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Abstract

Let Hq(Sn) be the Iwahori-Hecke algebra of the symmetric group defined over the ring
Z[q,q−1]. Theq-Specht modules ofHq(Sn) come equipped with a natural bilinear form. In this
paper we try to compute the elementary divisors of the Gram matrix of this form (which need not
exist sinceZ[q, q−1] is not a principal ideal domain). When they are defined, we give the relationship
between the elementary divisors of the Specht modulesSq(λ) andSq(λ

′), whereλ′ is the conjugate
partition. We also compute the elementary divisors whenλ is a hook partition and give examples to
show that in general elementary divisors do not exist.
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1. Introduction and statement of main results

The irreducible representations of the symmetric groups and their Iwahori–Hecke
algebras have been classified and constructed by James [6] and Dipper and James [2], yet
simple properties of these modules, such as their dimensions, are still not known. Every
irreducible representation of these algebras is constructed by quotienting out the radical of
a bilinear form on a particular type of module, known as a Specht module. The bilinear
forms on the Specht modules are the objects of our study.
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One way of determining the dimension of the simple modules would be to first find
the elementary divisors of the Gram matrix overZ[q,q−1] and then specialize. This would
also give the dimensions of the subquotients of the Jantzen filtrations of the Specht modules
over an arbitrary field; see [7]. In general, such an approach is not possible because, as
Andersen has shown, Gram matrices need not be diagonalizable overZ[q,q−1]; see [1,
Remark 5.11]. We also give some examples of non-diagonalizable Specht modules in
Section 7.

Let G(λ) be the Gram matrix of the Specht moduleS(λ). Then the firstresult in this
paper shows thatG(λ) is diagonalizable if and only ifG(λ′) is diagonalizable, whereλ′ is
the partition conjugate toλ. Moreover, if G(λ) is divisibly diagonalizable (that is,G(λ) is
equivalent to a diagonal matrix diag(d1, . . . ,dm) suchthatdi dividesdi+1, for 1 ≤ i < m),
then so isG(λ′). In this case we can speak of elementary divisors and we show how the
elementary divisors ofG(λ) andG(λ′) determine each other. This is aq-analogue of the
corresponding result for the symmetric group [8].

We next consider the elementary divisors for the hook partitions. We show that when
λ = (n − k,1k), for 0 ≤ k < n, the Grammatrix G(λ) is always divisibly diagonalizable
overZ[q,q−1], and wedetermine the elementary divisors. Again, this is aq-analogue of
the corresponding result for the symmetric groups [8]; however, the proof in the Hecke
algebra case is more involved and requires some interesting combinatorics.

2. The Hecke algebra and permutation modules

Fix a positive integern and letSn be the symmetric group of degreen.
Let R be a commutative domain and letq be an invertible element inR.
The Iwahori–Hecke algebra ofSn with parameterq is the unital associative algebraH

with generatorsT1, T2, . . . , Tn−1 and relations

(Ti − q)(Ti + 1) = 0 for 1 ≤ i < n,
Ti Tj = Tj Ti for 1 ≤ i < j − 1< n − 1,

Ti Ti+1Ti = Ti+1Ti Ti+1 for 1 ≤ i < n − 1.

Let r i = (i , i + 1), for i = 1,2, . . . ,n − 1. Then{r1, r2, . . . , rn−1} generateSn (as a
Coxeter group). Ifw ∈ Sn thenw = r i1 · · · r ik for somei j with 1 ≤ i j < n. The word
w = r i1 · · · r ik is reduced if k is minimal; in this case we say thatw haslength k and we
define�(w) = k.

If r i1 · · · r ik is reduced then we setTw = Ti1 · · · Tik . ThenTw is independent of the
choice of reduced expression forw; see, for example, [10, 1.11]. Furthermore,H is free
as anR-module with basis{Tw | w ∈ Sn}.

A composition µ of n is a sequence of non-negative integers(µ1, µ2, . . .) that sum to
n. If, in addition,µ1 ≥ µ2 ≥ . . ., thenµ is apartition of n.

Let µ be a composition of n and letSµ be the associated Young subgroup. Then
H (Sµ) = 〈Tw | w ∈ Sµ〉 is a subalgebra ofH . Given a(right) H (Sµ)-moduleV ,
we define the inducedH -module

IndH
H (Sµ)

(V) = V ⊗H (Sµ)H .
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Let Dµ = {d ∈ Sn | �(dri ) > �(d) for all r i ∈ Sµ} be the set of distinguished right coset
representatives ofSµ in Sn. Then, as anR-module,

IndH
H (Sµ)

(V) ∼=
⊕

d∈Dµ

V ⊗ Td

by [2, Theorem 2.7].
Let xµ = ∑

w∈Sµ
Tw. ThenTwxµ = xµTw = q�(w)xµ for all w ∈ Sµ. The trivial

representation of H (Sµ) is the freeR-module1µ = Rxµ.
Let yµ = ∑

w∈Sµ
(−q)−�(w)Tw. ThenTwyµ = yµTw = (−1)�(w)yµ for all w ∈ Sµ.

Thesign representation of H (Sµ) is the freeR-moduleEµ = Ryµ.
For any compositionµ we define the permutation moduleM(µ) = IndH

H (Sµ)
(1µ) ∼=

xµH . ThenM(µ) is free as anR-module of rank[Sn : Sµ] with basis{xµTd | d ∈ Dµ}.
TheH -action onM(µ) is determined by

xµTdTi =



qxµTd, if �(dri ) > �(d) anddri 	∈ Dµ,
xµTdri , if �(dri ) > �(d) anddri ∈ Dµ,
qxµTdri + (q − 1)xµTd, otherwise.

Note that if�(dri ) < �(d) thendri ∈ Dµ.
Let ∗ : H −→ H be theR-linear map onH determined by T∗

w = Tw−1, for all
w ∈ Sn. This defines anR-algebra anti-automorphism onH of order 2.

The moduleM(µ) carries a symmetric bilinear form〈, 〉µ given by

〈xµTa, xµTb〉µ =
{

q�(a), if a = b,
0, otherwise,

for a,b ∈ Dµ. It follows from theformulae above that the form〈, 〉µ is associative in the
sense that

〈xh, y〉µ = 〈x, yh∗〉µ
for all x, y ∈ M(µ) and allh ∈ H .

We will need two dualities on the category of rightH -modules. Both of them come
from involutions onH . Thefirst duality comes from the involution∗ defined above. The
second is induced from the automorphism #: H −→ H which is theR-linear map on
H determined byT#

w = (−q)l(w)T−1
w−1, for all w ∈ Sn. It is straightforward to check that

# preserves the relations inH and, hence, that it is anR-algebra automorphism of order
2. Note that the involutions # and∗ commute.

If V is anH -module letV∗ beits R-linear dual. ThenV∗ becomes anH -module on
letting (φ · ξ)(v) := φ(vξ∗), whereφ ∈ V∗, v ∈ V andξ ∈ H . With the according
operation on morphisms, this defines a contravariant self-equivalence on the category of
H -modules.

If V is an H -module letV# be theH -module with underlyingR-moduleV and
operationv ·# ξ := v · ξ#, wherev ∈ V and ξ ∈ H . With the identical operation on
morphisms, this defines a covariant self-equivalence on the category ofH -modules.
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3. Specht modules

We recall some well-known facts due to Dipper and James [2].
Let λ = (λ1, λ2, . . .) bea composition of n. Thediagram of λ is the set[λ] = {(i , j ) ∈

N2 | 1 ≤ j ≤ λi }. We identify the diagram ofλ with an array of boxes in the plane.
For example, ifλ = (4,3,2) then

Theconjugate of λ is the partitionλ′ = (λ′
1, λ

′
2, . . .), whereλ′

j = #{i ≥ 1 | λi ≥ j } for
all j ; that is,λ′ is the partition ofn whose diagram is obtained by interchanging the rows
and columns of the diagram ofλ.

