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l. INTRODUCTION 

While investigating geometric and combinatorial properties of some 
incidence structures from planar nearrings, Clay introduced the notion of 
circularity in [ 2 ]. 

An example of a circular planar nearring is the planar nearring of the 
complex plane C with a new multiplication defined by 

a ,  b={O, if a=O; 
(a/lal)b,  if a ~ 0 ,  

for all a, b ~ C. The incidence structure obtained from this planar nearring 
is (C, ~* ,  ~), where T is the unit circle and ~ *  is the set of all circles in 
the complex plane. 

To initialize the study, Clay chooses the family of circles in ~ *  with a 
fixed radius r, r :/: 0, and then partitions this family into equivalence classes 
E~ = { Tr + b I b ~ Tc}, where c :/: 0. Each E~ is the family of circles with 
radius r and centers on the circle Tc. Then a graph is assigned to each E~ 
in order to understand the behavior of E~ (cf. I-4; §6]). This idea has been 
proven to be very useful. 

In this work, we continue the study of these E~'s for circular planar 
nearrings constructed from a ring using a cyclic subgroup of order k of the 
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unit group. We begin with some basic concepts concerning circular planar 
nearrings and graph theory in the next section. Then we describe the con- 
nection between an E:  and its graph. It turns out that each graph of an E~ 
can be decomposed into a union of some basic graphs. Moreover, the total 
number of basic graphs occurring depends on k alone. The last section is 
devoted to an interesting phenomenon for field generated planar nearrings. 
Some basic graphs always occur together as subgraphs of some E:  regard- 
less of the underlying field. This behavior is not well understood yet. 

An application of our results to the number of solutions of certain equa- 
tions over a finite field can be found in [9, 10]. 

2. PRELIMINARIES 

For previous works on circular planar nearrings, the reader is referred to 
[ 2 ], [ 3 ], [ 5 ], [ 7 ], [ 11 ] and [ 12 ]. To be self-contained, we review a mini- 
mum of necessary concepts. 

Define an equivalence relation =m on a (left) nearring (N, +,  .) by 
a = , , b  if a x = b x  for all x e N .  Then N is planar if (1) the equation 
a x =  b x +  c has a unique solution for x if a, b e N and a 5 , ,  b, and (2) 
IN/=.,I >/3. Each planar nearring (N, + , . )  can be constructed from a 
Ferrero pair (N, ¢), where ¢0 is a regular group of automorphisms of 
(N, + ), and vice versa [1]. Thus, every mapping cp ~ ~ is fixed point free 
and - 1 + cp is surjective. If (N, +,  • ) is a planar nearring and (N, ¢ )  is the 
corresponding Ferrero pair, then (N, ~* ,  ~) is an incidence structure, where 

~ * =  { N * a + b l a ,  b e N ,  a ¢ 0 }  = { ¢ ( a ) + b  l a, b e N ,  a:~O}, 

with N * = { n e N l n ¢ , , O } ,  and ¢ ( a ) = { c p ( a ) l c p e ¢ } .  When I N I < ~ ,  
(N, ~'*, e) is a BIBD [2]. 

A planar nearring (N, + , . ) ,  its corresponding Ferrero pair (N, ¢), and 
the incidence structure (N, ~ * ,  e), are said to be circular if every three dis- 
tinct points of N belong to at most one block N*a + b. If furthermore, 
INI < oo, (N, ~ * ,  e) is a circular BIBD. In case of circular structures we 
sometimes call a block N*a + b circle and refer to a as the radius and to 
b as the center of that circle. 

We recall one way of obtaining Ferrero pairs from rings. Let (R, +,  • ) 
be a ring with the group of units °k'(R). If ~ (R)  has a subgroup ¢ with the 
property that for each u e ¢ \ { 1 } ,  - u + l e q / ( R ) ,  then ~ = { f f l u e ¢ } ,  
where ~(x)= ux for all x eR ,  is a regular group of automorphisms of 
(R, + ). Therefore, (R, ~)  is a Ferrero pair. One may identify ¢0 with ~S, 
and say that (R, ~) is a Ferrero pair. A planar nearring constructed from 
(R, cO) is referred to as a ring generated planar nearring. 

582a/73/2-7 
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In the special case where R is a field, we have q/(R) = R* = R\{0},  and the 
condition - u  + 1 ~ °g(R) is always fulfilled. So every subgroup of R* gives a 
Ferrero pair. The corresponding planar nearring is then calledfieM generated. 

Now, we borrow some terminology from graph theory (cf. [6 ] ,  [13]) .  
For  a (undirected) graph A, we will use V(A) and E(A) to denote the 
vertex set and the edge set of A, respectively. We say that A is null 
if E ( A ) = ~ .  If AI is a subgraph of A2, i.e., V(AI)~_ V(A2) and E(AI)~_ 
E(A2), then A1 <A2 will be used to indicate the situation. If AI <A 2  and 
V(AI) = V(A2), then Ai is said to be a spanning subgraph of A2. 

