Theoretical Computer Science

Small deterministic Turing machines

Manfred Kudlek *
Universität Hamburg, Fachbereich Informatik, Vogt-Kölln-Straße 30, D-22527 Hamburg, Germany

1. Introduction

In this paper small deterministic Turing machines with one bi-infinite tape and one scanning head are considered. Let $D T M(m, n)$ denote the class of all such machines with m tape symbols (including the blank) and n states (excluding the halting state). It is known that there exist universal Turing machines in $\operatorname{DTM}(5,6)$ [10] and in $D T M(4,7)$ [4]. It is also known that the halting problem for all machines from $\operatorname{DTM}(1, n)$ and $D T M(m, 1)$ is decidable. The first fact is trivial whereas the second one has been shown in [2]. In [4,5] it is mentioned that the halting problem for $D T M(2,2)$ is decidable too; however without giving any proof and stating only [5] that this result is unpublished and unpublishable. In such a state it remained since 1961 or 1972, respectively, until 1988. By a reduction to few cases it was possible to solve the problem and bring it into a publishable form. A first version can be found in [1]. At that time the results from 1975 [6] stating the halting problem to be decidable for $\operatorname{DTM}(2,2)$ and $\operatorname{DTM}(2,3)$ have not been known to the authors. In that paper a completely different method was used. Neither were known the results by [7] stating that there are universal Turing machines in $\operatorname{DTM}(2,24), \operatorname{DTM}(3,11), \operatorname{DTM}(5,5)$, $\operatorname{DTM}(6,4), \operatorname{DTM}(10,3)$, and $\operatorname{DTM}(21,2)$. All these results were only little known in Western countries before 1991.

It is also shown that the sets accepted by machines from $\operatorname{DTM}(2,1)$ are regular, and that those accepted by machines from $\operatorname{DTM}(3,1)$ are regular too, except one case giving a deterministic linear context-free language which is essentially the nonregular language $L=\left\{a^{n} b^{n} \mid 1 \leqslant n\right\}$.

The languages accepted by machines from $\operatorname{DTM}(2,2)$ are also regular, except one case (up to symmetries) giving essentially the same language as in the exceptional case of $\operatorname{DTM}(3,1)$, namely a deterministic linear context-free language. Thus, the halting problem is decidable for $\operatorname{DTM}(2,2)$. To obtain this result several symmetries are used to reduce the number of machines to consider. Finally, also a machine from $\operatorname{DTM}(4,4)$ is presented accepting a context-sensitive language, essentially $L=\left\{a^{k} \mid k=2^{n}, 0 \leqslant n\right\}$.

[^0]Possibly, similar methods can be applied also to $\operatorname{DTM}(3,2), \operatorname{DTM}(2,3)$, and perhaps to $\operatorname{DTM}(3,3)$. But for the last case, probably the aid of an automatic system should be used.

2. Definitions

Let T be any Turing machine with one bi-infinite tape, one scanning head, an alphabet V of m symbols including the blank, and a set S of n states (excluding the halting state H). The set of movements is given by $\{L, M, R\}$, standing for movement to the left, no movement, and movement to the right, respectively. The set of instructions, or program P of T, is denoted by $P \subseteq S \times V \times V \times\{L, M, R\} \times S$, with its elements (p, x, y, I, q) written in the form pxyIq. For shortness, y, I, q if $y=x, I=M, q=p$, is omitted, respectively. If the halting state H appears, this is always understood as $p x H$, i.e. $p x x M H$. If T is a deterministic Turing machine P represents a (total) function.

The class of all such deterministic Turing machines will be denoted by $\operatorname{DTM}(m, n)$. Only such machines will be considered here.

As usual, V^{*} denotes the free monoid generated by V, λ its neutral element (the empty word), $l g(w)$ the length of a word $w \in V^{*}$, are $\operatorname{rev}(w)$ its reversal (mirror image).

Let ${ }^{\infty} V$ and V^{∞} stand for the set of all left-infinite and right-infinite words over V, respectively.

A configuration of T is any bi-infinite word $\alpha\binom{x}{p} \beta \in{ }^{\infty} V \cdot(V \times S) \cdot V^{\infty}$ denoting the fact that the head is scanning x and T is in state p. As usually, $\alpha\binom{x}{p} \beta \xrightarrow{*} \gamma\binom{y}{q} \delta$ means that there exists a finite sequence of Turing steps from $\alpha\binom{x}{p} \beta$ to $\gamma\binom{y}{q} \delta$, including 0 steps and $q=H$. It is assumed that there is no continuation of any configuration $\gamma\binom{y}{H} \delta$.