Formally, a λ-tableau is a bijectiont : [λ] −→ {1,2, . . . ,n}; however, we will think of
aλ-tableau as a labelling of the diagram ofλ by the numbers 1,2, . . . ,n. Accordingly, we
will speak of the rows and columns of a tableau. For example,

are all (3, 2)-tableaux.
A tableau isrow standard if in each row its entries increase from left to right. A tableau

is standard if it is row standard and in each column itsentries increase from top to bottom.
Let Std(λ) be the set of standardλ-tableaux.

All of the tableaux above are row standard; however, only the first two tableaux are
standard.

The initial λ-tableau tλ is the standardλ-tableau which has the numbers 1,2, . . . ,n
entered in order from left to right, and then top to bottom, along its rows. Theterminal
λ-tableau tλ is the standardλ-tableau which has the numbers 1,2, . . . ,n entered in order
from top to bottom, and then left to right, along its columns. Of the (3, 2)-tableaux above,
the first ist(3,2) and the second ist(3,2).

The symmetric groupSn acts from the right on the set ofλ-tableaux by permuting
their entries. Ift is aλ-tableau letd(t) be the unique permutation such thatt = tλd(t). In
particular, we setwλ = d(tλ).

We remark thatDµ = {d(t) | t is a row standardµ-tableau}.
Suppose thatλ is a partition ofn and letzλ = xλTwλ yλ′. TheSpecht module is the

submoduleS(λ) = zλH of M(λ).
Let S(λ)⊥ = {x ∈ M(λ) | 〈x, y〉 = 0 for all y ∈ S(λ)}. As 〈, 〉λ is associative,S(λ)⊥ is

anH -submodule ofM(λ). More precisely,S(λ)⊥ is the kernel of theH -linear map

M(λ)
δλ

S(λ)∗; xλh 〈xλh,−〉λ,
whereh ∈ H .

By restricting the bilinear form〈, 〉λ on M(λ) we obtain a bilinear form onS(λ). If R is
a field thenD(λ) = S(λ)/S(λ) ∩ S(λ)⊥ is either zero or absolutely irreducible. Moreover,
all of the irreducibleH -modules arise uniquely in this way [2, Theorem 5.2].
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Before we can give a basis ofS(λ) we need some more notation. Ift is aλ-tableau let
t′ be theλ′-tableau obtained by interchanging the rows and columns oft. For example,
(tλ)′ = tλ′ and(tλ)′ = tλ

′
. Finally, if t is a standardλ-tableau letvt = zλTd(t′).

3.1 (Dipper–James [2, Theorem 5.6]). The Specht module S(λ) is free as an R-module
with basis{vt | t ∈ Std(λ)}.

We call {vt | t ∈ Std(λ)} theDipper–James basis of S(λ). Let nλ = #Std(λ) be the
number of standardλ-tableaux. Then, as anR-module,S(λ) is free of ranknλ.

Fix an ordering of Std(λ) and let

G(λ) = (〈vs, vt〉λ)s,t∈Std(λ)

bethe Gram matrix of the bilinear form〈, 〉λ, with respect to the Dipper–James basis. The
matrix G(λ) depends on the choice of ordering on Std(λ); however, all of the quantities
that we are interested in will be independent of this choice. We remark that detG(λ) has
been explicitly computed by Dipper and James [3, Theorem 4.11].

4. Diagonalizability and elementary divisors

Given an integerm ≥ 1, anm × m matrix A with coefficients inR is diagonalizable
if there exist matricesS and T in GLm(R) such that SAT is a diagonal matrix. The
matrix A is divisibly diagonalizable if SAT = diag(d1, . . . ,dm) is a diagonal matrix
such that di divides di+1 in R, for 1 ≤ i < m. If A is divisibly diagonalizable and
SAT = diag(d1, . . . ,dm) satisfies this condition, then we calld1, . . . ,dm the elementary
divisors ofA.

Given A ∈ Rm×m, we let Ik(A) be the ideal of thek × k minors of A, for 1 ≤ k ≤ m.
Note that forB ∈ Rm×m, we haveIk(AB) ⊆ Ik(A) and Ik(B A) ⊆ Ik(A). Hence for
S, T ∈ GLm(R), we haveIk(A) = Ik(SAT). Therefore, if A is divisibly diagonalizable
with resulting diagonal elementsd1, . . . ,dm, then Ik(A) = Ik(diag(d1, . . . ,dm)) is the
principal ideal generated byd1d2 · · · dk. This shows that the resulting diagonal entries are
independent, up to multiplication by units, of the choice of the diagonalizing matrices. In
other words, the elementary divisors of a divisibly diagonalizable matrix are well-defined
modulo units.

Whether or not A is diagonalizable, the idealsIk(A) ⊆ R are invariant under the
equivalence relationA ∼ SAT. It would be interesting to consider the equivalence classes
within {A ∈ Rm×m | Ik(A) = Jk for 1 ≤ k ≤ m} for a fixed tuple(Ji ) of ideals ofR.

If R is a principal ideal domain then every matrixA ∈ Rm×m is divisibly diagonalizable
by the elementary divisor theorem. The resulting diagonal matrix is known as the Smith
normal form.

Now the Laurent polynomial ringZ[q,q−1] is not a principal ideal domain and, in
fact, there are strict inclusions of the set of divisibly diagonalizable matrices in the set
of diagonalizable matrices, and of the set of diagonalizable matrices in all matrices with

coefficients inZ[q,q−1]. For example, the matrixA =
(

q − 1 0
0 q + 1

)
is diagonalizable, but

not divisibly diagonalizable becauseI1(A), the ideal of R generated by the entries ofA, is
not principal.
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Proving that a matrix is not diagonalizable is slightly harder. For example, we claim

that the matrixB =
(

q + 1 2
0 q + 1

)
is not diagonalizable overZ[q,q−1]. To seethis, notice

that over Q[q,q−1] the matrixB has elementary divisors 1 and(q + 1)2. Therefore, if
B is diagonalizable overZ[q,q−1] then one of these diagonal entries must be a unit in
Q[q,q−1]; that is, of the formaqb with a,b ∈ Z. Reducing modulo 2 this shows that
one of the elementary divisors ofB overF2[q,q−1] is zero or a unit. However, this is a
contradiction because the elementary divisors ofB overF2[q,q−1] areq + 1 andq + 1.

In proving that certain Gram matricesG(λ) are divisibly diagonalizable overZ[q,q−1],
we shall make use of the following simple lemma.

Lemma 4.1. Let A bean m× m matrix with coefficients in R, and suppose that there exist
invertible matrices S, T ∈ GLm(R) suchthat

SAT=




d1 b12 · · · b1m

0 d2 · · · b2m
...
. . .

. . .
...

0 · · · 0 dm


 ,

where d1 | d2 | . . . | dm and di divides bi j for all j . Then A is divisibly diagonalizable and
d1,d2, . . . ,dm are the elementary divisors of A.

Proof. The matrixSAT can be written as the product of diag(d1, . . . ,dm) with a matrix
in GLm(R). �

As wesaw with thenon-diagonalizable matrix
(

q + 1 2
0 q + 1

)
above, the requirement that

di dividesbi j for all j is not superfluous.

