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Abstract

Let 77 (6n) be the Iwahori-Hecke algebra of the symmetric group defined over the ring
719, q~1]. Theg-Specht modules 0574 (6n) come equipped with a natural bilinear form. In this
paper we try to compute the elementary divisors of the Gram matrix of this form (which need not
exist snceZ[q, g1 is not a principal igal domain). When they are defined, we give the relationship
between the elementary divisors of the Specht mod&jés) and (1), wherel is the @njugate
partition. We also compute the elementary divisors whéa a hook padition and give examples to
show that in general elementary divisors do not exist.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and statement of main results

The irreducible representations of the symmetric groups and their lwahori-Hecke
algebras have been classified and constructed by J&inasd Dipper and Jameg], yet
simple properties of these modules, suchlasrtdimensions, are still not known. Every
irreducible representation of these algebras is constructed by quotienting out the radical of
a hblinear form on a particular type of modalknown as a Specht module. The bilinear
forms on the Specht modules are the objects of our study.
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One way of determining the dimension of the simple modules would be to first find
the elementary divisors of the Gram matrix oZgq, q—1] and then specialize. This would
also give the dimensions of the subquotients of the Jantzen filtrations of the Specht modules
over an arbitray field; see ]. In general, such an approach is not possible because, as
Andersen has shown, Gram matrices need not be diagonalizabl&fayer 1]; see [L,
Remark 5.11]. We also give some examples of non-diagonalizable Specht modules in
Section 7

Let G(1) be the Gram matrix of the Specht modB6.). Then he firstresultin this
paper shows thas () is diagonalizable if and only iG()') is diagonalizable, wherg' is
the partition conjugate td. Moreover, if G(1) is divisibly diagonalizable (that i<3 (1) is
equivalent to a diagonal matrix digdj, . . ., dy) suchthatd; dividesd; 1, for1 <i < m),
then so isG(1'). In this case we can speak of elementary divisors and we show how the
elementary divisors 06(1) andG (") determine each other. This isgganalogue of the
corresponding result for the symmetric gro@h [

We next consider the elementary divisors for the hook partitions. We show that when
A = (n—k, 1%, for 0 < k < n, the Grammatiix G(}) is always divisibly diagonalizable
overZ[q, q~1], and wedetermine the elementary divisors. Again, this ig-analogue of
the corresponding result for the symmetric groug§ jhowever, the poof in the Hecke
algebra case is more involved and requires some interesting combinatorics.

2. The Hecke algebra and permutation modules

Fix a positive integen and let&,, be the symmetric group of degrae
Let R be a commutative domain and gbe an invertible element iR.
The lwahori—Hecke algebra @, with parameteq is the unital associative algebr&

with generatord, To, ..., Tp—1 and relations
(T—-a(Ti+1DH =0 forl<i <n,
TiTy = TjT forl<i<j—1<n-1,

TiTixaTi = TiaTTipa forl<i<n-—1

Letri = (i,i +1),fori =1,2,...,n— 1. Then{r1,r2,...,rn—1} generate&sS, (as a
Coxeter group). Ifw € &y thenw = rj, ---rj, for someij with 1 < i; < n. The word
w =Tj, ---Ij, isreduced if k is minimal; in this case we say that haslength k and we
definet(w) = k.

If ri, - - -ri, is reduced then we sé&, = T, ---Tj,. ThenT, is indegpendent of the
choice of reduced expression for see, for example,J0, 1.11]. Furthermore/Z is free
as anR-module with basigT,, | w € Gp}.

A composition p of n is a quence of non-negative integérs, w2, . ..) that sum to
n. If, in addition, u1 > w2 > ..., thenu is apartition of n.

Let 4 be a mmpostion of n and let&,, be the associated Young subgroup. Then
H(6,) = (Ty | w € &,) is a subalgbra of 5#. Given a(right) 5 (&, )-moduleV,
we define he induced”’-module

Indﬁg(@)(V) =Vowe,) .
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LetD, = {d € & | £(dri) > £(d) forallrj € &,} be the set of distinguished right coset
representatives @, in Gn. Then, as anR-module,

S ~
Ind% e, (V) = EB V ® Ty
deD,

by [2, Theorem 2.7].

Letx, = ¥ cq, Tw- ThenTyx, = x, Ty = q“*x, for all w € &,. Thetrivial
representation of 77 (&,,) is the freeR-modulel, = Rx,.

Lety, = Ypee, D™ Tu. ThenTyy, = yuTw = (=D @y, forall w € &,..
Thesign representation of J#(8,,) is the freeR-modulef,, = Ry;,.

For any compositionu we define the permutation moduM (1) = Indﬁ(@)(lﬂ) =
X,.7¢. ThenM (u) is free as arR-module of ranH &y, : &,] with basis{x,Tq | d € D, }.
The 7 -adion onM (u) is determined by

ax,Td, if £(dri) > £(d)anddr; ¢ D,
X, TdTi = { X Tdr; if £(dri) > ¢£(d)anddr; € D,
aX. Tdr; + (0 — 1)x, Tq, otherwise

Note that if¢(dri) < €(d) thendr; € D,,.

Letx : s — S be theR-linear map ons” determined by T = T,-1, for all
w € Gp. This defhes anR-algebra anti-atomorphism on.sZ of order 2.

The moduleM (i) carries a symmetric bilinear forgn),, given by

[(a)’ |f a= bs
(XuTa, X, To)p = {g otherwise

fora,b € D,. It follows from theformulae above that the fordy),, is associative in the
sensehat

(Xh, y);L = (X, yh*)p.

forallx,y € M(u) and allh € 7.

We will need two dualities on the category of right’-modules. Both of them come
from involutions onsZ. Thefirst duality comes from the involutios defined above. The
second is induced from the automorphism ## — . which is theR-linear map on
A deternined by T# = (—q)'(’”)Tw__ll, for all w € &p. Itis straghtforward to check that
# preseves the radtions in.7Z and, hence, that it is aR-algebra automorphism of order
2. Note that the involutions # andcommute.

If V is ansZ-module letV* beits R-linear dual. Then/* becomes a#’-module on
letting (¢ - £)(v) := ¢(vE*), wheregp € V*, v € V andé € . With the according
operation on morphisms, this defines a contravariant self-equivalence on the category of
Z¢-modules.