The degree of a vertex u in a graph is the number of edges incident with 
u. A graph with the property that every vertex has degree n, is called a 
regular graph of  degree n. A path in a graph is a nonempty alternating 
sequence of vertices edges, beginning and ending with vertices, in which 
each edge is preceded by one of its vertices and followed by the other. 
If v~,v~v2, v2 ..... vs_~,vs_~vs, vs is a path, we shall denote it by 
vl v2 ... vs_ ivy. A path vl v2 ... v~_ l vs is closed if v~ = vl. A cycle is a closed 
path v~ v2 ... v~v~, s >t 3, such that the s vertices v~, v2 ..... vs are all distinct. 

For two graphs A i and A2 with disjoint vertex sets and disjoint edge sets, 
A I u A  z is the graph with vertex set V(AI)uV(A2)  and edge set 
E(AI) uE(A2),  and is called the disjoint union of A~ and A 2. On the other 
hand, if Ai and A2 are two graphs with the same vertex set, then A~ v A2, 
called the union of A~ and A2, is the graph with vertex set V(A~)= V(A2) 
and edge set E(Al )u  E(z~2). 

The cyclic graph on n vertices, denoted by C,, is the graph having a cycle 
containing each vertex and each edge. We call a graph complete if every 
two vertices in the graph are connected by an edge. The complete graph 
with n vertices is denoted by K,.  

3. BASIC G~oa, ns 

Although some of the following discussion can be made on any kind of 
planar nearrings, we consider, throughout the rest of  this paper, a ring 
(N, +, .), not necessarily commutative, and a cyclic subgroup ~ =  ( q~) of  
ql(N) of  finite order k, such that (N, ~) is a circular Ferrero pair. 

For r, c e N \ { 0 } ,  define 

E~= {~r +b [ be~c} .  

One may visualize E~ as the set of circles with radius r and centers on the 
circle ~c. To describe E~, we assign to it a graph F(E~) whose vertex set 
is ~c, and whose edge set is 

{Cl C2 I Cl, C2 ~ ~C, C I ~ C2, and ( # r  + ct) n ( # r  + c2) 4: ~ } .  
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Since N is circular, we have [ ( J r + b l )  c~ ( J r - k b 2 )  [ 4 2  for any bl, b2 e J c  
with b ~ b 2 .  To impose this fact on the graph F(E~), we decompose 
E(f'(E~)) into a disjoint union of two subsets E~(F(E~)) and E2(F(E~)): 

EI(F(E[.)) = {el e2 ~ E(F(Er))  I [ ( J r  + el) c~ ( J r  + e2)l = 1}, 

Ez(F(E~)) = { cl c2 ~ E(F(E~)) I I ( J r  + c,) c~ ( J r  + c2)1 = 2}. 

We say that an edge of F(E~) is odd if it is in EI(F(Er)),  even if it is in 
Ez(F(E~)). 

Next, we define for each E~, r, c E N \ { 0 } ,  a sequence of k - -  1 entries of 
0,1 and 2. Let ~ 0 ~ J  be a generator of  J .  Let r , c~N\ {O} .  For 
l~  { I, 2, ..., k}, the sequence st(r, e) = (ili 2 ... ik_j) is defined by 

b = I ( J r  + cptc) n ( J r  + cpt.+Jc)l, (3.1) 

where j =  1, 2 ..... k -  1. Therefore, each ij of st(r, c), 1 <~j<.%k- I, is either 
0, 1, or 2. 

(3.1) LEMMA. I f  r, c and st(r, c) are given as above, then 

(1) i j = i k _ j f o r j E { 1 , 2 , . . . , k - - l } ;  

(2) z f l ' ~ { 1 , 2  .... , k - l } ,  thensr(r ,c )=st (r ,c ) .  

Proof From the definition of st(r, c), we have 

i /=  I ( J r  + cp'c) c~ (q~r + cp/+Jc)l 

= I(Jr + cpJ~ -YcpZc) n (¢~r + q~J~ -J~ot +Yc)l 

= I cpJ(q~r + q~-Jc) n ~oJ(Jr + ~otc)l 

- IcpJ((Jr + cpz+k 7So) c~ ( J r  + cptc))l 

= I ( J r  + cpl+ k-Jc) c~ (¢~r + cp/c)l 

= ik_j, 

where the last equality is from Eq. (3.1). This proves (1). 
Let st(r, c)=(i'li'z ... i'k_~). For any j, 1 <<.j<~k- 1, we have 

ij = I ( J r  + epic) n ( J r  + cpt+Jc)[ 

-- I ( J r  + ~o/-rear-/~olc) n ( J r  + cat-rear-/~t+Jc) I 

= Icp~- r(q~r + ~orc) n cp t - r ( j r  + cp r +Jc)l 
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= I C - r ( ( ¢ ' r  + C 'c)  n (~r  + cp r +Jc))l 

= I ( ~ r  + ~0rc) c~ ( ~ r  + ~0 r +Jc)l 

=i~-. 

Therefore, st(r, c) =s t ( r ,  c). This proves (2). I 

The lemma justifies that we define s(r, c)=sz(r, c) to be the sequence 
corresponding to E~.. It also shows that s(r, c) does not depend on the 
choice of the generator ~o. 

The following lemma gives a connection between a sequence s(r, c) and 
the edge set of the graph of F(E~). 

