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Lupus nephritis is a frequent and serious complication of

systemic lupus erythematosus (SLE), the treatment of which

often requires the use of immunosuppressives that can have

severe side effects. Here we determined the low-molecular

weight proteome of serial lupus urine samples to uncover

novel and predictive biomarkers of SLE renal flare. Urine from

25 flare cycles of 19 patients with WHO Class III, IV, and V SLE

nephritis were obtained at baseline, pre-flare, flare and

post-flare. Each sample was first fractionated to remove

proteins larger than 30 kDa, then applied onto weak cation

exchanger protein chips for analysis by SELDI-TOF mass

spectrometry. We found 176 protein ions of which 27 were

differentially expressed between specific flare intervals.

On-chip peptide sequencing by integrated tandem mass

spectrometry positively identified the 20 and 25 amino-acid

isoforms of hepcidin, as well as fragments of a1-antitrypsin

and albumin among the selected differentially expressed

protein ions. Hepcidin 20 increased 4 months before renal

flare and returned to baseline at renal flare, whereas hepcidin

25 decreased at renal flare and returned to baseline 4 months

after the flare. These studies provide a beginning proteomic

analysis aimed at predicting impending renal relapse, relapse

severity, and the potential for recovery after SLE nephritis

flare.
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Kidney involvement in patients with systemic lupus erythe-
matosus (SLE) is a serious complication that often requires
aggressive immunosuppressive therapy. Although current
therapeutics are generally effective in controlling renal SLE,
the morbidity associated with treatment can be severe.1

Therapy of SLE nephritis would be more effective, and treat-
ment toxicities mitigated, if the onset, severity, or respon-
siveness of SLE renal flare could be predicted, and treatment
modified accordingly for individual patients. Supporting this
concept, renal survival is improved with early treatment and
rapid induction of remission in lupus nephritis.2,3 At present
there are no biomarkers that reliably predict the onset of
renal flare, flare phenotype, or how flare will respond to
treatment.4–6 We postulated that proteomic analysis of serial
urine samples taken before, during, and after lupus nephritis
flares could screen for proteins or peptides that are
differentially expressed during the initiation, maintenance,
and resolution phases of the flare cycle. Some of these
proteins could be clinically useful biomarkers for lupus
nephritis. For example, a urine protein that changes between
disease quiescence and a time point before flare is clinically
evident could be a forecaster of impending renal flare. Urine
proteins that are differentially expressed during flare may be
markers of flare severity and could have pathogenic or
therapeutic implications. Finally, urine proteins that are
differentially expressed during flare resolution may be
biomarkers of prognosis or response to therapy.

The urine proteome has been studied by two main
techniques. One technique involves two-dimensional gel
electrophoresis to separate proteins by isoelectric point and
size, followed by protein identification using mass spectro-
metry (MS).7–10 The most significant disadvantage of two-
dimensional gel electrophoresis for detecting candidate
biomarkers is the limited resolution of low-molecular weight
(LMW), low abundance proteins.11 The LMW proteome is
especially important for biomarker discovery in SLE, because
it contains biologic mediators (cytokines, chemokines, and
growth factors) that are expected to be involved in disease
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pathogenesis. Some of these mediators are produced in the
kidney and may reflect organ-specific injury. Nonetheless,
two-dimensional gel electrophoresis followed by MS was used
to detect urine proteins that discriminate between ISN/RPS
lupus nephritis classes.12 These putative biomarkers were
serum glycoproteins mostly larger than 20,000 Da.