If V is an.#-module letV# be the.#-module with underlyingR-moduleV and
operationv -x& = v - €7, wherev € V and¢ e 7. With the identical operation on
morphisms, this defines a covariant self-equivalence on the categef§rafodules.
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3. Specht modules

We recall some well-known facts due to Dipper and Jan2gs [

LetA = (A1, A2, ...) bea cmpostion of n. Thediagram of A is the sefr] = {(i, j) €
N2 | 1 < j < Aj}. We identify the diagram ofs. with an array of boxes in the plane.
For example, ik = (4, 3, 2) then

[A] =

Theconjugate of 1 is the partitionh” = (17, 15, .. ), where)Jj =#{i>1|xr > j}for
all j; thatis,)’ is the partition ofn whose diagram is obtained by interchanging the rows
and columns of the diagram af

Formdly, a A-tableau is a bijectiont : [A\] — {1, 2, ..., n}; however, we Wl think of
aA-tableau as a labelling of the diagramialby the numbers 12, . .., n. Accordingly, we
will speak of the rows and columns of a tableau. For example,

1][2]3] 1[3]5] 114]5] 2[3]4]
4]5] 2[4 2[3 N E

are all (3, 2)-tableaux.

Atableau isrow standard if in each row its entries increase from left to right. A tableau
is standard if it is row standard and in each column éatries increase from top to bottom.
Let Std 1) be the set of standavdtableaux.

All of the tableaux above are row standard; however, only the first two tableaux are
standard.

Theinitial A-tableau t* is the standard-tableau which has the numbers2l. .., n
entered in order from left to right, and then top to bottom, along its rows.t@meinal
A-tableau t, is the standard-tableau which has the numbers2].. . ., n entered in order
from top to bottom, and then left to right, along its columns. Of the (3, 2)-tableaux above,
the first ist®2 and the second ig ).

The symmetric grougb, acts from the right on the set aftableaux by permuting
their entries. Ift is aA-tableau letl(t) be the unique permutation such that t*d(t). In
particular, we set, = d(t,).

We remak thatD,, = {d(t) | tis a row sandardu-tableay.

Suppose thak is a partition ofn and letz, = x, Ty, y,’. The Specht module is the
submoduleS(A) = z, .77 of M(L).

Let ST = {x € M) | (x,y) = Oforally € S(1)}. As (, ),. is associativeS(1)* is
an.#-submodule oM (). More pecisely,S(1)* is the kernel of the##-linear map

M) —2» S0); xeh—=(x2h, —);.

whereh € J7.

By restricting the bilinear forn, ), on M (1) we obtain a bilinear form o8(%). If Ris
afield thenD (1) = S(A)/S(A) N S(A)* is either zero or absolutglrreducible. Moreover,
all of the irreduciblesZ-modules arise uniquely in this wag,[Theorem 5.2].
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Before we can give a basis &) we need some nre notation. Ift is aA-tableau let
t’ be the)/-tableau obtained by interchanging the rows and columrts Bér example,
() =ty and(t;) = ¢ Findly, if tis a standard-tableau lev¢ = z) Tqy).

3.1 (Dipper-JamesZ, Theorem 5.6). The Specht module ) is free as an R-module
with basis{v¢ | t € Std(L)].

We call {v¢ | t € Std(A)} the Dipper—James basis of S(1). Letn, = #StdA) be the
number of standar@-tableaux. Then, as aR-module,S(1) is free of rankn;..
Fix an orderirg of StdA) and let

G(A) = ((vs, v9)1) s teStdn)

bethe Gram matrix of the bilinear forr ), , with respect to the Dipper—James basis. The
mattix G(1) depends on the choice of ordering on @id howewer, all of the quantities
that we are interested inilvbe independent of this choice. We remark that@et) has
been explicitly computed by Dipper and Jam8sTheorem 4.11].

4. Diagonalizability and elementary divisors

Given an integem > 1, anm x m matix A with coefficients inR is diagonalizable
if there exist matricesS and T in GLy(R) suchthat SAT is a dagonal matrix. The

matiix A is divisibly diagonalizable if SAT = diag(d, ..., dm) is a dagonal matrix
suchthatd; dividesdi+1 in R, for 1 < i < m. If Ais divisibly diagonalizable and
SAT = diag(y, .. ., dy) satisfies tts condition, then we caltly, . .., dy the elementary
divisors of A.

Given A € R™M we letlx(A) be the ideal of thé& x k minors of A, for 1 < k < m.
Note that forB € R™M we havelg(AB) C Ix(A) andIx(BA) C Ix(A). Herce for
S, T € GLn(R), we havelg(A) = Ix(SAT). Therdore, if A is divisibly diagonalizable
with resulting diagonal elementy, ..., dm, thenlg(A) = Ik(diagds, ..., dm)) is the
principal ideal generated ks dy - - - dk. This shows that the resulting diagonal entries are
independent, up to multiplication by units; thhe choice of the diagonalizing matrices. In
other words, the elementary divisors of a divisibly diagonalizable matrix are well-defined
modulo units.

Whethe or not A is diagonalizable, the idealk(A) € R are invariant under the
equivalence relatiol ~ SAT. It would be interesting to consider the equivalence classes
within {A € R™M | [ (A) = Jfor1 < k < m} for a fixed tuple(J;) of ideals ofR.

If Ris a principal ideal domain then every matAxe R™ M is divisibly diagonalizable
by the elementary divisor theorem. Theukisig diagonal matrix is known as the Smith
normal form.

Now the Laurent polynomial ring.[q, 1] is not a principal ideal domain and, in
fact, there are strict inclusions of the set of divisibly diagonalizable matrices in the set

of diagonalizable matrices, and of the set of diagonalizable matrices in all matrices with
coefficients inZ[q, q~1]. For exanple, the matrixA = (q ° ! qfl is diagonalizable, but

not divisibly diagonalizable becausg A), the iceal of R generated by the entries éf is
not principal.
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Proving that a matrix is not diagonalizable is slightly harder. For example, we claim

that the matrixB = (qgl qil> is not diagonalizable ovef[q, q~1]. To seethis, notice

that over Q[q, q 1] the matrix B has elementary divisors 1 arid + 1)2. Therdore, if
B is diagonalizable oveZ[q, q~1] then one of these diagonal entries must be a unit in
QIq, g~ 11; that is, ofthe formag® with a,b € Z. Reducing modulo 2 this shows that
one of the elementary divisors & overF3[q, q‘l] is zero or a unit. However, this is a
contradiction because the elementary divisorBaiverFo[q, q 1] areq + 1 andq + 1.