5. Elementary divisors for conjugate partitions

Let R = Z[q,q−1]. Letλ bea partition ofn. In this section we relate the Gram matrices
G(λ) and G(λ′). We start with some mild generalizations of some results about Specht
modules which were proved by Dipper and James [2] over a field.

Recall that ifY is a submodule of anR-free moduleX thenY is pure if the quotient
moduleX/Y is R-free.

Lemma 5.1. Suppose thatλ is a partition. Then the Specht module S(λ) is a pure
submodule of M(λ).

Proof. Using the Dipper–James basis ofS(λ), and the basis{xλTd | d ∈ Dλ} of M(λ),
suitably ordered, the matrixrepresenting the embeddingS(λ) M(λ) Z[q,q−1]-
linearly becomes triangular with 1’s on the diagonal [2, Theorem 5.8]. �

Corollary 5.2. The map M(λ)
δλ

S(λ)∗ is surjective.

Proof. The mapδλ is the composition of the map

M(λ)
∼

M(λ)∗; ξ 〈ξ,−〉λ
with the dual of the inclusion mapS(λ) M(λ). This is surjective byLemma 5.1. �
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Let α(λ) = ∑
i≥1(i − 1)λi = ∑

i≥1

(
λ′

i
2

)
. Note that α(λ) = �(w0,λ′), wherew0,λ′

is the unique element of longest element inSλ′ . Thenext lemma is well known; see, for
example, [13, Prop. 2.2]. We include a proof for completeness.

Recall that automorphism #, and the corresponding operation on the module category
of H , were defined at the end ofSection 2.

Lemma 5.3. Wehave x#λ = qα(λ
′)yλ and y#

λ = q−α(λ′)xλ.

Proof. As # is an involution the two equalities are equivalent, so we prove only the
first. For any integer i , with 1 ≤ i < n, we havex#

λTi = (xλT#
i )

# = −x#
λ. Write

x#
λ = ∑

w∈Sλ
awTw, for someaw ∈ Z[q,q−1]. Comparing coefficients on both sides

of the equationx#
λTi = −x#

λ shows thatawri = (−q)aw for eachw that has a reduced
expression ending inr i ; compare [10, Cor. 1.7]. Hence,x#

λ is a scalar multiple ofyλ. Then
T#
w0,λ

= (−1)�(w0,λ)Tw0,λ plus a linear combination of Tv wherev ∈ Sλ and �(v) <

�(w0,λ). Therefore, comparing the coefficient ofTw0,λ in x#
λ andyλ gives the result. �

Recall that S(λ) = zλH , wherezλ = xλTwλ yλ′. The importance ofzλ, and the
irreducibility of S(λ) in the semisimple case, follow from the following simple fact.

5.4 (Dipper–James [2, Lemma 4.1]). Suppose thatw ∈ Sn. Then

xλTwyλ′ =
{±qazλ, if w ∈ SλwλSλ′,

0, otherwise,

for some integer a.

The proof of this result amounts to the observation thatSλ ∩ wSλ′w−1 = {1} if and
only if w ∈ SλwλSλ′ .

Lemma 5.5 (TheSubmodule Theorem). If U is a pure submodule of M(λ), then S(λ) ⊆
U or U ⊆ S(λ)⊥.

Proof. For all u ∈ U , we haveuyλ′ = αuzλ for someαu ∈ Z[q,q−1] by 5.4.

Case 1.αu = 0 for all u ∈ U . Therefore, if u ∈ U and h ∈ H then we have
〈u, zλh〉λ = 〈uh∗yλ′, xλTwλ〉λ, since y∗

λ′ = yλ′. But uh∗ ∈ U , so uh∗yλ′ = 0 and
u ∈ S(λ)⊥. Hence,U ⊆ S(λ)⊥.

Case 2.αu 	= 0 for someu ∈ U . Now U � uyλ′ = αuzλ implieszλ ∈ U sinceU ⊆ Mλ is
a pure submodule. Therefore,S(λ) ⊆ U . �

Note that the right idealyλ′T−1
wλ

xλH is isomorphic toS(λ)# via ξ ξ#. Composing
left multiplication by yλ′T−1

wλ
with this isomorphism, and usingLemma 5.3, we obtain a

surjectiveH -linear map

M(λ) = xλH
θλ

S(λ′)#; xλh zλ′ ·# h,

whereh ∈ H .
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Lemma 5.6. WehaveKernθλ = S(λ)⊥. This induces an isomorphism

S(λ′)# S(λ)∗; zλ′ ·# h 〈xλh,−〉λ,
where h∈ H .

Proof. Both Kernθλ and S(λ)⊥ are pure submodules ofM(λ). Over Z[q,q−1], both
S(λ′)# and S(λ)∗ are free of ranknλ, so it suffices to prove that Kernθλ ⊆ S(λ)⊥. By
Lemma 5.5this is equivalent to showing thatS(λ) 	⊆ Kernθλ. So it is enough to show that
zλθλ 	= 0. The bilinear form〈, 〉λ′ is associative, so

〈zλθλ, xλ′ 〉λ′ = q−α(λ)〈zλ′ T−1
wλ′ xλ′, xλ′ 〉λ′

= q−α(λ′)


 ∑
w∈Sλ′

q�(w)


 〈zλ′ , xλ′T−1

wλ
〉λ′ .

Now, zλ′ = ∑
v∈Sλ

(−q)−�(v)xλ′Twλ′v, where eachwλ′v is a distinguished coset
representative forSλ′ . In contrast,T−1

wλ
is equal toTwλ′ plus a linear combination of terms

Tu, whereu ∈ Sn with �(u) < �(wλ′). Thus 〈zλ′, xλ′ T−1
wλ

〉λ′ = 〈xλ′Twλ′ , xλ′Twλ′ 〉λ =
q�(wλ′ ). Hence,〈zλθλ, xλ′ 〉λ′ 	= 0.

A comparison of the short exact sequences

0 Kernθλ M(λ)
θλ

S(λ′)# 0

and

0 S(λ)⊥ M(λ)
δλ

S(λ)∗ 0

yields the isomorphismψλ. �

For each node(i , j ) ∈ [λ], we lethi, j = (λi − j )+ (λ′
j − i )+ 1 be the corresponding

hook length and sethλ(q) = ∏
(i, j )∈[λ][hi, j ]q. The next lemma follows from results of

Murphy [11].

Lemma 5.7. Wehave zλT−1
wλ

zλ = qn−α(λ)hλ(q)zλ.

Proof. For thepurpose of this proof, we may assumeR = Q(q). By [11, p. 510–511],
there exists an elementΨ∗

tλ
= Twλ′ +∑

�(v)<�(wλ′) rvTv ∈ H , for somerv ∈ R, such that

zλΨ∗
tλ = qn−α(λ)+�(wλ′)hλ(q)Eλ,

where Eλ is a primitive idempotent such thatEλH = zλH = S(λ). In particular
Eλzλ = zλ. (Notethatzλ = zλt in Murphy’s notation; see [11, p. 496, p. 498].)