The second major technique used in urine proteomics is
surface-enhanced laser desorption/ionization time-of-flight
MS (SELDI-TOF-MS). This involves spotting urine samples
on a solid-phase matrix (protein chip) that has specific
binding properties. Because the surface chemistry of the
protein chip influences the number and types of proteins that
bind, several different chip types must be used to completely
characterize a sample’s proteome. Protein spectra generated
after laser ionization of the spotted samples13 are character-
ized by their mass to charge (m/z) ratio. Relative abundance
can be estimated by protein ion peak height (intensity).
The advantage of SELDI-TOF-MS in SLE nephritis is
sensitivity for detection of LMW proteins, especially below
20,000 Da.14,15 For urine protein analysis, SELDI-TOF-MS
is accurate to within 0.01% of the molecular mass, and has a
sensitivity of 0.1 fmol.16 There are two main drawbacks
associated with SELDI-TOF-MS. Most importantly, it cannot
directly identify specific proteins, but rather patterns of
protein expression.17 Although patterns can provide biomar-
ker information, protein identities are required to advance
the understanding of disease pathogenesis and to develop
novel therapeutics. The identities of specific SELDI-derived
candidate protein ions can be determined after chromato-
graphic enrichment and protein sequencing by capillary
liquid chromatography-nanospray tandem MS (LC/MS/MS),
or by on-chip protein sequencing using an LC/MS/MS
system integrated with the SELDI-TOF mass spectro-
meter.9,10,18

A second drawback of SELDI-TOF-MS is the reproduci-
bility of relative protein abundance. Although SELDI-derived
protein masses are consistent (intra- and interassay coeffi-
cients of variation of 0.07%), intra- and interassay coeffi-
cients of variation for protein peak intensities are of the order
of 20%, and in the urine have ranged from 8 to 30%.17,19

SELDI-TOF-MS is thus a semiquantitative, high-throughput
screening technique, and SELDI-derived candidate biomar-
kers need to be validated by another method.

SELDI-TOF-MS has been used for urine biomarker
discovery in urological malignancies,20,21 kidney transplant
rejection,22,23 intravenous contrast nephropathy,16 urolithia-
sis,15 ischemic acute kidney injury,15 and SLE nephritis.24

Five potential polypeptide biomarkers were identified for
transitional cell carcinoma of the bladder, and one of them
was subsequently shown to be a member of the defensin
family.20 In acute allograft rejection, there was no con-
cordance of the results of three studies that used protein ion
expression patterns to define biomarkers.22,23,25 One SELDI-
TOF-MS evaluation of acute rejection produced a list of
peaks that were later identified using microcapillary LC/MS/
MS as proteolytic products of b2-microglobulin, presumably

reflecting damage to renal proximal tubular cells.26 Only two
SLE nephritis studies used the SELDI platform to examine
the urine proteome. One reported two protein ions at m/z
3340 and 3980 that together distinguished active nephritis
from inactive nephritis with 92% sensitivity and specificity,
but the actual peptides were not identified.24 The other
investigation found eight protein ions that correlated with
renal disease activity.27 The majority of these were larger than
20 kDa and mainly unidentified, but one appeared to be
albumin.27

In the current study, SELDI-TOF-MS was used to screen
the LMW proteome of prospectively acquired, serial urine
samples from a cohort of SLE patients with known renal
involvement, to demonstrate the feasibility of candidate
biomarker discovery for specific phases of the lupus nephritis
flare cycle, according to the scheme outlined in Figure 1.
Twenty seven peptide ions showed statistically significant
differential expression over the flare cycle. Selected protein
ions were characterized further by on-chip peptide sequen-
cing and were identified as hepcidin, a1-antitrypsin (A1AT),
and a fragment of albumin. These data show that urine
proteomic screening with SELDI-TOF-MS followed by MS
peptide sequencing can positively identify peptides that can
then be validated as lupus nephritis biomarkers.

RESULTS

The LMW urine proteome from 25 moderate to severe SLE
nephritis flare cycles in 19 patients was studied. These
patients were all women, 53% were Caucasian, 42% African
American and 5% Asian. The patients’ initial kidney biopsies
showed class III (n¼ 5), class IV (n¼ 11), and class V (n¼ 3)
nephritis, and 27% of the flares were adjudicated as severe,
whereas 73% were considered moderate.

