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ABSTRACT
A two–stage strategy is proposed to predict regional peak ozone episodes in the Houston–Galveston–Brazoria (HGB)
area of Texas, USA. With the forecasted meteorological information, ozone episodes can be predicted one day in
advance. Three generalized linear mixed effects models (GLMMs) are built with air quality and meteorological data
monitored at CAMS35, CAMS403 and CAMS1015; wind field data from 8 monitoring sites in HGB area are used to
generate clusters which represent distinct weather patterns. Air quality and meteorological data during ozone seasons
(Apr. 1st – Oct. 31st) from 2003 to 2005 are used to build site–specific prediction models. Data of ozone season from
2006 to 2007 are used to test these models. Compared to linear regression models (LM), generalized linear models
(GLMs), multilayer perceptron (MLP) and support vector machine (SVM), GLMM which considers differences in ozone
formation and diffusion in distinct weather patterns has the smallest fitting and prediction error on ozone exceedances
and can detect the most number of exceedance days correctly.
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1. Introduction

As one of the most harmful secondary air pollutants, surface
ozone is mainly formed by the photochemical reactions between
nitrogen oxides (NOX) and volatile organic compounds (VOCs)
(Jenkin and Clemitshaw, 2000). Under certain weather conditions,
surface ozone can accumulate to unhealthy levels and cause
chronic damages on human respiratory systems (Ji et al., 2011;
Groves et al., 2012). Exposure to prolonged high levels of ozone can
lead to more visits to physicians and emergency rooms (Fauroux et
al., 2000; Tolbert et al., 2000). To alleviate the negative effects of
ozone action days (OADs), many prediction strategies have been
carried out, especially in the Houston–Galveston–Brazoria (HGB)
area of Texas, USA. The benefits to human health by correctly
forecasting OADs and issuing health warnings can be significant
(Neidell, 2010). Here, days in which the maximum 8 h–average
ozone concentration is over 75 ppb are defined as ozone action
days (OADs).

Forecasting surface ozone concentration is challenging due to
the complexity of the physical and chemical processes involved in
photochemical reactions. Various techniques, which could be
basically classified as deterministic models and statistical models,
have been developed for surface ozone predictions. Deterministic
models, which are also named as chemical transport models
(CTMs), comprise numerical models which typically simulate atmo
spheric chemistry and dispersion models (Jacob, 1999). The most
popular CTMs include CMAQ, WRF/Chem, CAMx, GEOS–CHEM,

MOZART, and others (Done et al., 2004; Tesche et al., 2006; Henze
et al., 2007; Emmons et al., 2010). During the Texas Air Quality
Study campaigns in 2000 and 2006, several CTMs were used to
simulate summer ozone episodes over the HGB area (Jiang and
Fast, 2004; Fast et al., 2006; Byun et al., 2007). Simulation results
showed that CTMs were sensitive to initial meteorological factors,
horizontal grid spacing, nesting methods and land–surface models
used in the model simulations due to the complex mathematical
structure (Zhang et al., 2007; Misenis and Zhang, 2010). Therefore,
CTM parameters may need to be reset frequently and compu
tations may require vast resources. Moreover, the accuracy of
OADs predicted by CTMs is relatively low. A rigorous comparison
between CTMs and statistical models showed that the correlation
between measured daily maximum and surface ozone concen
trations yielded using complex 3–D modeling approach is 0.49,
which is much lower than that of the site–specific, well–developed
data–driven models (Draxler, 2000). The true positive rate (TPR) of
ozone action days during 2013 ozone season in Houston announced
by Texas Commission on Environment Quality (TCEQ) is only 64%.
Compared to CTMs, statistical models based on historical data
provide more accurate results and involve simpler calculations.
Statistical models used for ozone prediction in HGB area include
linear regression, generalized additive models (GAMs), Box–Jenkins
ARIMA, clustering and artificial neural networks (ANNs) (Davis and
Speckman, 1999; Prybutok et al., 2000; Darby, 2005). Other statis
tical models such as support vector machines, fuzzy inference
systems, evolutionary algorithms and ensembles of predictors also
are used to forecast surface ozone levels frequently (Sfetsos and
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Siriopoulos, 2004; Feng et al., 2011; Sfetsos et al., 2013; Zahedi et
al., 2014; Zhang et al., 2014). Among these statistical models, ANNs
could predict daily maximum surface ozone levels with the smallest
errors. However, ANNs are developed with a non–explanatory
structure and are black box approaches and the successful imple
mentation of ANN–based models depend on the proper selection
of training data, network structure and connection mode among
neural nodes (Psichogios and Ungar, 1992). Though well–developed
statistical models outperform CTMs to some extent, they
substantially underestimate surface ozone concentrations in OADs
which are the most harmful from human health perspective
(Cobourn and Hubbard, 1999; Draxler, 2000).