Finally, let \mathbb{N}_{k} denote the set $\mathbb{N}_{k}:=\{i \in \mathbb{N} \mid 0 \leqslant i \leqslant k\}$.
As for acceptance, there exist several possibilities to define sets of words accepted by Turing machines. The first one just gives the set of all such bi-infinite words being configurations which lead to acceptance.

Definition 1. $L_{\infty}(T, p):=\left\{\left.\alpha\binom{x}{p} \beta \in^{\infty} V \cdot(V \times S) \cdot V^{\infty} \right\rvert\, \exists \gamma \in \in^{\infty} V \exists \delta \in V^{\infty} \exists y \in V: \alpha\binom{x}{p} \beta\right.$ $\left.\xrightarrow{*} \gamma\binom{y}{H} \delta\right\}$.

A second possibility is the use of the work space for acceptance. Note, that by this definition one gets only context-sensitive languages.

Definition 2.

$$
\begin{aligned}
& L_{s}(T, p) \\
& \qquad:\left\{\begin{array}{l}
\left.u\binom{x}{p} v \in V^{*} \cdot(V \times S) \cdot V^{*} \right\rvert\, \exists k \in \mathbb{N} \forall i \in \mathbb{N}_{k} \exists u_{i}, v_{i} \in V^{*} \exists x_{i} \in V \exists p_{i} \in S: \\
u_{0}=u \wedge v_{0}=v \wedge x_{0}=x \wedge p_{0}=p \wedge p_{k}=H \wedge l g\left(u_{i} v_{i}\right)=l g(u v)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \wedge \forall i \in \mathbb{N}_{k}-\{k\}:\left(p_{i} \neq H \wedge u_{i}\binom{x i}{p i} v_{i} \rightarrow u_{i+1}\binom{x_{i+1}}{p_{i+1}} v_{i+1}\right) \\
& \left.\wedge \exists j \in \mathbb{N}_{k}: u_{j}=\lambda \wedge \exists l \in \mathbb{N}_{k}: v_{l}=\lambda\right\}
\end{aligned}
$$

Thus, $\lg (u v)+1$ is exactly the work space for accepting $u\binom{x}{p} v$, and this word is the relevant part of the initial configuration being scanned by the head.

From this definition trivially follows that
Lemma 1. $L_{\infty}(T, p)=\infty V \cdot L_{s}(T, p) \cdot V^{\infty}$.
A third possibility is not to look onto the relevant part of one initial configuration only but to consider them in some global sense, namely that if w is a word of the set then no proper subword of it is also contained in the set.

Definition 3.

$$
\begin{aligned}
L_{c}(T, p):=\{ & \left.u\binom{x}{p} v \in V^{*} \cdot(V \times S) \cdot V^{*} \right\rvert\, \forall \alpha \in{ }^{\infty} V \forall \beta \in V^{\infty}: \\
& \alpha u\binom{x}{p} v \beta \in L_{\infty}(T, p) \wedge\left(u=y u^{\prime} \Rightarrow \exists y^{\prime} \in V: y^{\prime} u^{\prime} \notin L_{c}(T, p)\right) \\
& \left.\wedge\left(v=v^{\prime} z \Rightarrow \exists z^{\prime} \in V: v^{\prime} z^{\prime} \notin L_{c}(T, p)\right)\right\}
\end{aligned}
$$

This set is called the core of $L_{\infty}(T, p)$. Trivially again, it follows that
Lemma 2. $L_{\infty}(T, p)={ }^{\infty} V \cdot L_{c}(T, p) \cdot V^{\infty}$.
Finally, the normal definition of an accepted set can be defined by cutting off all 0 's at left and right ends from words in $L_{s}(T, p)$.

Definition 4. $L_{0}(T, p)=\{0\}^{*} \backslash L_{s}(T, p) /\{0\}^{*}$
In the sequel it is assumed that $V=\mathbb{N}_{k}-\{k\}$, and that 0 represents the blank. It is easy to establish the following lemmas.

Lemma 3. If there is no occurrence of $p x H$ in the set of instructions of a Turing machine T, then $L_{\infty}(T, p)=L_{s}(T, p)=L_{c}(T, p)=L_{0}(T, p)=\emptyset$.