In proving that cetain Gram matrice§ (1) are divisibly diagonalizable ovéi{q, 1],
we shall make use of the following simple lemma.

Lemma4.1. Let A bean mx m matrix with coefficients in R, and suppose that there exist
invertible matrices ST € GLm(R) suchthat
di b1z --- bim
0 do --- bom
SAT=1] . . ) .

0 ... 0 dn
whered | dz | ... | dnyandd divides ly forall j. Then A is divisibly diagonalizable and
di, dg, ..., dy are the elementary divisors of A.
Proof. The matrixS AT can be written as the product of digg, . . ., dm) with a matrix
inGLn(R). O

+1 2

As we sav with the non-diagonalizable matri(<q 0 ge1

d; divideshjj for all j is not superfluous.

) above, the requirement that

5. Elementary divisorsfor conjugate partitions

Let R = Z[q, q~1]. Letx bea partition of n. In this setion we relate the Gram matrices
G(1) andG()). We dart with some mild generalizations of some results about Specht
modules which were proved by Dipper and Jan#®yer a field.

Recall that ifY is a submodule of arR-free moduleX thenY is pure if the quotient
moduleX/Y is R-free.

Lemma5.1. Suppose thaf is a partition. Then the Specht moduléirp is a pure
submodule of MA).

Proof. Using the Dpper—James basis &), and tte basis{x; Tq | d € D,} of M(}),
suitably ordered, the matrirepresenting the embeddir§») — M) Z[q, 911
linearly becomes triangular with 1's on the diagor®ZallTheorem 5.8]. O

Corollary 5.2. The map M) 2y st is surjective.
Proof. The maps,, is the composition of the map
M) — MQ)*; £ (-
with the dual of the inclusion map(,) — M (1). This is surpctive byLemma 5.1 O
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Leta(h) = Yioal — Dhi = Yy (AZ) Note hata(h) = €(wo.), wherewg
is the unique element of longest element@) . Thenext lemma is well known; see, for
exampe, [13, Prop. 2.2]. We include a proof for completeness.

Recall that automorphism #, and the copesding operation on the module category
of 27, were @fined at the end ddection 2

Lemma5.3. Wehave ¥ = q**)y; and yf = q~*?)x;.

Proof. As # is an involution the two equalities are equivalent, so we prove only the
first. For aiy integeri, with 1 < i < n, we havexTi = (TH* = —x¥ Write

xf = Zwegk a, Ty, for somea, € Z[q,q 1]. Conparing coefficients on both sides
of the equatiomf‘l’i = —x,\# shows thai,,r, = (—q)a, for eachw that has a reduced
expression ending in;; conpare L0, Cor. 1.7. Hence,xf is a scalar multiple of,. Then
wa = (-1 ™ed)T,, . plus a linear cobinaion of T, wherev € &, and¢(v) <

£(wo,5.). Therdore, comparing the coefficient di,,, in xk# andy, gives the result. [

Recall thatS(A) = z,5¢, wherez, = Xx,T,,Yyv. The inportance ofz,, and the
irreducibility of S(1) in the semisimple case, follow from the following simple fact.

5.4 (Dipper-JamesZ, Lemma 41]). Suppose thab € G,. Then

+09%z, if we Gw,6,,
XATwY)JZ{ q-2z, AWrLO)

0, otherwise

for some mteger a.

The proof of this result amounts to the observation thatN wS; w1 = {1} if and
onlyif w € G w,6S;,.

Lemma5.5 (The Submodule Theorémif U is a pure submodule of kA), then Si) C
UorU < sm)t.
Proof. For allu € U, we havauy,, = oz, for somewy € Z[q, qfl] by 5.4

Case l.ay = Oforallu € U. Therdore, ifu € U andh e J# then we have
(u,zih); = (Uh*y;, X, Tw, )a, sincey;, = yy. Butuh® € U, souh*yy, = 0 and
ue S(A)*. Herce,U € S(A)*.

Case 2ay # 0 for someu € U. NowU > uy;, = oz, impliesz, € U sinceU € M* is

apure submodule. Thereforgi) CU. O

Note that the right ideay; T, *x,.7#" is isomophic to S(1)* via § — £*. Conposing
left multiplication bnyTw;l with this isomophism, and using.emma 5.3 we obtain a
surjective s -linear map

M) = xp 7 i» S(X)#; X h 2z -#h,
whereh € 7.
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Lemma 5.6. WehaveKerng, = S(1)*. This nduces an isomorphism

SO L S00%: Zwh e (X0, )1
where he 7.

Proof. Both Kernd, and S(»)* are pure submodules d¥l(1). Over Z[q, qfl], both
S()# and S(L)* are free of rankn;, so it suffces to prove that Kem), < S(A)*. By
Lemma 5.5his is equivalent to showing th& ) Z Kerng, . So it is enough to show that
2,0, # 0. The bilinear form(, ),/ is associative, so

(20O, X ) = q_a(k)<ZA’T1;)}XA’a X/ )/
=q ) Z q‘® (ZA’,XA’TJ:),\'-
U)E@)L/
Now, zv = Y ,cq, (D) X Ty, Where eachw, v is a dstinguished coset
representative fo6,. In contrast,TujAl is equal toT,,, plus a linear comination of terms
Tu, whereu € & with £(u) < €(wy). Thus(zy, X Ty = (X Twy, . X T, da =
q‘@w) . Herce, (2,65, Xy ) # 0.
A comparison of the short exact sequences

0 — Kerng,, — M (1) N Sy —=0
and

0— SO)L —» M(1) 2+ S(* —= 0
yields the isomorphisny,. O

For each nod€i, j) € [A], we lethi j = (Aj — j) + (NJ- — i)+ 1 be the corresponding
hook length and set, (q) = H(i!j)e[k][hi,j]q. The next lemma fdows from results of
Murphy [11].

Lemma5.7. Wehave 2T, 1z, = q"~*™h;,(q)z..

Proof. For thepurpose of this proof, we may assurRe= Q(q). By [11, p. 510-511],
there exists an elemem{; =Ty, + Ze(v)d(ww) r,T, € 77, for somer, € R, such hat

30 = g, () B,

where E; is a primitive idempotent such th&, 7 = z,27 = S(1). In paticular
E;z. = z.. (Notethatz, = z,; in Murphy’s notation; seelfl, p. 496, p. 498].)