It is essential to develop new prediction models to improve
true positive rate (TPR) of OADs. To address this problem, non–
Gaussian distributed characteristics of model data should be
considered first. Meteorological and air quality data usually are
sparse and limited in collected data set (Zhang and Fan, 2008).
Ozone action days which take a small fraction of the total modeling
data reside at the right end of the probability density curve. Also,
some key meteorological factors which affect the photochemical
reactions distribute non–normally, such as wind speed, solar
radiation and surface temperature (Sun et al., 2013). Thus, a linear
regression model might not capture the underlying complex
features. In order to reflect correlations between non–normal
distributed ozone and independent variables, a GAM has been
applied to predict maximum and 8–hr average ozone in Houston
but did not attain the expected predictive capabilities (Davis and
Speckman, 1999). Thus, only non–Gaussian distribution of model
data may not be enough to map complex relations between surface
ozone and its influence factors. Differences of surface ozone
formation and transport in distinct weather patterns may also be
considered in the prediction models. Davis et al. (1998) used
clustering to identify seven distinct meteorological regimes and
build GAMs in each regime to model meteorological effects on
ozone formation. Their results show that meteorological effects on
ozone vary significantly in different weather patterns. Darby (2005)
also used clustering techniques to study surface winds effects on
ozone formation during TexAQS 2000 and found high ozone was
most likely to occur with clusters representing the Gulf breeze.
Thus, data of ozone seasons can be treated as grouped data and
relations between surface ozone and meteorological factors show
marked differences. Due to the limited size of model data,
generalized linear models based on different subsets of the model
dataset with very limited data size may not be reliable. To consider
both non–normal distributed and grouped data structure, cluster
based GLMM are introduced to predict surface ozone levels in HGB
area: with the extension of mixed–effects, GLMMs can be adopted
to deal with grouped data which are organized in several clusters;
with the link functions, GLMMs can model OADs that reside along
the right end of the probability density plot. Therefore, cluster–
based GLMMs will be adopted in this work to improve TPR of ozone
action days in the HGB area.

In the sequel, first, model data are grouped into several classes
according to underlying synoptic wind fields; then, GLMMs are
built to predict surface ozone levels 24 hours in advance. The
remainder of the paper is organized as follows: The method
proposed is described in the second section, which includes a two–
step cluster algorithm and GLMM; followed by the introduction of
data and the study area. Then result and discussion are addressed
in detail. The conclusions are presented in the final section.

2. Methodology

2.1. Generalized linear mixed model

As GLMM is originated from linear regression, a linear
regression model needs to be discussed first. Such a model can be
described as follows:

(1)

where, y is the response variable, 8–h average surface ozone
concentration in this work; X is the input variable ensembles which
include ozone precursors and meteorological factors; is the vector
of regression coefficients; and is the prediction errors, which
follow normal distributions with the mean value of 0 and the
variance of 2. In the linear regression model, X can be treated as
fixed effects and as the random effect. With fixed effects only,
linear regression model is not appropriate to describe modeling
data which can be grouped into distinct weather patterns. Thus,
random effect terms are used to form a linear mixed model (LMM).
With the random effects, LMMs can capture the meteorological
variability that drives ozone formation among different weather
patterns. A LMM can be described as follows:

(2)

where, yi is the surface ozone concentration of the ith weather
pattern; Xi is the fixed effects for ozone precursors and
meteorological factors of the ith weather pattern; is the vector of
fixed effect coefficients; Zi is the random effects, which are used to
identify different correlations between surface ozone and its
influence factors in the ith weather pattern; bi is the coefficients of
random effect of the ith weather pattern; is the covariance for
the random effects and 2 is the covariance for errors in the ith
weather pattern.