Note that T−1
wλ

= q−�(wλ)Twλ′ + ∑
�(v)<�(wλ′) rvTv, for some rv ∈ R. Now, if

�(v) < �(wλ′) thenv 	∈ Sλ′wλ′Sλ, so yλ′Tvxλ = (xλT∗
v yλ′)∗ = 0 by 5.4. Consequently,

zλTvzλ = 0. Therefore,

zλT−1
wλ

zλ=q−�(wλ)zλTwλ′ zλ

=q−�(wλ)zλΨ∗
tλzλ
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=qn−α(λ)hλ(q)Eλzλ
=qn−α(λ)hλ(q)zλ. �

Consider theH -linear map

S(λ)
γλ

S(λ)∗; ξ 〈ξ,−〉λ.
Lemma 5.8. The composition

S(λ)
γλ

S(λ)∗ S(λ′)#
γ #
λ′

S(λ′)∗,# S(λ)

is equal to scalar multiplication by(−q)�(wλ′)qn−α(λ)−α(λ′)hλ(q).

Proof. The elementzλ is mapped viaγλ to 〈zλ,−〉λ, which is mapped viaψ−1
λ to

zλ′ ·# Twλ yλ′ = zλ′T#
wλ

y#
λ′, which in turn goes to〈zλ′ T#

wλ
y#
λ′,−〉λ via γ #

λ′ , and finally to

zλ ·# Twλ′ yλT#
wλ

y#
λ′ = (−q)�(wλ′ )q−α(λ′)zλT−1

wλ
zλ

= (−q)�(wλ′ )qn−α(λ)−α(λ′)hλ(q)zλ

via (ψ#
λ′)−1, by Lemma 5.7. �

Let Im be them × m identity matrix. Recall thatnλ = #Std(λ) is the dimension of the
Specht moduleS(λ).

Proposition 5.9. Suppose thatλ is a partition of n.

(1) There exist invertible matrices A, B ∈ GLnλ (Z[q,q−1]) suchthat

G(λ) · A · G(λ′) · B = hλ(q) · Inλ .

(2) G(λ) is diagonalizable to the diagonal matrix D if and only if G(λ′) is diagonalizable
to the diagonal matrix hλ(q)D−1.

(3) G(λ) is divisibly diagonalizable if and only if G(λ′) is divisibly diagonalizable. In this
case, the product of the ith elementary divisor of G(λ) and the(nλ+1−i )th elementary
divisor of G(λ′) is equal to hλ(q).

Recall that elementary divisors are only well defined up to a unit inZ[q,q−1]; the same
is true of their product in (3).

Proof. (1) The R-linear mapγλ is represented by the matrixG(λ) with respect to the
Dipper–James basis and its dual basis. Thus the assertion follows byLemma 5.8.

(2) If G(λ) = SDT with S, T ∈ GLnλ (Z[q,q−1]) and D ∈ Z[q,q−1]nλ×nλ is a
diagonal matrix, thenG(λ′) = A−1T−1(hλ(q)D−1)S−1B−1. SinceG(λ′) has coefficients
in Z[q,q−1], sodoeshλ(q)D−1.

(3) Repeat the argument of (2). �
We remark that all of the results in this section hold more generally when the Hecke

algebraH is definedover an integral domainR suchthatH ⊗R Q is semisimple, where
Q is the field of fractions ofR. (We need semisimplicity overQ only when we apply
Murphy’s results in the proof ofLemma 5.7.) In particular,Proposition 5.9holds when
R = F[q,q−1] andF is any field. Notice thatG(λ) is always diagonalizable in this case
becauseF[q,q−1] is a principal ideal domain.



952 M. Künzer, A. Mathas / European Journal of Combinatorics 26 (2005) 943–964

6. The elementary divisors for hook partitions

Throughout this section we fix an integerk, with 0 ≤ k < n, and consider the Specht
moduleS(λ), whereλ = (n−k,1k). We will show thatG(λ) is divisibly diagonalizable by
explicitly constructing two bases ofS(λ) which transformG(λ) an upper triangular matrix
satisfying the requirements ofLemma 4.1. In particular, this will allow us to determine the
elementary divisors ofS(λ).

The Specht moduleS(λ) is defined as a submodule of the permutation moduleM(λ);
however, to compute the elementary divisors we will work inside a different permutation
module.

By definition, S(λ) = xλTwλ yλ′H = x(n−k,1k)Tw(n−k,1k)
y(k+1,1n−k−1). We first need to

understand the permutationwλ = w(n−k,1k) alittle better. This requires some new notation.
For integers non-negativei and j define

r i, j =



1, if i = 0 or j = 0,
r i r i+1 · · · r j , if 0 < i ≤ j ,
r i r i−1 · · · r j , if i > j > 0,

and setTi, j = Tri, j . Next, let a and b be non-negative integers sucha + b ≤ n. If
either a = 0 or b = 0 then setwa,b = 1. If both a and b are non-zero then define
wa,b = (ra+b−1,1)

b; thenone can check that, in two-line notation,

wa,b =
(

1 2 · · · a
b + 1 b + 2 · · · a + b

a + 1 a + 2 · · · a + b
1 2 · · · b

)
.

It is not hard to see thatwb,a = w−1
a,b and thatwa,b = ra,a+b−1wa−1,b and�(wa,b) =

�(ra,a+b−1)+ �(wa−1,b); see [4]. Consequently,

wa,b = ra,a+b−1ra−1,a+b−2 · · · r1,b = r1,ar2,a+2 · · · rb,a+b−1

with the lengths adding in both cases. Hence,�(wa,b) = ab.
The permutationw(n−k,1k) is essentially one of these permutations because

w(n−k,1k) =
(

1 2 · · · n − k n − k + 1 · · · n
1 k + 2 · · · n 2 · · · k + 1

)
.

Hence,w(n−k,1k) = rn−k,n−1rn−k−1,n−2 · · · r2,k+1, with the lengths adding. So

Tw
(n−k,1k)

= Tn−k,n−1 · · · T2,k+1,

Notice also thatTwn−k.k = Tw
(n−k,1k)

T1,k.
If w ∈ S(k,n−k) ∼= Sk × Sn−k then we writew = (u, v), whereu ∈ Sk and

v ∈ S (1k,n−k) are the unique permutations such thatw = uv = vu. Set

x(k|n−k) = y(k,1n−k)x(1k,n−k) =
∑

(u,v)∈S(k,n−k)

(−q)−�(u)Tuv.

Then it is easy to see thatRx(k|n−k) is an H (Sµ)-module on which the subalgebras
H (Sk) andH (S(1k,n−k)) act via their sign and trivial representations, respectively. Let

M(k|n − k) = IndH (Sn)

H (S(k,n−k) )
(Rx(k|n−k)) ∼= x(k|n−k)H .
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As in Section 2, the induced moduleM(k|n − k) is free as anR-module with basis
{x(k|n−k)Td | d ∈ D(k,n−k)}. Furthermore,M(k|n − k) possesses a natural non-degenerate
associative bilinear form〈, 〉(k|n−k) which is determined by

〈x(k|n−k)Tu, x(k|n−k)Tv〉(k|n−k) =
{

q�(u), if u = v,

0, otherwise,

for u, v ∈ D(k,n−k). Donkin [5] calls M(k|n − k) a trivial source module.
Let y′

k+1 = 1 +∑k
j =1(−q) j −k−1Tk, j = 1 − q−1Tk + q−2Tk,k−1 + · · · + (−q)−kTk,1.

This is a sum over the right coset representatives ofSk in Sk+1. Consequently, it follows
that y(k+1,1n−k−1) = y(k,1n−k)y

′
k+1. The reason for introducing the moduleM(k|n − k) is

the following result.
Given a non-negative integerk > 1 let [k]q = 1 + q + · · · + qk−1 and [k]!q =

[1]q[2]q · · · [k]q. Notice that ifq = 1 then[k]1 = k and[k]!1 = k!.
Proposition 6.1. Letλ = (n − k,1k). The map

πk : S(λ) −→ M(k|n − k); zλh �−→ x(k|n−k)y
′
k+1h

is an injectiveH -module homomorphism. Moreover,

〈x, y〉λ = q
k
2 (2n−3k−1)[k]!q〈π(x), π(y)〉(k|n−k),

for all x, y ∈ S(λ).