SELDI-TOF-MS identified 176 protein peaks (m/z protein
ions) between 2000 and 20,000 m/z, using a weak cation
exchanger protein chip. Ninety-six protein ions were present
in over 30% of the flare cycles, and 43 peaks were present in
over 60% of the flare cycles. A typical SELDI-TOF-MS
spectrum from a whole flare cycle is shown in Figure 2a,
illustrating how SELDI-TOF-MS spectra can capture
dynamic changes in urine protein expression during
the evolution of a lupus nephritis flare. As illustrated, more
protein ions progressively appear between 2000 and 4000 m/z
as the flare develops, from an average of 18 peaks at baseline
to 23 peaks at flare (Po0.0001). These protein peaks

Flare cycle phase Expected biomarkers

Baseline
Predictors of flare onset

Pre-flare: 4–, 2– months:
Predictors of flare severity

Flare

Post-flare: 2+, 4+ months Predictors of response to therapy

Baseline

Figure 1 | Analysis scheme for urine protein phenotyping of
SLE nephritis flare cycle.
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disappear when the flare is effectively treated and renal SLE
activity returns to baseline. Importantly, changes in the urine
proteome can occur in either direction during the evolution
of a flare, as shown by the decrease in some protein ions
between pre-flare and flare (Figure 2b).

Differentially expressed protein ions

Twenty-seven protein ions showed significant differential
expression between specific flare intervals (Table 1). To
minimize false-positive results, candidate biomarkers were
arbitrarily chosen from those protein ions that showed a
change in expression of X1.5-fold. Of the 27 differentially
expressed protein ions, 25 met this criterion, were present in
32–92% of the flares, and were between 2000 and 10,000 m/z
(Table 1). Of the 27 protein ions in Table 1, 16 fell between
the baseline and pre-flare phases, 5 peaks between the pre-
flare and flare phases, 7 peaks between the flare and post-flare

phases, and 6 peaks were differentially expressed over
multiple intervals. Although no single peak appears in all
of the SLE renal flares, several combinations of two peaks
were observed in 100% of the flare cycles between remission
and pre-flare, and between flare and post-flare (Table 2).

The qualitative expression pattern of each candidate
biomarker was examined throughout the flare cycle. Nineteen
protein ions varied in parallel with the cycle, increasing or
decreasing in intensity as flare approached, and then
returning to baseline expression. Protein ions that fluctuated
randomly over the flare cycle were not considered further as
candidate biomarkers. The time-dependent expression of
four representative candidate proteins is shown in Figure 3.
Protein ions M1, M11 and M17 increased over the flare cycle
whereas M87 decreased.

Effect of immunosuppressive medications

To determine if immunosuppressive medications affected
urine SELDI-TOF-MS profiles, the correlations of predni-
sone, mycophenolate mofetil, and azathioprine dose to
protein peak intensity 2 months pre-flare, at flare, and
2 months post-flare were calculated for six high-frequency
protein peaks (M8, M16, M17, M26, M28, and M70). Of the
54 possible linear regressions for this data set, 50 showed no
significant correlation between medication dose and urine
peptide level. Minor correlations between peak M16 at flare
(r2 ¼ 0.24, P¼ 0.034) and post-flare (r2¼ 0.28, P¼ 0.025),
and peak M70 post-flare (r2 ¼ 0.24, P¼ 0.022) were observed
with prednisone dose. Peak M26 displayed a strong positive
correlation with prednisone dose at flare (r2 ¼ 0.54,
P¼ 0.0004), suggesting its urinary expression may have been
enhanced by corticosteroids.

Peptide identification

To demonstrate that candidate LMW urine biomarkers found
by SELDI-TOF-MS screening can be positively identified,
direct on-chip peptide sequencing was done for selected
protein ions with a m/z less than 5000, that were expressed at
high frequency, changed equal to or more than 1.5-fold
between at least two phases of the flare cycle, and varied in
parallel with the flare cycle. Using this technique, protein ions
M8, M34, M17, and M26 were positively identified.