When the prediction errors distribute non–normally and ozone
data follows any distribution belonging to the exponential distri
bution family, a one–to–one continuous link function g can be used
to model the mean value of surface ozone. With the random
effects and link function, a GLMM can be described as Bolker et al.
(2009):

(3)

where, is the mean value of the predicted variable, is the linear
combination of and g is the link function.

In this paper, the modeling data are grouped into different
clusters according to the characteristics of the diurnal wind cycles.
The influence of meteorological factors and ozone precursors on
ozone buildup makes a great deal of difference in different synoptic
weather patterns. With GLMM, it is possible to account for the
influence of different synoptic patterns on ozone dynamics.
Moreover, mixed effects modeling approach could make use of the
whole data instead of building models with subsets exclusively.

2.2. Clustering methods

Two–stage clustering methods based on k–means and dendrogram.
Usually, high air pollutant concentrations in urban areas do not
typically result from emission events but from changes of
meteorological conditions. Thus, the clustering algorithm proposed
by Beaver and Palazoglu (2006a) is employed to identify wind field
patterns which play different roles in ozone formation in HGB area.
This method can extract wind field dynamics and recognize surface
flow patterns which affect local ozone concentration by grouping
days exhibiting similar diurnal cycles. It consists of two steps: the
first step is the standard k–means clustering for matrices of wind
data time series; the second step is an aggregation step which
aggregates cluster solutions generated by performing many
randomly initialized runs of the first step into a single, hierarchical
solution. Details of this method can be found in the paper by
Beaver and Palazoglu (2006b).

New data labeling. When this model is used for ozone prediction,
wind field of the next day should be labeled at the beginning. First,
wind field data are formed into a lagged matrix, whose structure is
the same as that used in cluster analysis discussed above. Then the
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k dynamic principal component analysis (DPCA) prototypes of each
run are concatenated into a row:

P = [(P11, P21 … Pk1) 1, (P12, P22 … Pk2) 2 … (P1n, P2n … Pkn) n] (4)

Residuals of the new data can be calculated by applying the
new data window to the k DPCA prototypes. Then, it is assigned to
the prototype which generates the minimum residual and the
corresponding element changes into 1. Next a binary matrix which
has the same column as H and named Hnew can be obtained. The
new part of distance matrix Dnew is calculated as:

(5)

where, [0] is a zero matrix which has the same size as H. Dnew is the
new distance matrix which is a (N+Nnew)×(N+Nnew) square matrix.
Nnew is the number of new windows. From the N+1st row (column)
to N+Nnew row (column), each row (column) describes the dissimi
larity of the new window to the old windows. In a standard
hierarchical clustering algorithm, new window will be assigned to
the cluster in which a certain member has the smallest dissimilarity
value to the new window.

3. Study Area and Data Characteristics

3.1. Study area

The geography and monitoring sites in HGB area are shown in
Figure 1. HGB area is a highly populated area and a hub of
petroleum extraction and refining industries. According to census
data, more than 4 million people reside in HGB area. It has been
one of the major air pollution source regions in the United States. A
large amount of ozone precursors are emitted by industrial plants,

traffic and the ship channel activities (Vizuete et al., 2008). Coupled
with warm weather patterns, HGB area suffers from ozone action
days frequently. There are two main factors that contribute to
HGB’s high ozone concentrations. One is the high emission rates of
VOCs and NOX from Houston urban activity, power plants and
industrial plants along the Ship Channel, and the other is the land–
sea breeze circulation. The condition of boundary layer during
daytime is pretty unstable, but remains very stable during night
time (Misenis and Zhang, 2010). According to the results of TexAQS
2000, most ozone action days were associated with the land–sea
breeze circulation.