(3.2) LEMMA. Let E ~ _ ~ *  & ( N , ~ * , e )  and let vj=~oJc for each 
j e { 0 ,  1, ..., k -  1}, where q~ is a generator of  q~. I f  s(r, c )=( i l i  2 ... ik_,), 
then: 

( 1 ) F(E~) is null if  and only if  ij = 0 for all j; 

(2) if  F(E~) is not null, then 

E r ..., (F(E,.)) = U {vjvj+, I j = O ,  1, k -  1}, (3.2) 
I <~t<<.k/2 

i t~O 

where j + t is carried out modulo k. 

Proof (1) is obvious. 
From the definition of s(r, c), we have 

where 

k - - I  

E(F(E~))= U { v j v j + , l i , ¢ O , l < . t < ~ k - l }  
j = O  

= U 
l <. t<~k-- I  

i t~O 

{vjvj+, l j = 0 ,  1 ..... k - l }  = A u B ,  

A =  U 
I <~t<~k/2 

i t~O 

(vjvj+,Jj=O, 1, ..., k -  1} 

(3.3) 

and 

U 
k / 2 < t < ~ k - - I  

i t~O 

{vjvj+,l j=O, I ..... k - l } .  
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I fk /2<t '<<,k-  I and it,#O, then k - t ' ~ k / 2  and ik_,,=i,,v~-O by (3.1(I)). 
Since ~ J c = ~ o J + k c = ~ 9 ( J + t ' ) + { k - - t ' ) c ,  w e  have vj=l){j+t,)+(k_t,); hence 
vjvj+,,=vj+,,vj---vj+,,vtj+t,~+tk_,, ~. If we let j ' = j + t '  (modk) ,  then 
vjvj+c=vj, vj,+lk_,,)~A. Therefore, B ~ A ,  and Eq. (3.3) becomes 

E(F(E~))= U {vjv j+, l j=O, 1 , . . . , k - l } .  
I <~t<~k]2 

it#O 

This proves (2). | 

The relationship between a F(E',) and the sequence s(r, c) can be 
generalized. Let s=( i l i2 . . . i k_ l )  be a sequence of 0, 1 and 2 such that 
i2=ik_ 2 for j ~ { 1 , 2 , . . . , k - 1 } .  Let F(s) be a graph with vertex set 
V(F(s)) = {vo, Vl, ..., vk_ l} o f k  arbitrary elements, and define the edge set 
of F(s) by 

E(r(s ) )= U {vjvj+, [ j = 0 ,  1 ..... k - I } .  
I <~t<~k/2 

4 # 0  

Thus, we see that F(E~)= F(s(r, c)). 
From (3.2), we derive the concept of a basic graph. Notice that if we set 

E , = { v j v j + , l j = l , 2  .... , k - I }  for r e { l , 2  ..... k - I } ,  then (3.2) can be 
rewritten as 

E(F(E,~.)) = U E,. 
1 <.t<~k/2 

it#O 

Moreover, if i,:#0, then (Pc, E,) is a spanning subgraph of F(E~). Each 
(Pc, E,) with i , # 0  can be viewed as a "basic" component of F(E~). We 
shall formalize this concept in the following. 

Let o be the sequence (Ol02...Ok_l) with o ; = 0  if i 6 { j , k - j } ,  and 
o j=  Ok_j= 1. We denote the graph 1"(o) by F k, and call it the j th  odd 
basic k-graph. On the other hand, let e= (e l e2 . . . ek_~)  be a sequence 
satisfying e; = 0 if i 6 {j, k - j } ,  and ej = ek_ j = 2. Denote the graph F(e) by 
H k, and call it the j th  even basic k-graph. 

(3.3) LEMMA. Let zl ~ {Ff ,  17~}, j ~  {1, 2 ..... k -  1}, and V ( d ) =  {Vo, v~, 
.... v k _ ~ } . Then E ( A ) = {v;v;+j I i = 0 ,  1 .... , k -  1}, where i + j is carried out 
modulo k. | 

From (.3.3), we obtain the following description of basic graphs. 

(3.4) THEOREM. Let ,d ~ {1"k, 17~}, where j ~  {1, 2, ..., k -  1}. Let l= 
(k, j), the greatest common divisor of  k and j. Then: 
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(1) I f  l ~ k/2, then A is isomorphic to a disjoint union o f  l copies o f  
Ck/i, the cyclic graph on k/l vertices. 

(2) I f  l=k/2 ,  then A is isomorphic to a disjoint union o f  l copies o f  
K2, the complete graph on Z vertices. 

In particular, i f  (k, j )  = 1, then A is isomorphic to Ck. 

Proof Let V(A)={Vo, Vt ..... vk_l}. By the above lemma E ( A ) =  
{v~vg+j[i=O, 1 , . . . , k - 1 } .  Let i~{0 ,1  .... , l - 1 } ,  r > 0 ,  and consider the 
path 

p i  = DiVi+jVi+2j  . . .  Vi+rj.  

Since V(A) is finite, there is a minimal r such that vi= vi+rj. It follows that 
k lrj. Since (k/l, j / l )=  1, we have (k/l) lr. By the minimality of r, we get 
r=k/l .  Therefore, v~vi+jvi+2y... V~+tk/l)j is a closed path of A with distince 
vertices, for every i e { 0, 1 ..... l -  1 }. 