Note thatT,* = q ™ Ty, + >y ¢w,) e Te, for somer, € R. Now, if
L(v) < L(wy) thenv € G w6, soy, TyX, = X TS yw)* = 0 by 5.4 Consequently,
2, T,z = 0. Therefore,

-1 —0(w;
ZXTw;L Z,=q (w”)Z)LTw)L, Z),
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=q"*Phy (q)Exz,
=q"*Wh,(@)z. O

Consider thesZ-linear map
S+ S()T & (€ )

Lemma 5.8. The composition

" vl s W
SO L S0 2 sV s s/ e g
is equal to scalar multiplication by—q)¢ ) gn-e®-«@)p, (q),

Proof. The elementz, is mapped viay, to (z,, —)x, which is mapped viat/f;1 to
zv 4 Tw Yo = zvTE y¥, whichin turn goes to(z, T ¥, =), via y/%, and firally to

Z 4 Ty, Ya T Vi = ()t )q Mz, T 17,
— (_q)é(wﬂ)qnfo:()»)fa(k’) h)\ (Q)Zk
via (y7)~t, byLemma5.7 O

Let I, be them x m identity matrix. Recall thah, = #Std)) is the dimension of the
Specht moduleS(h).

Proposition 5.9. Suppose that is a partition of n.
(1) There exist invertible matrices,B € GLy, (Z[q, g~ 1) suchthat
G- A-GA)-B=nhy(@) - In,.

(2) G(») isdiagonalizable to the diagonal matrix D if and only if(8) is diagonalizable
to the dagonal matrix h (q)D 1.

(3) G(n) isdivisibly diagonalizable if and only if G') is divisibly diagonalizable. In this
case, the product of th&ielementary divisor of G.) and the(n; +1—i )" elementary
divisor of G()") is equal to h.(q).

Recall that elementary divisorseaonly well defined up to a unit ii[q, q~1]; the same
is true of their product in (3).

Proof. (1) The R-linear mapy, is represented by the matri@(1) with respect to the
Dipper—-James basis and its dual basis. Thus the assertion followentoya 5.8

(2) If G(») = SDT with ST € GLy, (Z[q,q71]) andD € Z[q,q Y™™ is a
diagonal matrix, thei®(\') = A~1T~1(h,(q)D~1)S1B~L. SinceG(}’) has coefficients
in Z[q, 1], sodoesh; (q)DL.

(3) Repeat the argument of (2). [

We remak that all of the rsults in this section hold more generally when the Hecke
algebrasZ is definedover an integal domainR suchthat7# ®gr Q is semisimple, where
Q is the field of fractions ofR. (We reed semisimplicity oveQ only when we apply
Murphy's results in the proof okemma 5.7) In particular,Proposition 5.%holds when
R = F[qg,q1] andF is any field. Notice thaG (1) is always diagonalizable in this case
becausd=[q, q~1] is a principal ideal domain.
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6. Theelementary divisorsfor hook partitions

Throughout this section we fix an integerwith 0 < k < n, and onsider the Specht
moduleS(1), wherex = (n—k, 1K). We will show thatG (%) is divisibly diagonalizable by
explicitly constructing two bases d&(1) which transformG (i) an upper triangular matrix
satisfying the rquirements of.emma 4.11n patticular, this will allow us to determine the
elementary divisors oB(1).

The Specht modul&(i) is defined as a submodule of the permutation modale);
however, to compute the elementary divisors we will work inside a different permutation
module.

By definition, S(A) = X, Ty, Y- = X(n—k,16) Tw oy gk Yokt 1,101 We fird need to
understand the permutation = w,_y 1x, alittle better. This requires some new notation.
For integers non-negativeand j define

1, ifi=00rj =0,
Fi,j = qrifige---Tj, if0<i<j,
Firfi—g---rj, ifi >j>0,
and setTi j = Ty ;. Next, let a andb be non-negative integers sueh+ b < n. If

eithera = 0 orb = 0 then setwap = 1. If both a andb are non-zero then define
wab = (fatb_1.1)°; thenone can check that, in two-line notation,

_ 1 2 ... a |la+l1la+2.--a+b
Wab=1p11 ptr2 ... a+b| 1 2 ... b |

It is not hard to see thabp s = = w, b and thatwa p = raatb—1wa—1.p andL(wap) =
€(raasb1) + £(wa_1p); See f]. Consequently,
Wab = la,a+b—1fa-1,a+b—2---F1.b =Tl1al2,a+2 - I'ba+b-1

with the lenghs adding in both cases. Henééwa p) = ab.
The permutatiom,_ 1« is essentially one of these permutations because

(1 2 ...n-kn-k+1--- n
Yok19 =1 k+2 ... n 2 oo k+1)-
Hencewg, y 1k) = n—kn-1fn—k-Ln-2 - - F2k+1, With the lenghs adding. So
Tw(n K1k Thokn-1--- T2 k41,

Notice also thafl,,, ok = = Tu a0 Tk
If w € Gin-k = Gk x Sn_k then we writew = (u,v), whereu € &k and
v € & 1k n_k) are the unique permutations such that= uv = vu. Set

Xkin—k) = Yk, 10k X1k n—k) = Z (=)~ Ty,
U, v)eSk n—k)
Then it is easy to see th&®Xyn_k is an s (5,)-module on which the subalgebras
H(6k) and (6 4k h_k) act via their sign and trivial repsentations, respectively. Let

M(kIn k) = IndZ(&  (RXin—k)) = X(n-ky 7
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As in Section 2 the induced moduléM (kjn — k) is free as anR-module with basis
{Xin—k Td | d € D n—k)}. FurthermoreM (k|in — k) possesses a natural non-degenerate
associative bilinear formy ) kn—k) which is determined by

W ifu=nv,
(Xkin=k) Tu, Xkin—k) To) kin—k) = {0’ otherwise
for u, v € D n—k). Donkin [5] calls M (k|n — k) atrivial source module.

Lety,, =1+ Y5 () M) = 1—q T+ 4 2Tiko1 + -+ + (=) ¥Tie.
This is a sum over the right coset representativeSpin Sx.1. Consequently, it follows
thaty1,1n-k-1) = Yk 10k Yip1- The reason for introducing the modulé(k|n — k) is
the following result.