3.2. Air quality and meteorological data

The meteorological data used in this paper are downloaded
from the website of TCEQ and National Oceanic and Atmospheric
Administration (NOAA). Data of ozone season (Apr. 1st – Oct. 31st)
from 2003 to 2005 in HGB area are used to build and validate the
GLMM. Concentration of air pollutants in the current day which
include O3, NOX, CO, organic carbon PM2.5 and non–methane
hydrocarbons (NMHCs), and meteorological factors announced by
NOAA in the next day which include wind speed (Wx, Wy),
maximum wind gust (MWG), outdoor temperature (OT), relative
humidity (RH), solar radiation (SR) and ultraviolet radiation (UR) are
used as predictors of GLMM. To derive general conclusions, three
GLMMs are built for monitoring site CAMS35, CAMS403 and
CAMS1015. CAMS35 located in a residential area at Deer Park and
has been activated since 1996; CAMS403 is adjacent to Clinton Dr.
and has been activated since 1972; and CAMS1015 is set beside the
Ship Channel and has been activated since 2003. In the wind field
clustering step, hourly average wind speed data of 8 stations are
used, which are supposed to capture the main wind field features
in the HGB area. Details of modeling data and monitoring sites are
shown in Tables 1 and 2.

Figure 1. The geography and monitoring sites in HGB area.
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Table 1. Details of air pollutants and meteorological factors used in GLMMs
for predicting O3 concentrations on the next day

Variable Name Unit Temporal Frequency Monitoring Time

O3 ppb 8 h average Current day
CO ppm 8 h average Current day
NO ppb 8 h average Current day
NO2 ppb 8 h average Current day
NOX ppb 8 h average Current day
NMHC ppb 8 h average Current day
PM2.5 OC g/m3 8 h average Current day
MWG mph 8 h average Next day
Wx mph 8 h average Next day
Wy mph Hourly average Next day
OT F 8 h average Next day
RH 8 h average Next day
SR Ly/min 8 h average Next day
UR Ly/min 8 h average Next day

Table 2. Continuous Air Monitoring Station (CAMS) numbers and site infor
mation used in the cluster analysis

CAMS
No. Site Description Address Activated

Year
C15 Channelview 1405 Sheldon Road 1980
C35 Houston Deer Park 2 4514 1/2 Durant St. 1996

C45 Seabrook Friendship
Park 4522 Park Rd. 2001

C84 Manvel Croix Park 4503 Croix Pkwy 2001
C148 Baytown 7210 1/2 Bayway Drive 1998
C403 Clinton 9525 1/2 Clinton Dr. 1972
C404 Houston Kirkpatrick 5565 Kirkpatrick 2000

C1015 Lynchburg Ferry 4407 Independence
Parkway South 2003

4. Results and Discussion

4.1. Cluster results for ozone seasons in HGB area

In this work, wind field data during extended ozone season
from 2003 to 2005 are used to identify distinct weather patterns
which have different effects on ozone formation and dispersion in
HGB area. With new data labeling methods, days during the ozone
season from 2006 to 2007 are assigned into each cluster deter
mined by data from 2003 to 2005. During the clustering step, wind
fields in HGB area are separated into 5 groups, which include two
anticyclonic clusters (1 and 2) and three cyclonic clusters (3, 4 and
5). Ozone action days occur frequently in one of the anticyclonic
clusters. There are 108 ozone action days recorded by CAMS35
from 2003 to 2007, 53 by CAMS403 and 76 by CAMS1015,
respectively. Three ozone action days at CAMS35 are not part of
the ozone season (Mar. 23rd, 2003 / Mar. 31st, 2004 / Nov. 4th 2007),
one at CAMS403 and one at CAMS1015 (Nov. 6th, 2004). One of the
anticyclonic clusters captures most ozone action days. Details of
the cluster results are shown in Table 3. The differences of ozone
concentration, wind speed in x direction, wind speed in y direction
during nighttime and wind speed in y direction during day time in
distinct wind patterns are shown in Figure 2. It is shown in Figure 2
that there is the highest surface ozone concentration in cluster 1.
Wind speed in x direction is the lowest which is favorable for
surface ozone accumulation in the first weather pattern. The most
notable characteristics of cluster 1 are the reverse of wind direction
from nighttime to day time. During night, low speed wind blows
from land to the sea and keeps NOX emitted during nighttime up to
a high level. In day time, wind which blows from the sea to the
downtown of Houston will carry air rich in precursors of surface
ozone to the land.