We claim that the sets of the vertices of Pi, 0 ~< i ~< 1 -  1, are all disjoint. 
Let s, t s { 0, 1 ..... l--  1 } with s < t, and m, n E { 0, 1,..., k / l -  1 }. If v~ +,,j = 
v, + nj, then s + mj - t + nj (mod k). Therefore, t - s = j ( m - n) (mod k), and 
so II ( t - s ) .  Since O < ~ t - s < l ,  this can be true only i f t - s = O .  Hence s= t, 
and so the paths p~ and p, are the same. This proves the claim. Therefore, 
V(A) is a disjoint union of the l vertex sets of the paths Po, Pl,. . . ,Pt-~. 

If 1 # k/2, each path p;, i e { 0, 1 ..... l -  1 }, is a k/l-cycle Ck/t. This is ( 1 ). 
If l=k/2 ,  each path p,., i e {0, 1 ..... l - 1 } ,  is isomorphic to K 2. This 
proves (2). I 

(3.5) COROLLARY. 

(1) Let A e  {F f  , IIk}. Then A is regular o f  degree 2 i f  j # k / 2 ,  and A 
is regular of  degree 1 if  j = k/2. 

(2) ( k , j ) = ( k , j ' )  i f  and only i f  F f  is isomorphic to F f ,  and 17 k is 
isomorphic to ]I~,. 

Proof If j ~ k / 2 ,  then each vertex v ~ A  belongs exactly to a cycle 
v,v,+j... V,+tk/l_x~jV , for some t~ {0, 1 ..... l--  1}. Therefore, deg(v)=2.  On 
the other hand, if j =  k/2, then each vertex v e V(A) is the vertex of a com- 
plete graph on 2 vertices; therefore deg(v)= 1. This is (1). 

Now, (2) follows immediately from the above theorem. I 

4. DECOMPOSITION OF F(E r) 

We remind again that N is a (not necessarily commutative) ring with 
-<< DR(N) such that • is cyclic with a generator ~o of order k, (N, 4 )  is 
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a Ferrero pair, and that (N, &*,  ~) is a circular incidence structure. Since 
is a regular group of automorphisms of N, we have for any $, 2 ~ # and 

r ~ N \ { 0 } ,  if ~ r = 2 r ,  then ~ = 2 .  

(4.1) THEOREM. I f  F(E~) is not null, then it is a union of  spanning sub- 
graphs, and each of  them is isomorphic to an even basic k-graph, or an odd 
basic k-graph. 

Proof Let s=(il i2 ... ik- t )  be the sequence for E~. By (3.2), the edge 
set of I'(E~) is 

E ( I ' ( E ~ ) )  = U 
I 6t~k/2 

it#O 

{vjvj+,l j=O, 1, ..., k -  1}. 

For each t, l<~t<~k/2, such that i t # 0 ,  define E t = { v j v j + , l j =  
0, 1 ..... k - 1 }. Then E, c~ E,, = ~ if i, # 0, i,, # 0, and t # t'. Moreover, 

E(I'(E~))= U E,. 
1 <~t<~k/2 

it # 0  

f r By (3.4), if i, # O, then (q~c, E,) is a spanning subgraph o / ' (Ec) isomorphic 
to either F k or/-/k. Hence the result. | 

In the following example we put R ~ - - - Z 2 2 9  and k =  12, and the figure 
illustrates the decomposition of I'(E~) into basic graphs. A broken line 
indicates an odd edge, while a solid line denotes an even edge. 

r(E~) - nl ~ v r~ ~ v nt~ 

;d '" 

I k ] tl 

W • 

fig 2 F12 II~ 2 
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Next, we ask the question, "How often does a basic graph occur as a 
subgraph of the graphs F(E~)?" To answer this question is the same as to 
find out the following two numbers: 

and 

rj(r) = I{E; I r f < r ( E ; ) } l  

rg(r) = l{ E; I//ff < F(E;)} I. 

Surprisingly enough, when k is even, these two numbers turn out to be 
constants, and depend on k = [¢[ only. We also suspect that this is true for 
odd k, but we can only give a proof  for a restricted situation. 

The following lemma will be used from time to time without reference. 

(4.2) LE~Cu~. (1) F o r a n y ~ , 2 e O ,  w e h a v e O ( 2 - 1 ) - l = ( 2 - 1 ) - l ~ k .  

' c' r r, i f  and only i f  Or Or' and (2) Let r, c , r ,  • N \ { 0 } .  Then E c = E  c, = 
Oc = Oc'. 

(3) I f  21k, then - 1  = rpk/2 • ¢. 

Proof. Using the fact that ¢ is an abelian subgroup of °ll(N), we derive 
the equality directly: 

0(2--  I ) - ' =  ((it-- 1) ~/--I)--1 = (}[~/- I -  ~/--I)--1 

= (~/--12__ ~/--I)--1 = (~/--1(2__ i))--I 

= ( 2 -  1 ) - '~ .  

This is (1). 
- -  r '  Suppose E ; - E c , .  Then Or + c • E;;, and so there is a ~o • • such that 

Or+c=Or'+~oc' .  By [8; (1.4)], we have Or=Or'  and c=~oc'. Thus 
(Pc = O~oc' = Oc'. 

Conversely, suppose Or=Or'  and Oc=Oc ' .  Then c'=~kc for some 
• 0. Let Or + ~oc • E: .  Then 

Or + ~oc=Or' + (~og/-l) d/c = Or' + ~oO -1 c' c ~ c,.'~' 

Therefore, E;~_E~',. Changing the roles of E ;  and E~;, we also have 
E;; ~_ E;, hence E~ = E;;. This completes the proof  of (2). 