Given a non-negative integek > 1 let[klq = 1+q+ - + g and [kl =
[11q[2]q - - - [Klg. Notice that ifq = 1 then[k]y = k and[k]!1 = k!

Proposition 6.1. LetA = (n — k, 1¥). The map
7wk : S() —> M(KIn — K); Z.h — Xin—k) Yies-1h

is an injectivesZ-module homomorphism. Moreover,

X, Y05, = 422Dl (e (x), 7 (W) gan—k
forall x,y € S(A).
Proof. By definition, S(A) = Xn_ 1k Tw, Yk+1.10-k-1)7¢ . As remarked &®ove, wn—k k =
W n_k 1¢)M 1.k With the lenghs adding. Therefore, sincgk € 6,.,
Xn—k, 1) Tw oy gt Yk 1,10-k-1) = (—1)kX(n_k,1k)Tw(n7k71k)T1,ky(k+1,1nfk71)
= (_1)kx(nfk,1k)Tank,k Yik+1,10-k-1)
= (_1)kTwn_k,kX(1k,n—k) Y(k+1,1n-k-1)
= (_1)kTwn—k,kX(1k,n—k) y(k,l"*k)yl/@rl
= (=) T s Xkin—k Vi 1-

Therefores (X) = (_1)kT1;n];k_kX’ forallx € S(A). As Ty,,_,, is invertible, the first claim
now follows. '

To prove the second claim we first suppose tRat= Z[q,q]. If X,y € S(»)
then, by extending scalars, we may assume thahdy are elements o5(1)qq) =
S(A)Z[q,q_l] ® Q(q). Now S(A) () = m(S(A)q(q)) is irreducible so, up to a scalar, there
is a unique associative bilinear form &w)gq). To determine this scalar it is enough to
compare the two inner products enands (z,). Using asocativity,

(23, 22)5 = (X T, Yars Xa T, Yarda = (% T Y2, X T 02
k+1

:q_( 2 )[k + 1]!q<x)»way)»’! X)»TurA))»

_(k+1
:q ( 2 )[k+1]21 Z (—q)_e(v)(XATw)‘va XA.TwA)A
veS,,
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g (P

:qg(2n73k—3)[k + 1]21'

Similarly,
(71(21), 70(20)) (kin—k) = (X(kin—K) Yig-1» X(KIn—k) Ykg-1) (Kin—k) = q K[k + 1q.

This proves thatx, y), = qg(zn_%_l)[k]’q(n(x), 7(Y)) kin—k), for all x, y € S(x) when
R = Z[q, g~1]. Thegeneral case now follows by specialization.]

Corollary 6.2. Suppose that = (n—Kk, 1%). Then[k]i1 divides(x, y),, forall x, y € S(1).

Let S(A) = 7(S(A)) = Xkjn—k) yl’(+1<%”. ThenS (M) = S()) by the Proposition. We
will work with S'(1) in what follows rather than working witB(1) diredly.
As a first step w need a asis ofS'(1). ForanyA-tableaut define

ve = (VY) = X(kin—k) Vi1 Td(¥)-

The Dipper—-James basis &), 3.1, conmbined with Proposition 6.1 give us the
following.

Corollary 6.3. The module $(1) is R-free with basi$vi | t € Std(1)}.

In order to exploit this basis we introduce another type of tableaux. For our purposes
we oould get by usingk, n — k)-tableaux; however, we use the notation from the theory
of trivial source modules.

Thediagram of (k|n — k) is the ordered pair of diagranikg|n — k] = ([k], [n — K]).

A (k|n — k)-tableau is a ipection from [kin — k] to {1, 2, ..., n}. Once @ain, we will
think of a (k|n — k)-tableau as being a labelling g|n — k]. Accordingly, we will write
a (k|n — k)-tableau as an ordered pair|b), wherea andb are suitable labellings of the
diagrams of the partition&) and(n — k) respectively. We refer ta andb as the first and
second components @#|b).

A (kIn — k)-tableau(a|b) is (row) standard if the entries ina increase from left to
right and the entries if increase from left to right. Let S¢id|n — k) be the set of standard
(kn — k)-tableaux. For example, the standétB)-tableaux are

(M|eE@). (2|0EE). (B)|azE) wad ([@]IR6E).

Let tkI"—k be the standar¢k|n — k)-tableau with 1. .., k entered in order, from left to
right, in the first component and the numbkrs 1, ..., nin the ®cond. The first of the
tableaux above ig1!¥,

Two (k|n — k)-tableaux(a|b) and(s|t) arerow equivalent if a ands contain the same
entries up to reordérg (in which casep andt also contain the same set of entries). As
with ordinary tableaux, the symmetric group acts from the right on the sétof— k)-
tableaux. If (a]b) is a (kjn — k)-tableau we defin€l(a|b) to be theunique permutation
suchthat (alb) = tkI"=Kd(a|b). Then(a|b) and (s|t) are row equivalent if and only if
d(alb) = wd(s|t) for somew € & n—k . Consequently,

Dk,n—k) = {d(a[b) | (a]b) € Stdk[n —k)}.

So the standar¢k|n — k)-tableaux index a basis ®f (kjn — k).
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For future reference, notice that(f|b) is a standardk|n — k)-tableau therd (d(a|b)) is
equal to the number of pairs of integérsj) wherei appearsim, j appearsih andi > j.
This follows because ifv € &y thent(w) is equal to the number of pairgd < b with
i =a” > | = b"*, and the atries ina are the images of,1.., k underd(a|b), whereas
the entries irb are the images &+ 1, ..., n.

For any(k|n — k)-tableaw(a|b) definex qp = Xkn—k) Td(qp)- Here we do not assume
that(a|b) is standard. The following lemma is easily verified.

Lemma 6.4. Suppose thad <k < n.

(i) M(kIn — k) is free as an R-module with bagig )| (alb) € Stdk|n — Kk)}.
(i) Suppose thata|b) € Stdk|n — k) and1l <i < n. Then

—X(ab)> if i andi + 1 areboth contained im,
. T aX(a/b)» if i andi + 1 areboth contained i,
@O = X6 ifi isinaand + 1isinb,

UX16) + (4 — DXqp) otherwise
where(aj|bi) = (a|b)rj.

The action ot on M (k|n — K) is completely determined by (ii).