M8 and M34 correspond to the 20 and 25 amino-acid
isoforms of hepcidin (Figure 4a). A 22 amino-acid hepcidin
isoform was also found in the urine of SLE patients
(Figure 4a), but was not differently expressed between any
two phases of the flare cycle, and thus not considered a
candidate biomarker. The time course of hepcidin expression
is shown in Figure 4b. Hepcidin 20 (m/z 2198) increased
4 months pre-flare and then slowly returned to baseline by
4 months post-flare. Hepcidin 25 (m/z 2432) decreased at
flare and returned to baseline by 4 months post-flare. There
was no correlation between the 20 and 25 amino-acid
isoforms. There was no correlation between hepcidin 20 or 25
and estimated glomerular filtration rate (r2¼ 0.18, P¼ 0.08;
r2 ¼ 0.07, P¼ 0.35, respectively). The presence of hepcidin in

2000 4000 6000 8000 10,000

2000 4000 6000 8000 10,000

Baseline

2 months pre-flare

4 months pre-flare

Flare

2 months post-flare

4 months post-flare

4 months post-flare

0
20
40
60

0
20
40
60

0
20
40
60

0
20
40
60

0
20
40
60

0
20
40
60

4500 5000 5500 6000

4500 5000 5500 6000

Flare

0

20

40

0

20

40

Figure 2 | Urine SELDI spectra of class IV SLE nephritis flare
cycles. (a) The spectra of a whole flare cycle are presented
between the 2000 and 10,000 Da region. The LMW urine
proteome shows an overall increase in peaks between 2000 and
4000 Da as flare approaches, which then decrease during flare
treatment. Peak intensity (relative protein abundance) is given on
the y axis. (b) The spectra from 4 months pre-flare and flare of a
class IV GN patient showing that some protein ions decrease at
the flare.
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urine was further confirmed by LC/MS/MS from patients in
whom hepcidin was identified by on-chip sequencing. Figure
4c shows the on-chip collision-induced dissociation frag-
mentation of urine hepcidin 25. Figure 4d–e demonstrate LC/
MS/MS detection of an internal peptide of hepcidin 25 (y-
ions labeled) in the urine of an SLE patient.

M17 (m/z 2395) and M26 (m/z 2648) correspond to a
fragment of the 46 kDa precursor of a1-antitrypsin (A1AT),
and a fragment of the N-terminal region of albumin,
respectively. Both are abundant serum proteins. The A1AT

fragment increased at flare, whereas the albumin fragment
increased 4 month pre-flare compared to baseline (Figure
5a). Corresponding SELDI spectra for A1AT and albumin are
shown in Figure 5b and c.

Renal expression of hepcidin

Biopsies from patients with SLE nephritis were stained for
hepcidin, and infiltrating interstitial leukocytes were shown
to express hepcidin (Figure 6). There was virtually no
staining of renal parenchymal cells. Similarly, in a normal

Table 1 | SELDI protein ions showing differential expression between SLE renal flare states

Fold change between groupsc

No. Peak m/za ID Frequencyb 4�/Bd 2�/B 2+/B 4+/B F/4� F/2� F/2+ F/4+ 2+/4+

1 M1 2010 0.32 2.7 2.1
2 M4 2094 0.48 1.6
3 M8 2198 Hepcidin 0.72 1.5
4 M11 2274 0.36 3.7 2.8
5 M15 2364 0.48 3.1 1.4
6 M16 2380 0.76 1.2 1.6
7 M17 2395 A1AT 0.84 2.1 2.1 2.3
8 M18 2411 0.52 2.4
9 M21 2500 0.64 1.8

10 M26 2648 Albumin 0.76 1.94
11 M28 2686 0.84 1.7
12 M34 2797 Hepcidin 0.6 0.6
13 M58 3398 0.72 2.0
14 M70 3712 0.92 1.7
15 M74 3827 0.44 1.9
16 M77 3886 0.32 1.9
17 M85 4058 0.6 1.7
18 M87 4096 0.4 0.7
19 M89 4132 0.72 1.7
20 M93 4248 0.32 0.6
21 M95 4293 0.56 2.3 1.6
22 M101 4427 0.56 1.1
23 M105 4540 0.4 1.5
24 M123 5080 0.36 0.4
25 M125 5225 0.36 0.5
26 M137 5700 0.36 1.6
27 M161 8018 0.72 1.4