As for (3), we note that - 1  + ~ok/2 e Og(N) since O is regular. Therefore, 
from the identity 

0 = I - -  f/0 k = ( - -  1 + Cpk/2)( - 1 - rpk/2), 

we get - 1 - ~ 0  k n = O , a n d s o  - l = r p  k n e ~ a s s t a t e d .  | 
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(4.3) LEMMA. Let d ~ { F f ,  II~}. Then z l M F ( E ; )  i f  and only i f  
ce  c15(cp j -  I ) - ~ (¢  - 1)r for  some ~k e O\{ 1}. 

Proof  Suppose A ~ F(Er).  From the definition of an edge, this occurs 
exactly when 

( O r + e )  ~ (Or +q~Jc) ~ :~ .  

In this case, there exist 2, g e • such that 2r + c = Or + cpJc. Therefore, 

c= (¢pJ- 1 ) - ~ ( 2 - 5 ) r = ( ~ p  j -  1) - I  ~ (0-  ~. - l ) r  

= O(~p j - 1 ) - ' ( 6  -12 - 1 )r = 6(~o j -  I ) -10,b -- I )r, 

where ~b = 6 - 1 2 .  Thus 

c~O(~oJ -  1 ) - '  (~b - 1)r. 

Conversely, if c = O ' ( ~ p J - 1 ) - ' ( ~ ' - l ) r ,  where 5' ,~b '~O and ~,':~1, 
then ( q ~ J - 1 ) c = 6 ' ( ¢ ' - 1 ) r .  Therefore, ~oJc-c=O'~k 'r-O'r ,  and so 

5'r + epic = 6'~'r + c ~ (Or + q~Jc) n (Or + c); 

hence a j t h  basic k-graph is a subgraph of the graph F(E~). | 

For  i, j ~  { 1, 2 ..... k -  1}, define cj, i= (q~J- 1)-l(~p ; -  1)r. Since E~ =E,~ c 
for all 5 e O, we may assume that c = cj.i for some i s { 1, 2 ..... k - 1 } if a j t h  
basic k-graph is a subgraph of F(E~). 

(4.4) TI-~OREM. Suppose 21k. I f  AE{/~ ; , / / ~}  and A • F ( E ; ) ,  where 
c = ( q ~ J - 1 ) - I ( ~ b - 1 ) r ,  and I p # l ,  then A = F ;  i f  and only i f  ~ O = - l .  
Moreover, i f  A = H ~ ,  then ( O r + ~ o J c ) c ~ ( O r + c ) = { a , b } ,  where a =  
r + q~Jc=~kr + c, and b =  -~kr + goJc= - r  + c. 

Proof  From c = ( q ~ J - 1 ) - l ( ~ - l ) r ,  we get ( q o J - - l ) c = ( ~ k - 1 ) r ,  and 
so ~r + c = r + ~pJc. Let a = tpr + c = r + q~Jc. Then a ¢ ( Or + c) c~ ( Or + cpJc). 
Let b = - r + c = - ~ , r + ~ p J c .  Since 21k, we have - 1 ~ O ,  and so 
b ~ (Or + c) n (Or + q~Jc), also. 

Suppose ~b # - 1. Then - r + c ~ ~kr + c; hence a # b, and so we have 
(Or + c) c~ (Or + ~pJc) = {a, b} by the circularity of (N, ~ * ,  e). This proves 
the "if" part and the last statement. 

Conversely, suppose ~k = -  1. We want to show ( O r +  c ) n  ( O r +  q~Jc)= 
{b}. Take' d = 2 1 r + c = 2 2 r + c p J c ~ ( O r + c ) c ~ ( O r + q ~ J c ) ,  where 21 ,22~O,  
and assume that d ~ b ,  hence 22 ~ 1. Let e =  - 2 2 r + e =  -21r+q~Jc.  Then 
e ~ ( O r + e )  n(Or+cpJc) .  By the circularity of ( N , ~ * , E ) ,  "we have 
e e { b , d } .  

582a/7312-8 
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Case 1. I f e = b ,  then - 2 2 r + c =  - r + c ,  and so 22 = 1, a contradiction. 

Case2.  If e = d ,  then - 2 2 r + c = ) q r + c ,  making - 2 2 = 2 1 .  From 
e = - 2 z r + c = - 2 1 r + ( p J c , . w e  get 2 1 r + c = - 2 1 r + c p J e ,  and so 221r=  
(~p~-l)c.  Therefore, ( c p ~ - l ) - ~ ( - 2 ) r = c = ( c p ~ - l ) - 1 " 2 2 1  r, and so 
- l - 2 r = ; t ~ - 2 r ,  which puts 21 = - 1 .  (Note that 2 y t0  since - 1  + ( - 1 )  is 
a unit in N.) But then 22 = - 2 1  = 1, a contradiction again. 

Therefore, (~ r  + c) c~ (q~r + (oJc) = {b}, and the proof  is complete. | 

(4.5) COROLLARY. 