We now $ow how to wite the basigvi} of S'(1) in terms of this basis o (k|n — k).
To do ths, if t is aA-tableau anda|b) is a (k|n — k)-tableau write(a|b) < tif (a|b) is
standard and all of the entries inare contained in the first column ofFindly, if (alb) < t
we setl¢(alb) =i, the ndex of(alb) in t, if the number in rowi of t does not appear im.

Lemma 6.5. Suppose thatis a gandardi-tableau. Then
=3 S el CLIECIRECC LI
(ab)<t
Proof. First considerv, . Looking at the definitions we see that

U, =Xk Yoy = Xeknto (L — G T+ G 2Tk — -+ + (=) Ticn)
= Y (=) @Oy gy,
(alb<t,

As £(d(t,)) = £d(t*)) = 0 andé(d(alb)) = k + 1 — I (alb), when(alb) < t;, the
Lemma follows in this case.

Now suppose that is an arbitrary standara-tableaux. Ift # t, then we can find
another standari-tableaus and an integer in the first column ot suchthatt = sr; and
£(d(t) = €(d(s)) — 1. (That is,t > s where>> is the dominance order on tableaux; see,
for example, 10].) Therefore, by induction,

G=uTi= Y (—pkH b graE by T
(@b<s

Sinces andt are standard, is in the first column of and the first row ot andi + 1 is in
the first row ofs and the first column of Therdore, if (a|b) < s then the entries in the first
component ofa|b)r; are still in increasing order and tleatries in the second component
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are in increasing order unlesandi + 1 both appear ith. So,£(d(a|b)ri) = £(d(alb)) +1
and byl emma 6.4ii) we have

o T — | 9% if i andi + 1both appear i,
@O = I xqoy,  Otherwise

In the first case, when andi + 1 both appear irb, we have that(alb) < t. Also,
£(d(t)) — £(d(alb)) = £(d(s')) — £(d(alb)) + 1 andl¢(alb) = Is(alb) SO Xqp has
the required coefficient inv.

In the second case,appears irn andi + 1 appears inb, so (arj|bri) = (alb)rj < ¢,
l¢(arilbri) = ls(alb) ande(d(t’)) — £(d(alb)ri) = £(d(s’)) — £(d(a|b)). Herce, once
again xqpr; has the predicted coefficient ir.

As there are exactlk standard (k|n — k)-tableaux(a|b) satisfying (a|b) < t, this
completes the proof. [

In order to compute the elementary divisorsSgh) we need a semd basis ofS(1).
Let
n—k—1
Xok=1+Ti+ +Tnk1= Y Tuj.
j=0
(Note thatry o = 1.) As with y, , ,, we havex p_y 1k) = X(1.n—k—1,1k-1)Xn—k- NOw, for any
standard(n — k, 1¥)-tableaut we define

o Uic(l,n)! if nappears in row 1 of
| vl Xk Taco. otherwise

We remak that it is not obvious that the set of elemefig|t € Std(1)} is a basis 05 (%).
We will prove this below.

Lemma 6.5gives an explicit description of the badis;}. We reed to do the same for
the basis{w{}, and for his we need some more notation.tlis a standard.-tableau let
t* = t(1, n). If (a]b) is a(k|n — k)-tableau write(a|b) <n tif (a]b) < t andn is contained
in a. Findly, if n appears in the first row of then we definga}|b}) to be tte unique
standard(k|n — k)-tableau such that|b) < t* and 1 appears ibi. So(a}|b}) < t* and
(aglb}) < t.

Lemma 6.6. Suppose that is a gandard A-tableau and that n appears in the first row
of t. Then

wi= (D" * X+ D TabX(ae)-
(ab) < ¢

for some scalarsg € Z[q, 9~ 1].

Proof. We now argue by downwards induction drbeginning witht = t,, this is an
unpleasant calculation. Now,

Wy, = Xkin—k Yy 1 TLn-1Th-21 = (—1)kx(k|n—k) Vi1 Tkatn-1Tn-21
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SINCeX(kin—k) Ykr1 = X(1k,n—k) Yik+1,10-k-1). Therdore, using the defitions together with
the braid relations,

wh, = (=Dt Yira Tn-1 - Ter2 Tk -1 Tk 1
= (=Dt Tn-1 - - Tiw 2Vt T -1 T 1
= (—=D*q"* X qgn-k) Yipa Tkan—1Tk,1

k
=(=D*a"* Pxmnk :1 + ) (=) T } Tirrn-1Tk
ji=1

k
= (=D " Xk :q“—k—l + ) ) Tk+1,n—1} Th
j=1

K
= (D" " * P xn-to 19" T + Y (=) T Tk+1,1Tk+2,n—1}
=t

K
= (=D*q" 3 xunk 1 A" Tka + Y _(—a)] Tk+1,1Tk+1,j+1Tk+2,n—1}
i=

k
= (=D*a"* 3Xn-t { A" Tk1 — Z(—Q)J+1Tk,1Tk+l,j+1Tk+2,n1}
=t

k+1 )
= (D" * Bk ke 10" = Y () T, Tk+2,n—1} :
i=

Now, tKn=Wry ; = (E=IC |[IEalT) = (af [b]) and, consequently*"—ry
2T 1), for j = 2,...,k + 1. This

Mt jfkizn-1 = (BT T
completes the proof f(miq.

Now suppose that is an arbitrary standard-tableau which has in its first row. Then
d(t) € Sn-21 sod(’) and(1, n) commute and(d(t)(1, n)) = £(d(t)) + £(1, n).
Thereforew), = wy, Ta(r). To complete the proof now argue by induction, as in the proof
of Lemma 6.5we leave tle deails to the reader. (Indeed, this shows that = +q2 for
some integea.) O

For conveience we now write{,) = {, )n—k . In terms of the ®ndard basis of
M (k|n — k), thebilinear form¢(, ) on M(k|n — k) is determined by

£(d(da b)) i =
q . if(alb) = (s]D),
X(ap: X(elp) = {O, otherwise

for standardk|n — k)-tableaux(a|b) and(s|t).
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Coroallary 6.7. Suppose thag and t are standardi-tableaux which have n in their first

row. Then
2n—2k—3+£(d(¥)) TR
(Wi vf) = {q et

0, otherwise

Proof. By Lemmas 6.5nd6.6 we have
- Z (_1)k+1*|5(a5‘b5)q((d(§))*((d(a5|bs))x(

’
Vg = as|bs)
(as|bs)<s
and, byLemma 6.6
k y2n—2k—3
wi = (=D*gq™" X(at o) + Z FabX(agby-
(agbe) <n t*