Abbreviation: SELDI, surface-enhanced laser desorption/ionization time-of-flight MS.
aAll protein ions are statistically significant with Po0.05, and the bolded numbers denote Po0.01.
bFrequency indicates the percent of patients having the peak in the urine.
cFold change between groups is done in the indicated time order, for example, 4�/B stands for relative peak intensity at 4 months pre-flare divided by the intensity at
baseline.
dB stands for Baseline, F for Flare, 4� for 4 months pre-flare, 2� for 2 months pre-flare, 2+ for 2 months post-flare, and 4+ for 4 months post-flare.

Table 2 | Frequency of combined protein ions in SLE flare states

Individual protein ion with frequency

M15 M16 M17 M28 M34 M58 M70 M95 M161
Comparison groups 48% 76% 84% 84% 60% 72% 92% 56% 72% Combined frequency (%)

Remission and pre-flare O O 100
O O 100

O O 100
O O 100

O O 100
Flare and post-flare O O 100

O O 100
O O 100

Abbreviation: SLE, systemic lupus erythematosus.
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kidney the only cell stained was an interstitial cell, likely a
resident macrophage. Hepcidin expression was minimal in
the control kidney compared to SLE nephritis.

DISCUSSION

This investigation demonstrates the feasibility of using
SELDI-TOF-MS as a screening technique to examine serial
changes in the urine proteome of SLE patients during lupus
nephritis flares. By understanding how specific urine proteins
change as a renal flare develops, becomes clinically apparent,
and is treated and resolves, it is likely that clinically relevant
biomarkers will be identified that can provide diagnostic,
pathogenic, and therapeutic information on each phase of
the flare cycle. Although SELDI-TOF-MS has been used to
examine the urine proteome in a variety of conditions,
including lupus nephritis, peptide expression patterns have
mainly been described that differentiate between static
disease states.23–25 Few studies have used a longitudinal
proteomic approach to identify specific proteins that can be
verified and then validated in an independent sample set. As
proof of concept, we examined the dynamic changes in the
urine proteome over the SLE renal flare cycle and showed
that hepcidin, A1AT, and an albumin fragment are differen-
tially expressed during different phases of a nephritis flare.
Interestingly, immunosuppressive medications had little
effect on the expression of urine peptides detected by SELDI.

Hepcidin as a candidate biomarker may be our most
interesting finding. It is a LMW peptide hormone that has
antimicrobial activity, regulates iron homeostasis, and has
been implicated in the pathogenesis of the anemia of chronic
inflammation, including that of chronic kidney disease.28–32

Hepcidin is mainly produced in the liver as pro-hepcidin,
and undergoes N-terminal modification to yield the active
C-terminal peptides of 20–25 amino acids; however, other
investigators have also found hepcidin in urine, and hepcidin
20 and 25 were dominant.28 Recent studies suggest that

hepcidin may be made by renal tubular cells.33 Although we
could not verify this, we did demonstrate intrarenal
expression of hepcidin by infiltrating leukocytes in patients
with SLE nephritis, raising the possibility that during renal
flare hepcidin is produced within the kidney, rather than
simply being filtered.

Urine hepcidin has been shown to increase during
inflammation, and decline as inflammation resolved.34–36

Hepcidin expression is induced by interleukin-6 and is
suppressed by tumor necrosis factor-a,31,37 cytokines that are
implicated in the pathogenesis of SLE.38–40 Therefore,
measurement of urine hepcidin isoforms during lupus flare
may reflect the complex balance and changing expression of
proinflammatory cytokines in lupus kidneys. It is intriguing
to speculate that because expression of hepcidin 20 is altered
pre-flare, it may be a biomarker of impending renal flare. In
contrast, and consistent with our data that hepcidin 20 and
25 may be regulated independently, hepcidin 25 decreases at
flare and increases during treatment, suggesting it may be a
useful marker for following response to therapy. In this
regard, urine hepcidin will need to be verified as a lupus
nephritis biomarker, and shown to be a better indicator of
SLE activity than urine cytokines, such as interleukin-6 or
tumor necrosis factor-a.41,42