Proof. By definition, S(λ) = x(n−k,1k)Twλ y(k+1,1n−k−1)H . As remarked above,wn−k,k =
w(n−k,1k)r1,k with the lengths adding. Therefore, sincer1,k ∈ Sλ′ ,

x(n−k,1k)Tw(n−k,1k )
y(k+1,1n−k−1)= (−1)kx(n−k,1k)Tw(n−k,1k)

T1,ky(k+1,1n−k−1)

= (−1)kx(n−k,1k)Twn−k,k y(k+1,1n−k−1)

= (−1)kTwn−k,k x(1k,n−k)y(k+1,1n−k−1)

= (−1)kTwn−k,k x(1k,n−k)y(k,1n−k)y
′
k+1

= (−1)kTwn−k,k x(k|n−k)y
′
k+1.

Therefore,π(x) = (−1)kT−1
wn−k,k

x, for all x ∈ S(λ). As Twn−k,k is invertible, the first claim
now follows.

To prove the second claim we first suppose thatR = Z[q,q−1]. If x, y ∈ S(λ)
then, by extending scalars, we may assume thatx and y are elements ofS(λ)Q(q) =
S(λ)Z[q,q−1] ⊗ Q(q). Now S(λ)Q(q) ∼= π(S(λ)Q(q)) is irreducible so, up to a scalar, there
is a unique associative bilinear form onS(λ)Q(q). To determine this scalar it is enough to
compare the two inner products onzλ andπ(zλ). Using associativity,

〈zλ, zλ〉λ=〈xλTwλ yλ′, xλTwλ yλ′ 〉λ = 〈xλTwλ y2
λ′, xλTwλ〉λ

=q
−
(

k+1
2

)
[k + 1]!q〈xλTwλ yλ′, xλTwλ〉λ

=q
−
(

k+1
2

)
[k + 1]!q

∑
v∈Sλ′

(−q)−�(v)〈xλTwλv, xλTwλ〉λ
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=q
�(wλ)−

(
k+1

2

)
[k + 1]!q

=q
k
2 (2n−3k−3)[k + 1]!q.

Similarly,
〈π(zλ), π(zλ)〉(k|n−k) = 〈x(k|n−k)y

′
k+1, x(k|n−k)y

′
k+1〉(k|n−k) = q−k[k + 1]q.

This proves that〈x, y〉λ = q
k
2 (2n−3k−1)[k]!q〈π(x), π(y)〉(k|n−k), for all x, y ∈ S(λ) when

R = Z[q,q−1]. Thegeneral case now follows by specialization.�
Corollary 6.2. Suppose thatλ = (n−k,1k). Then[k]!q divides〈x, y〉λ, for all x, y ∈ S(λ).

Let S′(λ) = π(S(λ)) = x(k|n−k)y′
k+1H . ThenS′(λ) ∼= S(λ) by the Proposition. We

will work with S′(λ) in what follows rather than working withS(λ) directly.
As a first step we need a basis ofS′(λ). Foranyλ-tableaut define
v′
t = π(vt) = x(k|n−k)y

′
k+1Td(t′).

The Dipper–James basis ofS(λ), 3.1, combined with Proposition 6.1, give us the
following.

Corollary 6.3. The module S′(λ) is R-free with basis{v′
t | t ∈ Std(λ)}.

In order to exploit this basis we introduce another type of tableaux. For our purposes
we could get by using(k,n − k)-tableaux; however, we use the notation from the theory
of trivial source modules.

Thediagram of (k|n − k) is the ordered pair of diagrams[k|n − k] = ([k], [n − k]).
A (k|n − k)-tableau is a bijection from [k|n − k] to {1,2, . . . ,n}. Once again, we will
think of a (k|n − k)-tableau as being a labelling of[k|n − k]. Accordingly, we will write
a (k|n − k)-tableau as an ordered pair(a|b), wherea andb are suitable labellings of the
diagrams of the partitions(k) and(n − k) respectively. We refer toa andb as the first and
second components of(a|b).

A (k|n − k)-tableau(a|b) is (row) standard if the entries ina increase from left to
right and the entries inb increase from left to right. Let Std(k|n − k) be the set of standard
(k|n − k)-tableaux. For example, the standard(1|3)-tableaux are

Let t(k|n−k) be the standard(k|n − k)-tableau with 1, . . . , k entered in order, from left to
right, in the first component and the numbersk + 1, . . . ,n in the second. The first of the
tableaux above ist(1|3).

Two (k|n − k)-tableaux(a|b) and(s|t) arerow equivalent if a ands contain the same
entries up to reordering (in which case,b andt also contain the same set of entries). As
with ordinary tableaux, the symmetric group acts from the right on the set of(k|n − k)-
tableaux. If (a|b) is a (k|n − k)-tableau we defined(a|b) to be theunique permutation
suchthat (a|b) = t(k|n−k)d(a|b). Then(a|b) and (s|t) are row equivalent if and only if
d(a|b) = wd(s|t) for somew ∈ S(k,n−k). Consequently,

D(k,n−k) = {d(a|b) | (a|b) ∈ Std(k|n − k)}.
So the standard(k|n − k)-tableaux index a basis ofM(k|n − k).
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For future reference, notice that if(a|b) is a standard(k|n−k)-tableau then�(d(a|b)) is
equal to the number of pairs of integers(i , j )wherei appears ina, j appears inb andi > j .
This follows because ifw ∈ Sn then�(w) is equal to the number of pairsa < b with
i = aw > j = bw, and the entries ina are the images of 1, . . . , k underd(a|b), whereas
the entries inb are the images ofk + 1, . . . ,n.

For any(k|n − k)-tableau(a|b) definex(a|b) = x(k|n−k)Td(a|b). Here we do not assume
that(a|b) is standard. The following lemma is easily verified.

Lemma 6.4. Suppose that0 ≤ k < n.

(i) M(k|n − k) is free as an R-module with basis{x(a|b)|(a|b) ∈ Std(k|n − k)}.
(ii) Suppose that(a|b) ∈ Std(k|n − k) and1 ≤ i < n. Then

x(a|b)Ti =




−x(a|b), if i andi + 1 areboth contained ina,
qx(a|b), if i andi + 1 areboth contained inb,
x(ai |bi ), if i is ina andi + 1 is inb,
qx(ai |bi ) + (q − 1)x(a|b), otherwise,

where(ai |bi ) = (a|b)r i .

The action ofH on M(k|n − k) is completely determined by (ii).
We now show how to write the basis{v′

t} of S′(λ) in terms of this basis ofM(k|n − k).
To do this, if t is aλ-tableau and(a|b) is a (k|n − k)-tableau write(a|b) ≺ t if (a|b) is
standard and all of the entries ina are contained in the first column oft. Finally, if (a|b) ≺ t
we setIt(a|b) = i , the index of(a|b) in t, if the number in rowi of t does not appear ina.

Lemma 6.5. Suppose thatt is a standardλ-tableau. Then

v′
t =

∑
(a|b)≺t

(−1)k+1−It(a|b)q�(d(t′))−�(d(a|b))x(a|b).