Now, all of the tableaux appearing in; have 1 appearing in their second component. In
contrast, the only tableau i}, which has 1 in its second component is the tablésib).
Therefore,

) sl Us)? it

3 (_1)1+It(a‘;|[f;)q2n—2k—3+e(d(’())’ ifs=t
0, otherwise

Finally, the sign vanishes when= t becausé¢(af|b}) =1. O
We need one more result before we can produce the elementary divissgs)of

Lemma 6.8. Let(aﬂbj) be the unique standargk|n — k)-tableau which has the numbers
n—k+1....,ning . Then

k , _ TR
wp = (=D ) 1T RN —Kgx 16t

n—k—1

+ Y (ptletangud@n Sy

(dby< ¢ j=0
(aB£(al 16

Proof. By definitionw;A = vﬁ&xn_k. Also,d((t*)) = d(t;/) = wy so, byLemma 6.5
Wy =Xk = Y (—DFFI e @D glm—ld@Oy oy
(db< ¢

= Z (— DK+l o (@D gl —L@(@y o1 4 Ty 4o T k1)
(a/b)<#

Let (a|b) be one of the tableaux appearing in this sum(alft) # (aﬂbj) then 1 is
contained ina and all of the numbers,3,...,n — k are contained irb. Therdore,
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(alb)ry,j is standard andX(qp T1,j = X(qpr,;» for 0 < j < n—k— 1. On tre other
hand,X(a;‘b)f)Tl,j = qlx(a;‘bi), for0 < j < n—k — 1. This completes the proof of the
Lemma. O

This result has two useful corollaries.
Corollary 6.9. Suppose that # t* is a gandard(k|n — k)-tableau. Then
(Wi, vy =0.

Proof. By Lemma 6.8 if Xy appears inwj, then all butone of the entries im are
contained inf1,n —k 41, ..., n}. On theother hand, by.emma 6.5if X appears in
vy then all of the entries in are contained in the first column of

Suppose now that # t*. Then, by the last paragraph(arlbb cannot appear in} and
the only way that the inner produ(:w;k, vy) can be non-zero is if the set of numbersin the
first column oftis of the formT = {1, j,n—k+1, ..., n}\{m}, for somentegersj andm
with1l < j <n—kandn—k < m < n. Let(a|b) be the standartk|n — k)-tableau whose
firstcomponent contains exactly the number$in{j} and let(a’|b") = (a|b)ry j—1. Then
(alb) < t*, I(alb) = 2 andl¢(a’|b’) = 1. Also £(d(a’|b')) = £(d(alb)) + j — 1, SO
X(ab T1,j—1 = X(q|p)- Therdore, byLemma 6.5andLemma 6.8and the remarks above,

U/t — (_1)kq((d(f/)) (q*((d(lﬂﬂ))x(dlbl) _ q*@(d(cq b))x(alb)> + Other Standard terms

and

w), = q ) @) (x gy + X)) + Other standard terms
where none of the “other standard terms” appear bothiiand in wjﬁk. Consequently,
(wi., vy = 0. Hence(wy,, vy) = 0 whenevert # t* as claimed. O

Corollary 6.10. Suppose thatis a sandard(n—k, 1¥)-tableau and that n does not appear
in the first row oft. Then(w}, vj) = gk"*=2[n]q,.

Proof. Recall that ift is a standard.-tableau therd(t)d(t)~1 = w;,, with the lengths
adding; this is well known and is easily proved by induction on the dominance order for
tableaux. Therefore,

(w, vy = (Wi Td(ts Xkin—k) Yer1 Td(0)) = (Ws Xkin—k Yk Tdce) Tagy)
= (w/t)u X(kIn—k) yl/(+]_Td(t)J)> = <w/f“ U/t"A)'

Hence, it is enough to consider the case whesret*.
Suppose that = t*. Then, byLemmas 6.5nd6.8,

— Al B
(Wi, vly) = g2 1 g HA@18D) [ — Ky + Z qtelo)
(ab)<t
CLC] )

Using the remarks befoteemma 6.4t is nothard to see that(d(a; |b;)) = k(n —k) and
thaté(d(alb)) = (k—1)(n— k) +2 — I (a|b), whenever (a|b) < t* and(alb) # (a; [b)").
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Therefore,

k+1
(w;}” v;” :qZZ(wy) iq—k(n—k)[n _ k]q + Z q—(k—l)(n—k)—2+i }
i=2

k—1
=0

— qZK(wA/)fk(nfk) [n]q

As ¢(wy) = k(n — k — 1), the resulfollows. [
Finally, we can prove the maresult of his section.

Proposition 6.11. Suppose that = (n — k, 1¥), for same k with0 < k < n. Then
the Gram matrix GA) of (1) is divisibly diagonalizable oveFZ[q, q~1] with (”;2>

n-2

elementary divisors equal (dl]é] and with the remainingi k1

) elementary divisors being
equal to[k]a[n]q.

Proof. By Proposition 6.1he Gram natrix G(1) of S()) is equal to[k]’q times the Gram
matix of S'(1). Therdore, byLemma 4.1it is enough to show that there is an invertible
diagonal matrixD suchthat

/ I I
G' (M) = ((wg, Vi) s teStdkin—k) = D - <O [n]:U)’

2 n-2 n-2

wherel is a n; X (niz) identity matrix andJ is a(kil) X (kil) upper triangular
matrix with 1's down its diagonal. Here wed®r the rows and columns lexicographically
with respect to the entries in the first columnssandt. BecauseD is invertible its non-
zero entries must all be of the fortng™, for someintegerm.

By Corollary 6.7, the ravs of G’(A) which are indexé by those tableaux which have
in their first row have the required form. Bhaccounts for the identity matrix in the top
half of the Gram matrixG’(1).

Next, suppose that is a standardk|n — k)-tableau and that does not appear in the
first row of s. If s = t* then(w}, vj) = 0, for allt # s, by Corollay 6.9 If 5 # t* then
there exist an integer, 1 <i < n— 1, such that(d(s)ri) < ¢(d(s)). Therdore,

(W v = (W, Ti o)) = (wly, . 04Ti).