A1AT and albumin fragments were also found to be
differentially expressed in the urine during SLE renal flare.
Although the parent proteins are not from the LMW
proteome, these findings may still be important in SLE
nephritis. For example, A1AT is made in the kidney, and can
be induced by cytokines such as interleukin-6.43,44 Thus,
A1AT could be a marker of proinflammatory cytokine
production. Furthermore, specific albumin and A1AT frag-
ments have been found in the serum and urine of patients
with glomerulonephritis.45 It is conceivable that the frag-
mentation pattern of these proteins reflects pathogenic
proteolytic activity during kidney disease, and the appearance
of specific fragments in the urine could thus serve as a
biomarker of this process. Conversely, charge variants of
A1AT and albumin were found to be part of a group of urine
proteins that could be used to distinguish between SLE and
other proteinuric glomerular diseases.46 It will thus be
important to characterize the fragments of A1AT and
albumin present throughout the SLE renal flare cycle, and
see whether fragments or charge variants of intact proteins
provide the most diagnostic information in SLE nephritis.

Despite the large number of protein peaks detected in raw
urine, only 19 differentially expressed protein ions survived
our moderately stringent criteria arbitrarily established for
biomarker relevance to lupus nephritis. Furthermore, certain
combinations of two candidate protein ions were found in all
flare cycles, suggesting that validated biomarkers will be
useful in most lupus patients, and that two or more
biomarkers may be necessary to fully characterize phases of
the flare cycle. These findings are consistent with other SELDI
studies that showed only a few protein ions3–13 were needed
to separate disease from control groups, or predict kidney
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points of the renal flare cycle. Error bars indicate standard errors
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injury with high sensitivity and specificity.15,16,22,23,25 When
SELDI-TOF-MS was used to distinguish between active and
inactive SLE nephritis, it was reported that of 32 protein ions
that varied significantly between active and quiescent SLE, a
combination of two protein ions provided the most power
for diagnosing active nephritis.24 Most of these studies used
only one or two types of protein chips. To interrogate the
entire proteome will require using a wide variety of protein
chip-binding surfaces. Nonetheless, this technique appears to
be capable of delivering a manageable number of candidate
protein peaks. This is important, considering the need to
identify and validate each potential biomarker.

In conclusion, this study demonstrates the feasibility
of using SELDI-TOF-MS to screen for differential protein

expression during the evolution of SLE renal flares. This
technique yields a testable number of biomarker candidates
that can then be specifically identified. This eliminates the
need for protein patterns as biomarkers, and allows
validation and testing of candidate proteins in independent
patient cohorts. Of three potential biomarkers identified in
this study, hepcidin appears to have a significant relationship
to proinflammatory cytokines thought to mediate lupus
nephritis, and is presently undergoing further evaluation in
SLE in our laboratories.

MATERIALS AND METHODS
Urine samples
A total of 145 urine samples were obtained from the Ohio SLE Study
(OSS) specimen bank. The OSS is a prospective, longitudinal study
of patients with four or more American College of Rheumatology
criteria for SLE, and has been described previously.47 The OSS was
approved by the local Institutional Review Board, and all patients
gave informed consent to participate. Urine samples were from
19 patients with SLE nephritis who experienced 25 moderate to
severe renal flares. The criteria used to adjudicate and classify the
severity of renal flares in the OSS have been published.47 Urine was
collected prospectively at 2-month intervals over several years from
the OSS cohort. Fresh urine from each patient visit was centrifuged
to remove cellular debris and rapidly frozen at �801C in small
aliquots until use. Urine creatinine and protein concentrations were
measured using the Roche Creatinine Reagent (Roche Diagnostic
Corporation, Indianapolis, IN, USA) and the Bio-Rad RC-DC
Protein Assay (Bio-Rad Laboratories, Hercules, CA, USA),
respectively.