Proof. First considervtλ . Looking at the definitions we see that

v′
tλ = x(k|n−k)y

′
k+1 = xt(k|n−k) (1 − q−1Tk + q−2Tk,k−1 − · · · + (−q)−kTk,1)

=
∑

(a|b)≺tλ

(−q)−�(d(a|b))x(a|b).

As �(d(tλ)′) = �(d(tλ
′
)) = 0 and�(d(a|b)) = k + 1 − Itλ (a|b), when(a|b) ≺ tλ, the

Lemma follows in this case.
Now suppose thatt is an arbitrary standardλ-tableaux. Ift 	= tλ then we can find

another standardλ-tableaus and an integeri in the first column ofs suchthatt = sr i and
�(d(t)) = �(d(s)) − 1. (That is,t � s where� is the dominance order on tableaux; see,
for example, [10].) Therefore, by induction,

v′
t = v′

sTi =
∑

(a|b)≺s

(−1)k+1−Is(a|b)q�(d(s′))−�(d(a|b))x(a|b)Ti .

Sinces andt are standard,i is in the first column ofs and the first row oft andi + 1 is in
the first row ofs and the first column oft. Therefore, if (a|b) ≺ s then the entries in the first
component of(a|b)r i are still in increasing order and theentries in the second component
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are in increasing order unlessi andi +1 both appear inb. So,�(d(a|b)r i ) = �(d(a|b))+1
and byLemma 6.4(ii) we have

x(a|b)Ti =
{

qx(a|b), if i andi + 1both appear inb,
x(a|b)ri , otherwise.

In the first case, wheni and i + 1 both appear inb, we have that(a|b) ≺ t. Also,
�(d(t′)) − �(d(a|b)) = �(d(s′)) − �(d(a|b)) + 1 and It(a|b) = Is(a|b) so x(a|b) has
the required coefficient inv′

t.
In the second case,i appears ina andi + 1 appears inb, so (ar i |br i ) = (a|b)r i ≺ t,

It(ar i |br i ) = Is(a|b) and�(d(t′)) − �(d(a|b)r i ) = �(d(s′)) − �(d(a|b)). Hence, once
again,x(a|b)ri has the predicted coefficient inv′

t.
As there are exactlyk standard(k|n − k)-tableaux(a|b) satisfying (a|b) ≺ t, this

completes the proof. �

In order to compute the elementary divisors ofS(λ) we need a second basis ofS′(λ).
Let

xn−k = 1 + T1 + · · · + T1,n−k−1 =
n−k−1∑

j =0

T1, j .

(Note thatr1,0 = 1.) As with y′
k+1, we havex(n−k,1k) = x(1,n−k−1,1k−1)xn−k. Now, for any

standard(n − k,1k)-tableaut we define

w′
t =

{
v′
t(1,n), if n appears in row 1 oft,

v′
tλxn−kTd(t), otherwise.

We remark that it is not obvious that the set of elements{w′
t|t ∈ Std(λ)} is a basis ofS′(λ).

We will prove this below.
Lemma 6.5gives an explicit description of the basis{v′

t}. We need to do the same for
the basis{w′

t}, and for this we need some more notation. Ift is a standardλ-tableau let
t∗ = t(1,n). If (a|b) is a(k|n − k)-tableau write(a|b)≺n t if (a|b) ≺ t andn is contained
in a. Finally, if n appears in the first row oft then we define(a∗

t|b∗
t) to be the unique

standard(k|n − k)-tableau such that(a∗
t|b∗

t) ≺ t∗ and 1 appears inb∗
t. So(a∗

t|b∗
t) ≺ t∗ and

(a∗
t|b∗

t) ≺ t.

Lemma 6.6. Suppose thatt is a standardλ-tableau and that n appears in the first row
of t. Then

w′
t = (−1)kq2n−2k−3x(a∗

t|b∗
t)

+
∑

(a|b)≺n t∗
rabx(a|b),

for some scalars rab ∈ Z[q,q−1].
Proof. We now argue by downwards induction ont beginning witht = tλ, this is an
unpleasant calculation. Now,

w′
tλ = x(k|n−k)y

′
k+1T1,n−1Tn−2,1 = (−1)kx(k|n−k)y

′
k+1Tk+1,n−1Tn−2,1
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sincex(k|n−k)y′
k+1 = x(1k,n−k)y(k+1,1n−k−1). Therefore, using the definitions together with

the braid relations,

w′
tλ = (−1)kx(k|n−k)y

′
k+1Tn−1 · · · Tk+2Tk+1,n−1Tk,1

= (−1)kx(k|n−k)Tn−1 · · · Tk+2y′
k+1Tk+1,n−1Tk,1

= (−1)kqn−k−2x(k|n−k)y
′
k+1Tk+1,n−1Tk,1

= (−1)kqn−k−2x(k|n−k)

{
1 +

k∑
j =1

(−q) j −k−1Tk, j

}
Tk+1,n−1Tk,1

= (−1)kqn−k−2x(k|n−k)

{
qn−k−1 +

k∑
j =1

(−q) j −k−1Tk, j Tk+1,n−1

}
Tk,1

= (−1)kqn−2k−3x(k|n−k)

{
qnTk,1 +

k∑
j =1

(−q) j Tk, j Tk+1,1Tk+2,n−1

}

= (−1)kqn−2k−3x(k|n−k)

{
qnTk,1 +

k∑
j =1

(−q) j Tk+1,1Tk+1, j +1Tk+2,n−1

}

= (−1)kqn−2k−3x(k|n−k)

{
qnTk,1 −

k∑
j =1

(−q) j +1Tk,1Tk+1, j +1Tk+2,n−1

}

= (−1)kqn−2k−3x(k|n−k)Tk,1

{
qn −

k+1∑
j =2

(−q) j Tk+1, j Tk+2,n−1

}
.

Now, t(k|n−k)rk,1 = = (a∗
tλ

|b∗
tλ
) and, consequently,t(k|n−k)rk,1

rk+1, j rk+2,n−1 = , for j = 2, . . . , k + 1. This
completes the proof forw′

tλ
.

Now suppose thatt is an arbitrary standardλ-tableau which hasn in its first row. Then
d(t′) ∈ S(1,n−2,1) so d(t′) and(1,n) commute and�(d(t′)(1,n)) = �(d(t′)) + �(1,n).
Therefore,w′

t = w′
tλTd(t′). To complete the proof now argue by induction, as in the proof

of Lemma 6.5; we leave the details to the reader. (Indeed, this shows thatrab = ±qa for
some integera.) �

For convenience we now write〈, 〉 = 〈, 〉(k|n−k) . In terms of the standard basis of
M(k|n − k), thebilinear form〈, 〉 on M(k|n − k) is determined by

〈x(a|b), x(s|t)〉 =
{

q�(d(a|b)), if (a|b) = (s|t),
0, otherwise,

for standard(k|n − k)-tableaux(a|b) and(s|t).
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Corollary 6.7. Suppose thats and t are standardλ-tableaux which have n in their first
row. Then

〈w′
t, v

′
s〉 =

{
q2n−2k−3+�(d(t′)), if s = t,
0, otherwise.

Proof. By Lemmas 6.5and6.6we have

v′
s =

∑
(as|bs)≺s

(−1)k+1−Is(as|bs)q�(d(s
′))−�(d(as|bs))x(as|bs)

and, byLemma 6.6,

w′
t = (−1)kq2n−2k−3x(a∗

t|b∗
t)

+
∑

(at|bt)≺n t∗
ratbtx(at|bt).

Now, all of the tableaux appearing inw′
t have 1 appearing in their second component. In

contrast, the only tableau inv′
s which has 1 in its second component is the tableau(a∗

s|b∗
s).