(1) H ~ M ( E ; )  
{k/2}; 

(2) 

Let  2 I k and let j e { 1, 2, ..., k - 1 }. Then 

i f  and only i f  E ;  = E~j., for  some i e { I, 2 .... , k - 1 } \ 

F f  -< F ( E ; )  i f  and only i f  E ;  = E ~ 
cjA.12 " 

(4.6) LEMMA. l f 2 l k ,  t h e n E  r = E  r i f  a n d o n l y i f i z = i l  o r i 2 = k - i l .  
c j . i  I cj ,  i 2 

Proof  Let c I = cj.it and c2 = cj,~,. First, suppose i2 = k -  i I . Then 

c2 = cs.i ~ = czk_,  ~ = ( ~M - 1 ) -l(~ok-i~ -- 1 )r 

= _ ( c p j _  1)-1(1 _q~k--i ,)r = _ ( C p j _  1)-I  (pk--i,(tpi,--k_ 1)r 

= -- cpk-i~(cp j -  1)-I(~0 i ' -  1 ) r =  - - (p- i 'cz i  j = --~p-i~c I ~ ~c l .  

Therefore, E r = E ~ 
Cl c2" 

Conversely, suppose E~  =E~,  with cl :/:c2, hence i~ v~k/2. Therefore, it 
follows from (4.4) t ha t / /~ -< / ' (E~ ,  ) =  F(E~,.). By (4.3), we have 

(q~r + ~oJct) n ( ¢ r  + Cl) = {a,  b} ,  

(~r  + ~pJc2) c~ ( ¢ r  + c2) = {d, e}, 

where a = r  + ~oJcl =~oitr + cl,  b =  --(pilr + cl = --r  + cl,  d = r  + ~oJcz = 
~o~2r+c2, and e = - - q ) i ~ r + c 2 = - r + c , .  Since E r r - c~ = E ,~ ,  there is a 2 ~ q~ 
such that 2ci = c,_. Thus, 

and so 

But then 

d =  r + (pJ2c I = q~i2r + 2cl,  

2 -  Id= 2 -  lr + ~oJcl = 2-1cpi2r + c1. 

2 - 1 d E ( ~ r  +(pJCl) C~ (~r  + c l ) =  {a, b}. 
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Suppose 2 - 1 d = a .  Then  2-1r+qo/c l  = r + c p / c l ,  and so 1 - 1 r = r .  Hence  
2 =  1, and so c~ = c 2 ,  which has been excluded. O n  the o ther  hand,  if 
1 -  ld = b, then 

and so 

hence 

1--1Cp~2r+cl = 1 - 1 r  + epic1 = --cp~'r+cp.icl = - - r + c ~ ,  

2 - = q g i ' - r - F  c l  = - - r - F  c I 

~. - Ir  q-  ( ~ J e  I = - -  ~p~r + ( ~ J c i ,  

~pi, = _ I - 1 .  

Therefore, cp ~ ~o ~2 = 1, and so i 2 = k - i I . m 

Immedia te ly  f rom (4.4), (4.5) and (4.6), we obtain  the desired result. 

(4.7) TI-mOREM. I f  2lk ,  then y / ( r ) = l  and r ~ / ( r ) = k / 2 - 1  for  any 
j E { 1 , 2  .... , k - l }  a n d r 6 N \ { O } .  

N o w  let's turn to the case when k is odd. 

r r r (4.8) LEMMA. Let  k be odd. I f  E cj.,, = E cj.,,, and F~ < F( E;. , ) =  1"( E cj., 2 ), 
then c/.i~ = cj.i,. 

_ 1 "  r = E r_ Proof  Let c I =c/.i~ and c ,=c ja ,  _. Since a r f f<  (Ec, )  1 " ( , , ) ,  we have 

and 

(q~r + cpicl) c~ ( ~ r  + cl) = {a} 

(cPr + q~Jc2) n ( ~ r  + cz) = {b}. 

F r o m  the definition of  c I and cz, we find r+q~/c l=q~i~r+cl  and 
r + ~o/cz = q0iZr + c2. Therefore a = r + cp/cl = ~oitr Jr C 1 and b = r + cpYc2 = 
~o i' r 

- + c 2 .  Since E~.. = E ~ .  , there is a 2Eq~ such that  2e t = e , .  Thus  b =  
• J, tl 1,t2 

r + ~p/2c I = ~o '2 + 2Cl, and so 

2 - I b  = 2 - l r  + cp/cl = 2 -1 ~o;'-r + cl e ( ¢ r  + ~OJCl) c~ ( ¢ r  + cl ). 

Therefore, 2 -  ~b = a, or  equivalently, b = 2a. But then r + ~Mc2 = b = 2a = 
2(r + cpJcl) = 2r + cpJ2cl = 2r + ~pJc2; hence r = 2r, and so 2 = 1. "Therefore, 
Cl ~ C2" m 
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Now, we need to put a restriction on the planar nearrings we are dealing 
with in order to get a satisfactory result. By [ 12] there are lots of exam- 
ples. So, for the next two results, we assume that k = [O1 is odd, and that 
there is a Ferrero pair (N, ~)  with cyclic gt~<°g(N) such that • is a sub- 
group of gt of index 2. Let ~ =  (qJ) such that q~=~k 2. w e  will show that 
if (N, ~ * ,  e) is also circular, then 

(1) n y ( r ) = l { E ; l I I ~ < r ( E r ) } [ = 0 ;  

(2) ?~j(r)= I{E;I r]<r(e;)}l=k- 1. 