As cluster analysis cannot deal with data with missing values,
an EM imputation method proposed by Schneider (2001) is used to
impute modeling data. Days which lack data for more than 8
straight hours are deleted from the modeling dataset. After data
imputation, there are 923 days, 816 days and 879 days available for
monitoring site CAMS35, CAMS403 and CAMS1015, respectively.

Figure 2. Boxplot of (a) ozone concentration, (b)Wx, (c)Wyn and (d)Wyd of different wind patterns. Wx stands for wind speed in x direction, Wyn

stands for wind speed in y direction during nighttime and Wyd means wind direction in y direction during day time.

(a)

Weather Pattern

Boxplot of O3
(b)

Weather Pattern

Boxplot of Wx

(c) Boxplot of Wyn

Weather Pattern

(d) Boxplot of Wyd

Weather Pattern
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Table 3. Details of cluster results in three monitoring sites

Monitoring Site 1 2 3 4 5

CAMS35

Cluster size 188 94 113 424 104
OAD 81 8 6 7 3

OAD percent 43.09% 8.51% 5.31% 1.65% 2.88%
Mean concentration 69.49 44.27 46.92 42.61 34.15

CAMS403

Cluster size 180 93 107 347 89
OAD 42 3 0 3 2

OAD percent 23.33% 3.23% 0% 0.86% 2.25%
Mean concentration 60.01 36.37 36.25 34.19 24.40

CAMS1015

Cluster size 173 101 123 379 103
OAD 60 5 2 6 2

OAD percent 34.68% 4.95% 1.63% 1.58% 1.94%
Mean concentration 67.50 44.71 45.88 41.25 33.24

4.2. Model development

Variable selection. In this work, input variables used in GLMM are
chosen according to the qualitative investigation of photochemical
reactions occurring in boundary layer, and then the log likelihood
ratio test is employed to determine their significance to the model.
Because ground–level ozone is generated in the planet boundary
layer by the photochemical reactions among ozone precursors
under UV radiation, nitrogen oxides (NOX) and highly reactive
volatile organic compounds (HROCs) are considered as two main
ozone precursors. As the intermediate product of photochemical
chain reactions, formation and depletion rates of the current ozone
are also affected by the past and current ozone concentrations.
Thus, ozone concentration in the current day is usually used in
prediction models. Besides air pollutants, meteorological factors
also affect ozone formation significantly. According to the results by
Banta et al. (1998), vector–average wind speed often accounts for
more than half of the variance in daily maximum ozone values.
Outdoor temperature, solar radiation and UV radiation can impact
photochemical reaction rates. Usually, they are positively correl
ated with surface ozone concentrations while RH is negatively
correlated to surface ozone concentrations (Crutzen, 1974).
Correlation coefficients between ozone concentrations on the next
day and its potential predictors are shown in Table 4.

Model formulation. Four models, which include a linear regression
model, nonlinear regression model, generalized linear model and
generalized linear mixed effects model, are developed to predict
OADs in HGB area. Considering monitoring site CAMS35 as an illustra
tion, linear regression model (LM) and nonlinear regression model
(NLM) are built first. These models can be expressed as follows:

O3(n) = 75.78 + 0.48 × O3(c) + 9.05 × CO(c) – 0.20 × NO(c)
– 0.12 × OT(n) – 0.43 × RH(n) +0.63 ×Wx(n) – 0.54
×Wyn(n) + 0.61 ×Wyd(n) – 1.21MWG(n)

(6)

O3(n) = exp(3.22 + 0.42 × ln(O3(c)) – 0.0052 × OT(n) – 0.0069
× RH(n) + 0.14 × SR(n) + 0.02 ×Wx(n) – 0.01 ×Wyn(n)
+ 0.01 ×Wyd(n) – 0.02 ×MWG(n))

(7)

Probability density distributions of prediction error of these
two models are shown in Figure 3 and Figure 4. And the corre
sponding histogram of the ozone values is shown in Figure 5. It is
shown that ozone values are heavily non–Gaussian distributed and
the OADs form a long tail in the right side. These indicate that the
probability density plots of prediction errors are asymmetric and
skewed. Results of Kolmogorov–Smirnov test show that both prob
ability distribution of prediction errors are closer to gamma distri
bution and generalized extreme value (GEV) distribution rather
than normal and log–normal distribution. Box–plot of prediction
errors in different ozone levels is shown in Figure 6. It is shown that
all prediction errors of ozone concentration which is above 75 ppb
are positive, and the mean value is much bigger than the other
three levels. When non–Gaussian distribution of modeling data is

neglected, both linear and nonlinear regression models tend to
underestimate ozone concentrations of OADs with larger errors
than other levels.