Therefore,

〈w′
s, v

′
t〉= (−1)2k+1−Is(a∗

s|b∗
s)q2n−2k−3+�(d(s′))−�(d(a∗

s|b∗
s))〈x(a∗

s|b∗
s), x(a∗

t|b∗
t)

〉

=
{
(−1)1+It(a∗

t|b∗
t)q2n−2k−3+�(d(t′)), if s = t,

0, otherwise.

Finally, the sign vanishes whens = t becauseIt(a∗
t|b∗

t) = 1. �

We need one more result before we can produce the elementary divisors ofS(λ).

Lemma 6.8. Let(a+
λ |b+

λ ) be the unique standard(k|n−k)-tableau which has the numbers
n − k + 1, . . . ,n in a+

λ . Then

w′
tλ = (−1)kq�(wλ′ )




q−�(d(a+
λ |b+

λ ))[n − k]qx(a+
λ |b+

λ )

+
∑

(a|b)≺tλ

(a|b) 	=(a+
λ

|b+
λ
)

(−1)1−Itλ (a|b)q−�(d(a|b))
n−k−1∑

j =0

x(a|b)r1, j



.

Proof. By definitionw′
tλ

= v′
tλ

xn−k. Also,d((tλ)′) = d(tλ′) = wλ′ so, byLemma 6.5,

w′
tλ = v′

tλxn−k =
∑

(a|b)≺tλ

(−1)k+1−Itλ (a|b)q�(wλ′ )−�(d(a|b))x(a|b)xn−k

=
∑

(a|b)≺tλ

(−1)k+1−Itλ (a|b)q�(wλ′ )−�(d(a|b))x(a|b)(1 + T1 + · · · + T1,n−k−1).

Let (a|b) be one of the tableaux appearing in this sum. If(a|b) 	= (a+
λ |b+

λ ) then 1 is
contained ina and all of the numbers 2,3, . . . ,n − k are contained inb. Therefore,
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(a|b)r1, j is standard andx(a|b)T1, j = x(a|b)r1, j , for 0 ≤ j ≤ n − k − 1. On the other

hand,x(a+
λ |b+

λ )
T1, j = q j x(a+

λ |b+
λ )

, for 0 ≤ j ≤ n − k − 1. This completes the proof of the
Lemma. �

This result has two useful corollaries.

Corollary 6.9. Suppose thatt 	= tλ is a standard(k|n − k)-tableau. Then

〈w′
tλ , v

′
t〉 = 0.

Proof. By Lemma 6.8, if x(a|b) appears inw′
tλ

then all butone of the entries ina are
contained in{1,n − k + 1, . . . ,n}. On theother hand, byLemma 6.5, if x(a|b) appears in
v′
t then all of the entries ina are contained in the first column oft.

Suppose now thatt 	= tλ. Then, by the last paragraph,x(a+
λ |b+

λ )
cannot appear inv′

t and

theonly way that the inner product〈w′
tλ
, v′

t〉 can be non-zero is if the set of numbers in the
first column oft is of the formT = {1, j ,n−k+1, . . . ,n}\{m}, for someintegersj andm
with 1< j ≤ n−k andn−k < m ≤ n. Let (a|b) be the standard(k|n−k)-tableau whose
firstcomponent contains exactly the numbers inT \{ j } and let(a′|b′) = (a|b)r1, j −1. Then
(a|b) ≺ tλ, It(a|b) = 2 and It(a′|b′) = 1. Also �(d(a′|b′)) = �(d(a|b)) + j − 1, so
x(a|b)T1, j −1 = x(a′|b′). Therefore, byLemma 6.5andLemma 6.8and the remarks above,

v′
t = (−1)kq�(d(t

′))
(
q−�(d(a′|b′))x(a′|b′) − q−�(d(a|b))x(a|b)

)
+ other standard terms

and

w′
tλ = q�(wλ′)−�(d(a|b)) (x(a′|b′) + x(a|b)

)+ other standard terms,

where none of the “other standard terms” appear both inv′
t and inw′

tλ
. Consequently,

〈w′
tλ
, v′

t〉 = 0. Hence,〈w′
tλ
, v′

t〉 = 0 whenevert 	= tλ as claimed. �

Corollary 6.10. Suppose thatt is a standard(n−k,1k)-tableau and that n does not appear
in the first row oft. Then〈w′

t, v
′
t〉 = qk(n−k−2)[n]q.

Proof. Recall that if t is a standardλ-tableau thend(t′)d(t)−1 = wλ′ , with the lengths
adding; this is well known and is easily proved by induction on the dominance order for
tableaux. Therefore,

〈w′
t, v

′
t〉= 〈w′

tλTd(t), x(k|n−k)y
′
k+1Td(t′)〉 = 〈w′

tλ , x(k|n−k)y
′
k+1Td(t′)T

∗
d(t)〉

= 〈w′
tλ , x(k|n−k)y

′
k+1Td(tλ′ )〉 = 〈w′

tλ , v
′
tλ〉.

Hence, it is enough to consider the case wheret = tλ.
Suppose thatt = tλ. Then, byLemmas 6.5and6.8,

〈w′
tλ , v

′
tλ 〉 = q2�(wλ′)




q−�(d(a+
λ |b+

λ ))[n − k]q +
∑

(a|b)≺tλ

(a|b) 	=(a+
λ

|b+
λ
)

q−�(d(a|b))



.

Using the remarks beforeLemma 6.4it is nothard to see that�(d(a+
λ |b+

λ )) = k(n−k) and
that�(d(a|b)) = (k − 1)(n − k)+ 2− It(a|b), whenever (a|b) ≺ tλ and(a|b) 	= (a+

λ |b+
λ ).
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Therefore,

〈w′
tλ , v

′
tλ〉=q2�(wλ′)

{
q−k(n−k)[n − k]q +

k+1∑
i=2

q−(k−1)(n−k)−2+i

}

=q2�(wλ′)−k(n−k)

{
[n − k]q + qn−k

k−1∑
j =0

q j

}

=q2�(wλ′)−k(n−k)[n]q.
As �(wλ′) = k(n − k − 1), the resultfollows. �

Finally, we can prove the main result of this section.

Proposition 6.11. Suppose thatλ = (n − k,1k), for some k with0 ≤ k < n. Then

the Gram matrix G(λ) of S(λ) is divisibly diagonalizable overZ[q,q−1] with
(

n−2
k

)
elementary divisors equal to[k]!q and with the remaining

(
n−2
k−1

)
elementary divisors being

equal to[k]!q[n]q.

Proof. By Proposition 6.1the Gram matrix G(λ) of S(λ) is equal to[k]!q times the Gram
matrix of S′(λ). Therefore, byLemma 4.1it is enough to show that there is an invertible
diagonal matrixD suchthat

G′(λ) = (〈w′
s, v

′
t〉)s,t∈Std(k|n−k) = D ·

(
I ∗
0 [n]qU

)
,

whereI is a
(

n−2
k

)
×
(

n−2
k

)
identity matrix andU is a

(
n−2
k−1

)
×
(

n−2
k−1

)
upper triangular

matrix with 1’s down its diagonal. Here we order the rows and columns lexicographically
with respect to the entries in the first columns ofs andt. BecauseD is invertible its non-
zero entries must all be of the form±qm, for someintegerm.

By Corollary 6.7, the rows of G′(λ) which are indexed by those tableaux which haven
in their first row have the required form. This accounts for the identity matrix in the top
half of the Gram matrixG′(λ).