(4.9) THEOREM. If  A~{Ff ,  H~} and A•F(E;) in (N,M*,E) ,  then 
A e {F;}.  Therefore, gj(r) = O. 

Proof Assume that //~ is a subgraph of F(E;) in ( N , ~ * , e ) ,  
and let (Or+~Mc)ra(Or+c)={a,b}, where a=21r+~oJc=22r+c and 
b=23r+~Mc=24r+c such that arab. Also, let d = - 2 1 r + c =  
--22r + cpJc and e = --23r q- c = --24r q- ~oJc. 

We claim that I{a, b, d, e}l =4.  First, we cannot have d=e, otherwise, 
21=23 and 22=24,  and so a=b, contradicting a¢b.  If a=d, then 
22r+c=a=d=-21r+c;  hence 2 2 = - 2 1 ,  and so - 1 = 2 2 2 i - l e O ,  a 
contradiction. If b=d, then 2 4 r + c = - 2 1 r + c ;  hence 24 = - 2 1  , and so 

- 1 = 24211 e 4, a contradiction again. If a = e, then 22r + c = - 2 3 r  -b C; 
hence 22 = --23, and so - 1 = 222~ -I E 4,  which cannot be. Finally, if b = e, 
then 2 4 r + c = - 2 3 r + c ;  hence 2 4 = - 2 3 ,  and so - 1  =24231 ~ ,  a con- 
tradiction. Therefore, I{a, b, d, e}] = 4  as claimed. 

Since I gq = 2k, we have - 1 e gt. But then 

{a, b, d, e} ~_( gtr + c) c~( gtr + O2Jc), 

contradicting the circularity of (N, ~ * ,  ~). This shows that an even basic 
graph cannot be a subgraph of the graph F(E;) in (N, ~ * ,  e). Hence the 
result follows. | 

(4.10) THEOREM. ?j(r) = k -  1. 

Proof From (4.3), each F(E; ,) contains a j th  basic graph, A, say. By 
(4.9), A 4 :H  k. Therefore, A = F  k. Together with (4.8), we see that the k -  1 
many E r 1 ~< i ~< k - 1, are all distinct. Therefore, we have ?j(r) = k - 1. | 

(4.11) Remark. (1) The evidence from the data we gathered on field 
generated circular planar nearrings shows that the results (4.9) and (4.10) 
may be true even without the requirement for a circular (N, ~ * ,  e). We 
still cannot prove it, though. 
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(2) In case when N is a finite field of characteristic p, Theorem 8 of 
[ 12] guarantees that the restriction we put on the results (4.9) and (4.10) 
excludes only finitely many values of p for each k. 

5. OVERLAPS 

One phenomenon among the graphs F(E;)  of the field generated circular 
planar nearrings is still a mystery to us now. That is, some basic graphs 
always occur together as subgraphs of some F(E;) .  In this case, the basic 
graphs are said to overlap. 

In this section, we consider a field (F, + , - ) ,  and a subgroup • = (~o) of 
F* of even order k. We also assume that (F, N*,  e) is circular. Fix an 
r e F * .  

Directly from (4.3) and (4.4), we have the following result. 

(5.1) THEOREM. Let I <~i<j<~k/2. Then the following statements are 
equivalent. 

(1) There is a c ~ F *  such that 

H~ v 1-I~ -< F(E~), resp. HAi " v F f  -,(F(E~) 

(2) There exist u, v, s ~ N, u ~ k/2 such that 

(~0 i -1 ) -~ (~o" - l )=q~S(~pJ -1 ) - ' (~0° - l )  and vv~k/2resp, v=k /2 .  

As an easy consequence by taking u = i, v = j  and s =  1 in the above 
theorem, we derive the following 

(5.2) COROLLARY. If k is even, then F(E~) is complete. 

The same result for finite prime fields can be found in [7; IV.4]. 

(5.3) COROLLARY. Let K be an extension field o f  F. Then (K, ~ * ,  ~) is 
also circular, and an overlap occurs in F(E~) over F i f  and only i f  it occurs 
over K. 

Proof  From [4; (5.21)] or [12], we know that (K, &*, ~) is circular. 
The second statement is obvious. | 

(5.4) TrmOREM. Let 6lk. Put Ci=(~02i--1)-l(qOk/2-i-- l)r  and d i= 
( q ~ i  1)-l(~p k/6- 1)r, for  every i, 1 <~ i<k/2 .  Then CiEtPdi, andso E rc=~d, .jTr 
Consequently, we have 

k r 1 "~ r Hki v H2 i<F(Ec ,  ) = (Ea),  
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and 

if 2 i ~ k / 2 ;  

I'~/, v 11~/6<F!E;e,)=I'(Eue,) if 2i=k/2. 

P r o o f  Let f ( x )  = x k/3 - x k/6 + 1. Then ( x  k/2 -- 1 )(x k/6 + 1 ) f ( x )  = x k -- I. 
Since q~k= 1, q~k/2 = --1 and qd'/6 ¢ --1, we conclude that f(q~) =0,  i.e., 

0 = ~pe/3 _ q~k/6 + 1 

= cpk/6(~p k/6 -- 1 ) + 1 

= ~0 k/6 --i~oi(~02i - -  1 )(q~2i_ 1 ) - I ( ( f l k / 6  _ 1 ) + 1 

=~pk/6-icpi(q~2i- l)(cp i -  1)-l(qol + 1)-l(~p k/6- 1) + 1 

= cp k / 6 - ' ( c f  - I ) -l(¢pk/6 _ 1 )" (q~2;_ 1 ) ~pi(~oi + 1 ) -1 + 1. 