Figure 3. Probability density plot of prediction errors generated by linear
regression model with data from 2003 to 2005 in HGB area.

Figure 4. Probability density plot of prediction errors generated by
nonlinear regression model with data from 2003 to 2005 in HGB area.

To improve prediction accuracy of OADs, a GLM and GLMM
with gamma distribution are developed. GLM is expressed as:

O3(n) = (100.40 – 1.54×O3(c) + 1.11 × OT(n) + 1.17 × RH(n)
– 51.54 × SR(n) – 6.78 ×Wx(n) + 2.32 ×Wyn(n) – 3.69
×Wyd(n) + 6.53 ×MWG(n)) / 10 000

family = gamma, link function = inverse

(8)

The fixed effects of GLMM are the same as GLM, and its
random effects should contain all variables used in fixed effects.
However, results of log–likelihood ratio test suggest that OT, RH, SR
and Wx should be excluded from the random effects. GLMM can
now be described as:
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Figure 5. Histogram of the ozone value and its probability density curve.

Figure 6. Box plot of prediction errors generated by linear regression
model with data from 2003 to 2005 in HGB area. Where, ‘good’,

‘moderate’, ‘unhealthy for sensitive people’ and ‘unhealthy’ correspond to
ozone concentration 0–30 ppb, 31–60 ppb, 61–75 ppb and above 75 ppb.

O3(n) = (99.7 – 1.71 × O3(c) + 1.11 × OT(n) + 1.09 × RH(n)
– 50.00 × SR(n) – 6.65 ×Wx(n) + 2.32 ×Wyn(n) – 3.77
×Wyd(n) + 6.60 ×MWG(n)) / 10 000

random = (intercept + O3(c) +Wyn(n) +Wyd(n)
+MWG(n)) | cluster

family = gamma, link function = inverse

(9)

Coefficients of the random effects are shown in Table 5.

In GLMM, coefficient of fixed effects can describe the relation
ship between ozone concentrations and its predictor, which include
ozone precursors and meteorological factors, on the global level;
coefficients of random effects can describe relationship between
ozone concentrations and its predictors in each synoptic weather
pattern.

To illustrate the improvement of link function and random
effects, log–likelihood ratio test is used between LM and NLM, NLM
and GLM, GLM and GLMM. These results are shown in Table 6. One
can observe that link function and random effects do improve
performances of GLM and GLMM.

4.3. Statistical indicators for model performance

There are numerous statistical indicators in the air quality
modeling literature for assessing the performance of air quality
models. The model accuracy can be described by several perform
ance metrics as follows:

Mean Absolute Error, (10)

Mean Bias Error, (11)

where, N represents the sample number, Pi is the predicted value
and Oi is the observed value.

True Positive Rate, TPR = A/M (12)

False Alarm Rate, FAR = (F–A)/(N–M) (13)

Success Index, SI = TPR – FAR (14)

where A representing the number of correctly predicted exceedances,
F is the number of predicted exceedances, M is the number of
observed exceedances, N is the number of sample. Considering the
different costs between false alarms and missing report, SI is widely
used in evaluation of surface ozone prediction models (Schlink et
al., 2006). The ideal values of MAE and MBE is 0 ppb, ideal values
of TPR and SI is 100% and FAR is 0%, respectively.