Next, suppose thats is a standard(k|n − k)-tableau and thatn does not appear in the
first row of s. If s = tλ then〈w′

s, v
′
t〉 = 0, for all t 	= s, by Corollary 6.9. If s 	= tλ then

there exists an integeri , 1< i < n − 1, such that�(d(s)r i ) < �(d(s)). Therefore,

〈w′
s, v

′
t〉 = 〈w′

sri
Ti , v

′
t〉 = 〈w′

sri
, v′

tTi 〉.
By expandingv′

tTi , and using induction, it follows that〈w′
s, v

′
t〉 = 0 if t appears befores

in our chosen ordering of Std(λ). Similarly, if t does not appear befores then[n]q divides
〈w′

s, v
′
t〉 by Corollary 6.10. �

Notice, in particular, that the Gram matrix calculation in the proof of the Proposition
implies that{w′

t | t ∈ Std(λ)} is indeed a basis ofS′(λ).
Proposition 6.11also gives the decomposition numbers ofS(λ) (by inducing the

corresponding principal indecomposable modules); however, as these are already known
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we leave these as an exercise for the reader. We will, however, give one application of this
result.

Let π : S(λ) −→ S′(λ) be the isomorphism ofProposition 6.1and for each standard
λ-tableaut let wt = π−1(w′

t). Then{wt | t ∈ Std(λ)} is a basis ofS(λ). Then, in the
case whereS(λ) is not irreducible, the proof ofProposition 6.11also gives a basis for the
simple moduleD(λ). More precisely, we have the following.

Corollary 6.12. Suppose that R is a field, that[k]!q 	= 0 and that[n]q = 0. Then S(λ) is

not irreducible and a basis of D(λ) = S(λ)/(S(λ)⊥ ∩ S(λ)) is given by

{wt + (S(λ)⊥ ∩ S(λ)) | t ∈ Std(λ) and n in first row of t},
and a basis of S(λ)⊥ ∩ S(λ) is given by{wt | t ∈ Std(λ) and n is in first row of t}.

7. Some counterexamples

Let R = Z[q,q−1]. We write themth cyclotomic polynomial inq asΦm = Φm(q).
Andersen remarked that ingeneral the Gram matrixG(λ) is not diagonalizable [1,

Remark 5.11]. We give two examples of this kind.
Note thatG(λ) is divisibly diagonalizable overZ(p)[q,q−1] for all but finitely many

primes p. In fact, it suffices to exclude the primes occurring in the denominators of the
entries of the matrices used to diagonalizeG(λ) overQ[q,q−1].

We record the elementary divisors in “jump notation”. That is, we write

f1
m1

f2
m2

f3
m3

f4 · · · fs
ms

to indicate that the matrix has the elementary divisorf1 with multiplicity m1, the
elementary divisorf1 f2 with multiplicity m2, . . ., and the elementary divisorf1 · · · fs with
multiplicity ms.

Example 7.1. Let λ = (3,3,2). The elementary divisors ofG(3,3,2) overQ[q,q−1] are
given by

Φ2
2

1
Φ4

20
Φ3Φ5

20
Φ4

1;
overF2[q,q−1] they are given by

Φ3
2

1
Φ2

20
Φ3Φ5

20
Φ2

1;
and, puttingq = 1, overZ they are given by

23

21
3·5

21.

We claim thatG(3,3,2) is not diagonalizable overZ(2)[q,q−1]. To see this suppose that it
is diagonalizable. Then, considered as an element ofZ(2)[q,q−1], any resulting diagonal
entry must contain the factor(q + 1) with exponent 2.
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We giveone application ofProposition 6.11.
We remark that the comparison of the elementary divisors overQ[q,q−1] andoverZ

yields a contradiction to diagonalizability overZ(2)[q,q−1], too.

Example 7.2. Let λ = (4,2,1,1). The elementary divisors ofG(4,2,1,1) over
Q[q,q−1] are given by

Φ2
14

Φ2
1

Φ4
30

Φ7
30

Φ4
1

Φ2
14;

overF2[q,q−1] they are given by

Φ2
14

Φ2
2

1
Φ2

30
Φ7

30
Φ2

1
Φ2

2
14;

overF3[q,q−1] they are given by

Φ2
13

Φ2
2

Φ4
30

Φ7
30

Φ4
2

Φ2
13;

and, puttingq = 1, overZ they are given by

2
14

22

31
7

31
22

14.

We claim that G(4,2,1,1) is not diagonalizable overZ(2)[q,q−1]. Again, by way of
contradiction suppose that it is diagonalizable. InF2[q,q−1], 14 of the resulting diagonal
entries contain the factor(q + 1) with exponent 1. Therefore, inZ(2)[q,q−1], 14 of them
contain the factor(q + 1) with exponent 1 and the factor(q2 + 1) with exponent 0.
Similarly, inF2[q,q−1], 14 of the resulting diagonal entries contain the factor(q+1) with
exponent 7. Thus inZ(2)[q,q−1], 14 of them contain the factor(q + 1) with exponent 3
and the factor(q2 + 1) with exponent 2. Hence inF2[q,q−1], no other diagonal entry can
contain(q + 1) with odd exponent. But inF2[q,q−1], there is a diagonal entry containing
(q + 1) to the power 3 and another containing it to the power 5 so, again, we have a
contradiction.

We claim thatG(4,2,1,1) is not diagonalizable overZ(3)[q,q−1]. Assume it to be
diagonalizable. InZ(3)[q,q−1], 14 of the resulting diagonal entries contain(q + 1) with
exponent 1. This contradicts the fact that inF3[q,q−1], only 13 of them contain(q + 1)
with exponent 1.

The two claims independently imply thatG(4,2,1,1) is not diagonalizable over
Z[q,q−1].

We remark that the comparison of the elementary divisors overQ[q,q−1] andoverZ

yields a contradiction to diagonalizability overZ(2)[q,q−1], too.

Finally, we give a (non-exhaustive) list of elementary divisors of some divisibly
diagonalizable Gram matrices for non-hooks, calculated using GAP 3 [12] and
MAGMA [9]. We omit the respective conjugate partition; compareProposition 5.9.
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n λ Elementary divisors ofG(λ)

4 (2,2)
Φ2

1
Φ3

1

5 (3,2)
1

1
Φ3

3
Φ4

1

6 (4,2)
1

4
Φ4

1
Φ2

3
Φ5

1

(3, 3)
Φ2

1
Φ3

3
Φ4

1

(3, 2, 1)
1

4
Φ3

4
Φ5

4
Φ3

4

7 (5,2)
1

8
Φ5

5
Φ3Φ6

1

(4, 3)
1

1
Φ3

7
Φ4

5
Φ4

1

(3, 3, 1)
Φ2

6
Φ3

2
Φ5

12
Φ4

1

8 (6,2)
1

13
Φ3Φ6

1
Φ2

5
Φ7

1

(5, 3)
1

8
Φ4

6
Φ2

7
Φ5

6
Φ6

1

(4, 4)
Φ2

1
Φ3

7
Φ4

5
Φ5

1

9 (7,2)
1

19
Φ7

7
Φ4Φ8

1

(6, 3)
1

21
Φ5

19
Φ6

1
Φ3

6
Φ7

1

(5, 4)
1

1
Φ3

15
Φ4

18
Φ5

7
Φ6

1

We do not know of an example of a Gram matrixG(λ) that is diagonalizable over
Z[q,q−1], but not divisibly diagonalizable.

For a general partition λ, we cannot decide whetherG(λ) is diagonalizable over
Z[q,q−1].
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