Urine proteomes were examined from four phases of the SLE
renal flare cycle: pre-flare, flare, treatment, and baseline. Pre-flare
specimens were from 4 and 2 months before flare diagnosis, flare
specimens were obtained at flare diagnosis, and treatment specimens
were from 2 and 4 months after flare diagnosis. Baseline urines were
chosen from specimens obtained more than 6 months away from
any renal flare, and when patients had a stable serum creatinine and
no proteinuria, or proteinuria values that had returned to pre-flare
levels. Baseline samples could have preceded or followed the flare
cycle under investigation, and in cases where both were available
their data were combined to give a composite baseline.

To isolate the LMW urine proteome, urine protein size
fractionation was done using VIVASPIN 500 spin columns
(Vivascience, Carlsbad, CA, USA) having a molecular weight cutoff
of 30,000 Da to remove abundant, high-molecular weight proteins
such as albumin. To avoid loss of LMW proteins bound to albumin,
the urine was first denatured by adding 200 ml of urine to 300ml of
denaturing buffer (9 M urea/2% 3 [(3-cholamidopropyl)dimethyl-
aminonio]-1-propanesulfonate (CHAPS)) for 30 min at 41C. The
denatured urine was then added to the spin columns and the
flow-through was used for SELDI-TOF-MS analyses.

SELDI-TOF-MS screening of the LMW urine proteome
Pilot experiments included protein chip selection and optimization
of protein chip-binding conditions. Among all the protein chips
tested the best spectral data were obtained using a weak cation
exchanger (CM10 chip; Ciphergen, Fremont, CA, USA), which was
subsequently used for this proof-of-concept study. All of the CM10
chips used in this investigation were from the same lot, samples were
placed on the chips in random order, and as much as possible
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Figure 5 | Urine expression of A1AT and an albumin fragment
during SLE renal flare. (a) SELDI relative intensity of M17
(A1AT) and M26 (albumin) between baseline and flare, and
baseline and 4 months pre-flare. (b) SELDI spectrum of M17 at
flare; (c) SELDI spectrum of M26 pre-flare.
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Figure 6 | Intrarenal expression of hepcidin.
Immunohistochemical staining for hepcidin is shown for renal
biopsy material from a normal kidney (CONT), and three patients
with class IV SLE nephritis (SLE). The positive cells are infiltrating
interstitial leukocytes.
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samples from the same patient were placed on a single chip. All data
were acquired within 3 days, except for two chips that were read
within 2 weeks. Urine sample mix (50 ml) (5ml fractionated,
denatured urine and 45 ml of 40 mM ammonium acetate pH 4.0,
0.1% Triton-X 100 buffer containing 10 fmol bovine insulin (Sigma,
St Louis, MO, USA)) was added to each spot. The bovine insulin
served as an internal standard for protein mass accuracy and was
used to control for intra- and inter-chip variance of peak intensity.
The linear binding range for insulin on CM10 ProteinChip is
1–50 fmol, and correlated to peak height with an r2 of 0.99 at pH 4.0,
a pH well below the insulin pI of 5.65 (data not shown). Using
endogenous urine protein ions normalized to bovine insulin, the
intra-chip coefficient of variation for peak height was 11% and
inter-chip coefficient of variation was 19.7%, values compatible to
or better than those previously reported.18,24 After binding, chips
were washed, dried, and 1.0 ml of an energy-absorbing molecule
(30% CHCA in 50% acetonitrile and 0.5% trifluoroacetic acid), was
added.

Urine protein spectra were acquired with a Protein Chip PBS II
Reader (Ciphergen) set to an optimum mass range of
500–20,000 Da, a laser intensity of 195 with two warming shots
(not collected), a sensitivity of 9, and collection of 50 transient shots
across the spot surface. To minimize the protein chip spot variance,
each urine sample was done on duplicate spots. External calibration
of the Protein Chip Reader was performed using the Ciphergen
Biosystem All-in-1 peptide standard C100-0005, and the calibration
equation was applied to each spectrum before analysis to ensure the
peak accuracy.