4.4. Prediction results of surface ozone in HGB area

As the aim of ozone prediction model is to aid in correctly
forecasting ozone action days, this paper focuses on the days in

Table 4. Correlation coefficients between surface ozone on the next day and its potential predictors, where c refers to the
current day and n refers to the next day

Variable O3 (c) CO (c) NO (c) NO2 (c) PM2.5 OC(c) NMHC (c) OT (n)
CAMS35 0.653 0.280 0.186 0.471 0.276 0.127
CAMS403 0.627 0.210 –0.402 0.349 0.349 0.177
CAMS1015 0.626 0.300 0.368 0.159

RH(n) SR(n) UR(n) Wx(n) Wyn(n) Wyd(n) MWG(n)
CAMS35 –0.509 0.400 0.429 –0.292 0.155 –0.392
CAMS403 –0.414 0.440 0.229 0.491 –0.139 0.111 –0.501
CAMS1015 0.426 0.410 –0.165 –0.075 –0.508

Table 5. Random effect coefficients of the GLMM in Equation (9)

Cluster Intercept O3 (c) Wyn (n) Wyd (n) MWG (n)
1 –3.61x10–4 –0.12x10–4 0.20x10–4 –0.31x10–4 0.07x10–4

2 –0.79x10–4 –0.09x10–4 0.24x10–4 –0.27x10–4 0.09x10–4

3 –0.57x10–4 –0.09x10–4 0.27x10–4 –0.18x10–4 0.07x10–4

4 0.00x10–4 –0.00x10–4 0.31x10–4 –0.18x10–4 0.07x10–4

5 –0.00x10–4 –0.02x10–4 0.25x10–4 –0.22x10–4 0.05x10–4
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Table 6. Details of log–likelihood ratio test between different models

Model #DF Loglike Df Chisq Critical Value (0.01)

LM 11 –3 649.7
NLM 10 –3 638.1 1 21.24 6.63
GLM 10 –3 600.7 0 74.82 NaN
GLMM 15 –3 561.0 –5 79.4 15.08

which maximum 8 h–average ozone concentration is 75 ppb and
above. Percentages of ozone action days at CAMS35, CAMS403 and
CAMS1015 are 11.37%, 6.37% and 8.53%, respectively. Prediction
models are built with data from 2003 to 2005. Data from 2006 to
2007 are used to test these models. During model development, a
J–fold cross–validation method is used to determine model
parameters. In the cross–validation step, data from two years are
used as training data and data from the other one year is used for
validation. Data from each year from 2003 to 2005 are used as
training data and validation data. To illustrate the superiority of this
proposed cluster based GLMM, MLPs and SVMs with complex
structures also used to predict ozone exceedances in HGB area. The
MLP consists an input layer with 9 input nodes, one hidden layer
consists of 4 nodes, and an output layer with a single output node.
The hidden layer nodes use a sigmoid transfer function to generate
outputs. The structure of the SVM model is the same as the MLP
used. The kernel function used in SVM is also sigmoid. Both MLP
and SVM are applied using Matlab 2009b. A comparison of model
performance during modeling step is shown in Table 7.

Table 7 shows that TPR of both GLM and GLMM are improved
significantly compared to LM. Although MAE of GLMM is not
improved notably, MAE of OADs generated by GLMM is decreased
by an average of 21.83%, compared to LMs. Comparisons between
MAEOAD and MBEOAD of LM show that LMs are prone to
underestimate high ozone concentrations systematically. And this
situation has been improved in GLMMs. Though MLP and SVM can
model surface ozone concentrations with much lower MAEs, they
also underestimate ozone levels of OADs systematically which lead
to lower SIs than GLMM. Validation results show that cluster based
GLMM can predict 80.86% OADs correctly, and the average FAR is
3.46%.

When GLMMs are determined, data of ozone season from
2006 to 2007 are used to test the model. There are 26, 6 and 18

OADs at CAMS35, CAMS403 and CAMS1015, respectively.
Compared to the modeling data, OAD percentage in the test data is
much less. Test performances of these models are shown in Table
8. Table 8 shows that GLMMs can predict 86.18% OADs correctly
during test step, which is increased by 4.37% compared to
modeling step. While, MLP and SVM can predict 61.26% and
66.95% OADs correctly, which is 28.92% and 22.31% lower that of
GLMMs. Although these GLMMs are robust to new data, they tend
to have higher FAR during the test step. Under the same
meteorological conditions, surface ozone concentrations during
2006 and 2007 are lower than the modeling period. This suggests
that the parameters of GLMMs should be updated in time.
Compared to the model used by TCEQ currently, TPR of OADs is
increased by 19% during test step.

