'G1, G =G

wherew; is the top coefficient of51. Also we remark thatF’, G') = (F, G1) as ideals,
and deg, (F) > degy, (F').

One can see in either cag® (or G’) has the leading term i1 of the formu’Xfl’ (or
u'X7) with «” a unit.

Moreover, the new pairF’, G’ satisfies the property: deg(F’) + degy, (G') <
degy, (F) + degy, (G). We also note that whenever we apply Proposition 4.2, then the
ideal (F’, G") is different than the idedlF, G).

Once we haveé”’, G’, we continue by applying the procedurekt G’ themselves. We
would like to show that by doing this repeatedly we will eventually reach one of the forms
stated in the conclusion of the proposition.

Both £, g belong tom?. We notice that ifF, G belong tom3, then F’, G’ will also
belong tOm% unless mindegy, (F), degy, (G)) = 1. Once this situation occurs, we stop
our procedure at once; if say dggF) = 1, then by changing the coefficient &f with
the help of Proposition 4.2 if necessary, we see that we end up in the case described.

If we never encounter the situation where aiegy, (/), degy, (G)) = 1, then we even-
tually end up withf” (or g’) € k[ X2, ..., X,,]. But then using Proposition 4.2, ad&’; to
f’ or g’ and we end up in the situation described in the conclusion of our proposition.

To end the proof, it is enough to say that at least ong’odr g’ is in m%. Then this
guarantees that/(f’, ¢g’) is non-regular. O

Now let us go back to the proof of the theorem. We apply the Proposition 4 4 fer
k[X1,..., Xdte], 1 :=e—210 f1, ..., fo inductively.

Start with f1 and f, and putﬁ =k[X1,..., Xd+e]/(f3s -, fe). Then we can find such
F1, F> as stated in the proposition. Once we come to the conclusion in the proposition, then
we can find the desired hypersurface by applying the induction step on the length of the
regular sequence by eliminatirky, so we are done. O

We would like to close this section by proving the part (1) of Conjecture of Watanabe
and Yoshida stated in the introduction for complete intersections

Theorem 4.6. Letd > 2, p # 2 prime andk a field of characteristipp > 0. If (R, m, k) is
a complete intersection, not regular, theg (R) > ek (Rq, p)-
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Proof. We can enlarge the residue field such that we have an uncountable algebraic closed
field K.

By Theorems 3.2 and 4.3, we see that okeeHk (R ®« K) 2 ek (Ry, p ® K) which
implies the result ovet. O

Remark 4.7. Although we stated Propositions 4.4 and 4.2 for the case of complete in-
tersection only, this assumption was in fact not needed in their corresponding proofs. We
kept this as hypothesis for the convenience of the reader, since this section deals only with
complete intersections.

5. Remarkson the general case

In this section, we would like to show how using ideas related to the upper semi-
continuity of the Hilbert—Kunz multiplicity can provide insight into the general case of
the conjecture stated in Section 1. A local rifiguch that diniS) — depth(S) = 1 is called
almost Cohen—Macaulay

Proposition 5.1. Let (R, m, k) be an catenary unmixed non-regular ring of positive char-
acteristicp > 0. Then there exists a non-regular unmixed ring of same dimerisian k)
which is Cohen—Macaulay or almost Cohen—Macaulay such that

eHK () < eHk (R).

Proof. Letxy, ..., x, be a maximal regular sequence Brand letP be a minimal prime
over (x1, ..., x,). We have thatqk (Rp) < eqk(R) by [7, Theorem 3.8] (this is where
we need catenary). IRp is not regular, we are done since we can adjoin a finite number
of indeterminates t&Rkp to obtain a Cohen—Macaulay rirgywith ek (S) = ek (Rp) <
eqk (R) (the first equality comes from Proposition 1.2).

If Rp is regular, then conside? C Q such that heighip/P) = 1. Localize atQ and
getenk (Rp) < eqk (R). Sincexy, ..., x, is a maximal regular sequence, we see Rt
is almost Cohen—Macaulay. As before, by adjoining a number of indeterminate® gyer
we obtain an example of same dimensiorRas O

We would like to show that part (1) of the conjecture can be reduced to the case of an
isolated singularity:

Assume that(R,m, k) is excellent and unmixed. It is immediate thajk(R) >
ek (Rred) and hence we can passRaq and assume tha is excellent and reduced.

By induction on the dimension @&, we can assume that for all non-regular unmixed
rings A of smaller dimension one can find a hypersurf&ef same dimension such that
ek (B) < enk (A).

Let Sing R) be the singular locus qfR, m, k). It is a non-empty closed set defined by
anideal/. If J is m-primary, then there is nothing to prove. Otherwise Rgti =1, ..., n,
be the collection of all minimal primes of. Let P be one such minimal prim&; with
height less than the dimension Bf
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Then eyk (Rp) < eqk(R). By induction, we can find a hypersurface such that
eqk (S) < eqk (Rp). By adjoining a finite number of indeterminates Rp, we obtain a
hypersurface, relabelef] of dimension equal to ditR) andeyk (S) < eqk (R).

Our result Theorem 3.2 shows that among hypersur@j‘é;oxiz is the one with mini-
mal Hilbert—Kunz multiplicity.

We would like to close now with an observation related to the questions addressed in this
paper: LetA be a finitely generated -algebra which is non-regular and locally unmixed.
Is there a minimal value for the Hilbert—Kunz multiplicity dfp whereP is a non-regular
prime?

Proposition 5.2. Let A be an excellent, non-regular and locally unmixed. ThegR:
SpecR) — R has minimum when restricted to the non-regular locuSécR).

Proof. A is excellent and hence its singular locus is defined by an idleBbr any prime
containing/ we can find a minimal prim@ of J, P C Q, such thaeyk (Ap) < ek (Ap).
Since there are only finitely many minimal primes ovemwe are done. O
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