Therefore, 
~ok[6 -- i d i  = ~ok/6 - i( ~o i _ I ) - 1 ( ~ok]6 - -  1 ) 

= ( q ~ 2 ; _  1 ) - ~ (  - -  ~0 - ' ) (q~ '  + 1 ) 

= ( q ~ 2 i  1)-1(--1--~o -i) 

= (~ 02 i -  I ) - - I ( ~ 0  k / z - i -  I) = C  i. 

Therefore, c i e ~ d ~ ,  and the result follows from (5.1). l 

k k (5.5) Remark .  If i = k / 3  in the above theorem, then H; =H2,. and 
k k Hk/2 - i  = Hk/6" Therefore, the overlap situation does not occur in this case. 

But this is the only exception in the theorem. 

The data we have obtained by running Maple on a Sun Workstation for 
the field of complex numbers with k ~< 300 showed overlaps only when 6lk, 
and overlaps other than the ones in (5.4) have only been found if 5 or 7 
is also a divisor of k. 

Conjecture 1. Let F =  C, the field of complex numbers, and consider a 
finite subgroup q5 of the unit circle with [q~[ =k .  Let :~* = ~ * .  Certainly, 
(C, ~* ,  ~) is circular. Let A1 and A2 be two distinct basic k-graphs. If 
c ¢ ~ r  and A1 v A 2 ~ ( F ( E ~ )  for some E~___~', then 6[k. 

We point out that Conjecture 1 does not hold for every field generated 
circular planar nearring as one can easily find counterexamples in a finite 
prime field Zp with a "small" p. In fact, there are quite a few overlaps in 
circular planar nearrings generated from the finite prime fields. (See 
Appendix C of [7].) The only "explanation" we have is that when p is 
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"small," there is "no room" for these circles to separate from each other. 
However, our computer generated data suggest that the following conjec- 
ture is also true. 

Conjecture 2. Let F = Z p ,  where p is a prime. For each k, k~>4, 
there is an nk e N such that if p > nk and if (F, ~ * ,  ~) is circular, then the 
following is true: 

Let At and A2 be two distinct basic k-graphs. If A1 v A2<~ 
I F(EIc) for some Ec___~ @ over F, then Ai v A2~(F(E~,) for 

some E~, ___ &*  over C. 

ACKNOWLEDGMENT 

The authors express their gratitude to Professor James R. Clay for his many helpful sugges- 
tions and his endless encouragement. The second author also thanks the Alexander yon 
Humboldt Foundation, which sponsored him through a Feodor Lynen Fellowship, and The 
University of Arizona for providing a pleasant workplace. 

REFERENCES 

I. G. BETSCH AND J. R. CLAY, Block designs from Frobenius groups and planar nearrings, 
in "Proc. Conference on Finite Groups, Park City, UT," pp. 473-502, Academic Press, 
New York, 1976. 

2. J. R. CLAY, Circular block designs from planar nearrings, in "Combinatorics '86," Ann. 
Discrete Math. 37 (1988), 95-106. 

3. J. R. CLAY, Compound closed chains in circular planar nearrings, ill "Combinatorics '90: 
Recent Trends and Applications, Proc. of the Conference in Gaeta, Italy, 1990," Ann. Dis- 
crete Math. 52 (1992), 93-106. 

4. J. R. CLAY, "Nearrings: Geneses and Applications," Oxford Univ. Press, Oxford, 1992. 
5. J. R. CLAY AND Y.-N. YEH, On some geometry of Mersenne primes, unpublished. 
6. N. HARTSFIELD AND G. RINGEL, "Pearls in Graph Theory: A Comprehensive Introduc- 

tion," Academic Press, Boston, 1990. 
7. W.-F. KE, "Structures of Circular Planar Nearrings," Ph.D. thesis, University of Arizona, 

Tucson, 1992. 
8. W.-F. KE AND H. KIECHLE, Automorphisms of certain design groups, J. Algebra 166 

(1994), 488-500. 
9. W.-F. KE AND H. KmCHLE, On the solutions of the equation x " + y ' - z ' =  1 in a finite 

field, Proc. Amer. Math. Soc. 128 (1995), 1331-1339. 
10. H. KmCHLE, Points on Fermat curves over finite fields, in "Proc. Conference on Finite 

Fields: Theory, Applications, and Algorithms, Las Vegas, NV, 1993," Contemp. Math. 168 
(1994), 181-183. 

I1. M. C. MODISETT, "A Characterization of the Circularity of Certain Balanced Incomplete 
Block Designs," Ph.D. thesis, University of Arizona, Tucson, 1988. 

12. M. C. MODISETT, A characterization of the circularity of certain balanced incomplete 
block designs, Utilitas Math. 35 (1989), 83-94. 

13. R. J. TRLrDEAU, "Dots and Lines," Kent State Univ. Press, Kent, OH, 1976. 