5. Conclusions

GLMMs based on cluster analysis are developed to improve
TPR of OADs in HGB area. A two–step clustering method is used to
identify weather patterns which are most likely to be coincident
with OADs. Then, GLMMs are used to make predictions. With the
link function, GLMMs are able to model ozone action days which
locate the right tail of probability density plot; with the random
effects, GLMMs are able to model the differences of meteorological
effects on ozone formation and dispersion. Compared to linear
regression and generalized linear models, GLMM can improve both
prediction accuracy and TPR of ozone action days significantly. The
model proposed in this paper also outperforms the current
prediction model used by TCEQ at the selected monitoring sites.
The test results show that these GLMMs are robust to new data.
Compared to the MLPs and SVMs, cluster based GLMM can capture
the wind field features which are favorable for surface ozone
formation and accumulation and build explanatory models
between surface ozone levels and the influence factors.

Although the proposed model can improve TPR of ozone
action days to some degree, there is room for further improvement
in TPR. As a data–driven model, the prediction accuracy of this
prediction model depends on the quality of monitored ozone
precursor data and meteorological data. Because air pollutant data
in the next day is not available, this model is unable to reflect the
effects of emission events happened in the next day. Thus it may
fail to report ozone action days caused by emission events.

Table 7. Comparison of five model performances at three sites during training step

Sites Model MAE MAEOAD MBEOAD TPR FAR SI

CAMS35

LM 9.30 17.59 17.01 34.29% 1.35% 32.94%

GLM 9.65 18.11 11.90 45.71% 3.27% 42.44%

GLMM 8.51 13.75 8.81 85.71% 3.31% 82.40%

MLP 5.77 11.70 10.51 68.57% 3.27% 65.30%

SVM 5.41 10.90 10.14 73.33% 1.96% 71.37%

CAMS403

LM 9.34 23.32 22.95 14.00% 0.52% 13.48%

GLM 10.07 25.77 23.99 36.00% 2.35% 33.65%

GLMM 9.65 19.12 14.45 82.00% 3.31% 78.69%

MLP 5.13 15.86 14.71 72.00% 2.94% 69.06%

SVM 4.98 15.14 13.72 78.00% 3.43% 74.57%

CAMS1015

LM 8.70 18.75 18.11 14.67% 1.25% 13.42%

GLM 8.81 17.81 14.97 36.00% 2.84% 33.16%

GLMM 8.74 11.17 6.29 80.00% 3.53% 76.47%

MLP 4.77 9.71 9.05 68.00% 2.84% 65.16%

SVM 4.51 9.19 8.90 73.33% 3.30% 70.03%
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Table 8. Comparison of five model performances at three sites during test step

Sites Model MAE MAEOAD MBEOAD TPR FAR SI

CAMS35

LM 10.04 18.71 17.79 38.46% 1.93% 36.53%
GLM 10.17 19.22 12.79 57.69% 3.87% 53.82%
GLMM 9.77 14.19 9.26 80.76% 3.79% 76.97%
MLP 7.40 12.11 11.42 61.54% 3.59% 57.95%
SVM 7.07 11.53 10.70 73.08% 2.49% 70.69%

CAMS403

LM 9.89 24.70 24.01 16.67% 0.95% 15.72%
GLM 10.94 24.31 22.71 33.33% 2.61% 30.72%
GLMM 9.82 20.57 14.70 100.00% 3.50% 96.50%
MLP 6.79 16.26 15.22 66.67% 3.55% 63.12%
SVM 6.47 15.90 14.12 66.67% 2.61% 64.06%

CAMS1015

LM 9.43 17.69 17.14 16.67% 1.45% 15.22%
GLM 9.77 18.15 16.42 44.44% 3.49% 40.95%
GLMM 9.01 11.17 6.29 77.78% 3.71% 74.07%
MLP 8.41 12.77 11.09 55.56% 4.10% 51.46%
SVM 5.75 11.03 10.39 61.11% 3.30% 57.81%
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