By expandingv{T;, and using induction, it follows thafwy, v}) = 0O if t appears before
in our chosen ordering of Stal). Similarly, if t does not appear befosghen[n]q divides
(w, vy) by Corollay 6.10 I

Notice, in particular, that the Gram maticalculation in the proof of the Proposition
implies that{w} | t € Std(1)} is indeed a basis & (1).

Proposition 6.11also gives the decomposition numbers $f.) (by inducing the
corresponding principal indecomposable modules); however, as these are already known
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we leave these as an exercise for the reader. We will, however, give one application of this
resut.

Letw : S(.) —> S(1) be the isomorphism dProposition 6.1and for each standard
A-tableaut let we = n*l(wit). Then{w¢ | t € Std(A)} is a basis ofS(L). Then, in the
case wheré&s() is not irreducible, the proof dProposition 6.1%lso gives a basis for the
simple moduleD (). More precisely, we have the following.

Corollary 6.12. Suppose that R is a field, thﬁk]é] # 0 and that[n]g = 0. Then $1) is
not irreducible and a basis of Q) = S(1)/(S(A)* N S(1)) is given by

{we+ (ST NSA)) | t e Std(x) and n in first row of ¢},

and a basis of 8" N S(1) is given by{w¢ | t € Std(x) and n is in first row of t}.

7. Some counterexamples

Let R = Z[q, g~1]. We wiite themth cyclotomic polynomial ing as &m = $m(q).

Andersen remarked that igeneral the Gram matri& (L) is not diagonalizable]]
Remark 511]. We give two examples of this kind.

Note thatG(1) is divisibly diagonalizable oveZp[q, g~ for all but finitely many
primes p. In fact, it suffices to exclude the primesaurring in the denominators of the
entries of the matrices used to diagonali@.) overQ[q, q‘l].

We record the elementary divisors in “jump notation”. That is, we write

f1 f, fa f4 fs
— M — My — M3 — - —» Mg

to indicate hat the matrix has the elementary divisér with multiplicity mj, the
elementary divisoif1 fo with multiplicity my, .. ., and the Ementary divisorf; - - - fs with
multiplicity ms.

Example7.1. Let » = (3, 3, 2). The ekmentary divisors o6 (3, 3, 2) overQ[q, q~1] are
given by

2 & B3 & &
515203 20—1;

overF,[q, g~ 1] they are given by

&3 & B3 b &
5152023205 1;

and, puttingq = 1, overZ they are given by

3 ,
a5
We claim thatG(3, 3, 2) is not diagonalizable ovef»)[q, q‘l]. To e this suppose that it
is diagonalizable. Then, considered as an elemetigfaq, q~11, any resulting diagonal
entry must contain the factgg + 1) with exponent 2.
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We giveone application oProposition 6.11
We remak that the comparison of the elementary divisors d@ég, q 1] andoverZ
yields a contradiction to diagonalizability ov&yy [q, g1, too.

Example7.2. Let A = (4,2,1,1). The ebmentary divisors ofG(4,2,1,1) over
Qld. 1] are given by

[ P [ [ P, [
—514—51—530—> 30— 1 —2 14

overF2[q, ] they are given by

by 3 Dy g L7 o5
—+14—>»1—"-330— 30— 1— 14

overFz3[q, 1] they are given by

21372 5 % 3027, 3024 2 %2, 13

and, puttingq = 1, overZ they are given by

2 2
2145031315514

We chim thatG(4, 2, 1, 1) is not diagonalizable oveZ)[q, q‘l]. Again, by way of
contradiction suppose that it is diagonalizableFpiiq, q—1], 14 of the resulting diagonal
entries contain the fact@g + 1) with exponent 1. Therefore, i) [q, q‘l], 14 of them
contain the factorq + 1) with exponent 1 and the factoig? + 1) with exponent 0.
Similarly, inF2[q, g~1], 14 of the resulting diagonal enés contain the factaig + 1) with
exponent 7. Thus itZ)[q, 1], 14 of then contain the factorq + 1) with exponent 3
and the factorq? + 1) with exponent 2. Hence ifi2[q, g1, no ather diagonal entry can
contain(q + 1) with odd exponent. But ifiz[q, g 1], there is a diagonal entry containing
(q + 1) to the power 3 andrether containing it to the power 5 so, again, we have a
contradiction.

We claim thatG(4, 2, 1, 1) is not diagonalizable oveZ3)[q, q~1]. Assume it to be
diagonalizable. ItZ3)[q, q~11, 14 of the resulting diagonal entries contai+ 1) with
exponent 1. This contradicts the fact thatlig[q, g1, only 13 of them contairiq + 1)
with exponent 1.

The two claims independently imply th& (4, 2,1, 1) is not diagonalizable over
Zlg,q7 1.

We remak that the comparison of the elementary divisors d®gg, q—1] andoverZ
yields a contradiction to diagonalizability ov8yz)[q, q~1], too.

Finally, we give a (non-exhaustive) list of elementary divisors of some divisibly
diagonalizable Gram matrices for non-hooks, calculated usimgpr G [12] and
MAGMA [9]. We omit the respective conjugate partition; compBreposition 5.9
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n A Elementary divisors of5(1)
L) @3
4 (2,2) —1—>1
1 b3 Dy
5 3,2) —+1—>3—>1
1 Dy £2) D5
6 (4,2) —»4—>»1—»3—>»1
by $3 Dy
3,3) —1—>3—>1
1 D3 Py &3
3,2,1) —>4—>4—> 44— 4
1 b5 P3Pg
7 (5,2) —8—»5——>1
1 @3 Dy Dy
4,3) —]1—>7—>5—>1
27} D3 (3 Dy
3,3,1) —>6—>2—>»12—>»1
P3Ps P2 D7
8 (6,2) —+ 13— 1—>»5—>1
1 Dy 27} (3 [
(5,3) —*8——>»6——>»7—>6—>1
by $3 Dy P5
4, 4) —1—>7—>»5—>1
1 s by Pg
9 (7,2) — 19— 7—>1
1 Py P D3 D7
(6, 3) —» 21— 19— 1—>»6—>1
1 &3 Dy (3 [
5, 4) —* 11— 15— 18— 7—>1

We donot know of an example of a Gram matr@&(1) that is diagonalizable over
Z[q, 11, but not divisibly diagonalizable.

For a general partition A, we cannot decide whetheG (1) is diagonalizable over
zlg,q71.
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