Data analysis
Protein peaks were detected by second-pass peak selection and
restricted to a signal-to- noise ratio of X2, minimum valley depth of
2 and sensitivity of 100%. The mass range from 2000 to 20,000 Da
was selected for analysis as this range contained the majority of the
resolved protein/peptides. The detected peaks from different
patients were aligned manually according to the peak accuracy
variance, which was less than 0.5% for the internal insulin
calibration standard (data not shown). Only peaks present in more
than 30% of the flares were analyzed further, in an effort to screen
for biomarkers of general applicability to SLE nephritis. The spectra
were normalized to the total ion current within duplicates to
minimize the protein chip spot variance. The intensity of each peak
in the spectra was then further normalized to the internal insulin
control, and urine creatinine concentration to account for urine
dilution. Protein peaks were compared stepwise between two phases
of the renal flare cycle, as illustrated in Figure 1. Data were analyzed
by the paired t-test or the Wilcoxon matched pairs test, based on
whether they were or were not normally distributed. These statistical
tests rather than repeated measures analysis of variance were used
because the standard deviation of the data was not stable over time.
A two-tailed alpha level of o0.05 was considered significant.

Peptide identification
For direct on-chip peptide sequencing and identification,48 the CM10
chip was reduced using DTT and selected, differentially expressed
peptide ions less than 5000 Da were sequenced. Sequence data were
obtained using a Protein Chip Tandem MS Interface with a front-end
SELDI ion source for the Applied Biosystem/MDS Sciex QStar
Hybrid LC/MS/MS System (Ciphergen). The protein chip interface
used a 337 nm nitrogen laser with a lensed fiber optic, delivering
150 mJ of energy per pulse at 30 pulses per second. Peptides

underwent collision-induced dissociation by applied collision energy
of 50 eV/kDa. Sample spot scanning was controlled through Protein
Chip Interface Control Software (Bio-Rad Laboratories), while data
analysis and acquisition were carried out using the QStar System’s
Analyst software (Applied Biosystems Inc., Foster City, CA, USA).
This system is capable of high attomole to low femtomole MS and
MS/MS sensitivity. The sequences resulting from spectral data were
submitted to the database mining tool Mascot49 for identification.

Results of on-chip identification were further confirmed using
Nano-LC/MS/MS at the Ohio State Mass Spectrometry and
Proteomics Facility. Briefly, urine samples and human hepcidin 20
and 25 peptide standards (Alpha Diagnostics International Inc., San
Antonio, TX, USA) were digested in trypsin and Nano-LC/MS/MS
was performed on a Thermo Finnigan LTQ mass spectrometer
(Waltham, MA, USA) equipped with a nanospray source operated
in positive ion mode. The LC system was an UltiMate Plus system
from LC-Packings A Dionex Co (Sunnyvale, CA, USA) with a Famos
autosampler and Switchos column switcher. The scan sequence of
the mass spectrometer was based on the TopTen method. Analysis
was programmed for a full scan recorded between 350 and 2000 Da,
and a MS/MS scan to generate product ion spectra to determine
amino-acid sequence in consecutive instrument scans of the 10 most
abundant peaks in the spectrum. Sequence information from the
MS/MS data was converted to a merged file and then was searched
using Mascot Daemon version 2.2.1 by Matrix Science (Boston, MA,
USA) and the database searched against the full SwissProt database
version 54.1 (283454 sequences; 104030551 residues). Protein
identifications were checked manually and proteins with a Mascot
score of 50 or higher with a minimum of two unique peptides from
one protein having a �b or �y ion sequence tag of five residues or
better were accepted.

Immunohistochemistry
Renal biopsy material from three cases of class IV lupus nephritis,
and one normal transplant donor kidney were stained with a rabbit
anti-hepcidin polyclonal antibody (Abcam, Cambridge, MA, USA),
and visualized with 3,30-diaminobenzidine (DAB). Paraffin-em-
bedded tissue was used, endogenous peroxidase was quenched with
hydrogen peroxide, and antigen retrieval was done with citric acid
(pH 6.1) for 25 min at 941C before incubation with the primary
antibody (1:500) overnight at 41C. No staining was observed with a
non-immune control antibody.
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