Lemma 4. For deterministic Turing machines it suffices that there is at most 1 occurrence of halting $q x H$ in the set of instructions.

Proof. Among all occurrences of halting in P choose one, e.g. $q x H$. Replace all other $p y H$ by $p y x M q$. Then it is trivial to see that the accepted languages remain the same.

Definition 5. Let $T=(S, V, P)$ be any deterministic Turing machine. Let $\pi: S \rightarrow S$ be any permutation of the set of states $S, \sigma: V \rightarrow V$ be any permutation of the alphabet V, and $\mu:\{L, M, R\} \rightarrow\{L, M, R\}$ be defined by $\mu(L)=R, \mu(M)=M, \mu(R)=L$.

Then define also $\pi(T):=(S, V, \pi(P))$ with $\pi(p) x y I \pi(q) \in \pi(P) \Leftrightarrow p x y I q \in P$, $\sigma(T):=(S, V, \sigma(P P)$ with $p \sigma(x) \sigma(y) I q \in \sigma(P) \Leftrightarrow p x y I q \in P$, and $\mu(T):=(S, V, \mu(P))$ with $p x y \mu(I) q \in \mu(P) \Leftrightarrow p x y I q \in P$.

By the next lemma all Turing machines with movements of the head in one direction only can be eliminated from further consideration.

Lemma 5. Let T be any DTM with movements only $\{M, R\}$ or $\{L, M\}$ in the set of instructions, respectively. Then $L_{s}(T, p)$ is regular.

Proof. Let the movements be $\{M, R\}$, and the initial configuration $\alpha\binom{x}{p} \beta$. Then, from T, a finite automaton is constructed: $F_{x}:=\left(V, S \times V ;\left\{\binom{x}{p}\right\},\left\{\left.\binom{y}{q} \right\rvert\, q y H \in P\right\}, R\right)$ with $R \subseteq(S \times V) \times(V \cup\{\lambda\}) \times(S \times V)$ given by $\left(\binom{y}{p}, \lambda,\binom{z}{q}\right) \in R$ if $p y z M q \in P$, and $\left(\binom{y}{p}, z,\binom{z}{q}\right) \in R$ if $p y z R q \in P$. By this construction it is obvious that $L_{s}(T, p)=$ $\binom{x}{p} L\left(F_{x}\right)$.

Trivially, in the case of $\{L, M\}$ one gets $L_{s}(T, p)=\operatorname{rev}\left(L\left(F_{x}\right)\right) \cdot\left\{\binom{x}{p}\right\}$.
A stronger lemma is the following one.
Lemma 6. If either

$$
\begin{aligned}
& \forall x \in V \forall p \in S \exists m, n \in \mathbb{N} \forall u_{1} \in V^{m} \forall u_{2} \in V^{n} \exists y \in V \exists q \in S \cup\{H\} \exists v \in V^{m+n}: \\
& \quad u_{1}\binom{x}{p} u_{2} \xrightarrow{*} v\binom{y}{q}
\end{aligned}
$$

or

$$
\begin{aligned}
& \forall x \in V \forall p \in S \exists m, n \in \mathbb{N} \forall u_{1} \in V^{m} \forall u_{2} \in V^{n} \exists y \in V \exists q \in S \cup\{H\} \exists v \in V^{m+n}: \\
& \quad u_{1}\binom{x}{p} u_{2} \xrightarrow{*}\binom{y}{q} v
\end{aligned}
$$

where during the computation the head never leaves the workspace of length $m+n+1$, then $L_{s}(T, p)$ is regular.

Proof. By constructing a finite automaton with $\left.\binom{x}{p}, u_{2},\binom{y}{q}\right) \in R$ or $\left(\binom{x}{p}, \overline{u_{1}},\binom{y}{q}\right) \in R$ and final states $\binom{z}{H}$ where $\bar{v}=\operatorname{rev}(v)$, respecting the initial part in front of or behind $\binom{x}{p}$ for the initial configuration.

Although there exist deterministic Turing machines with all accepted sets $L_{s}(T, p)$, $L_{c}(T, p), L_{0}(T, P)$ being different, only the first possibility will be considered in the sequel.

3. DTM $(1, n)$

Any Turing machine T from $\operatorname{DTM}(1, n)$ can be considered as a finite directed graph with $n+1$ nodes from $S \cup\{H\}$. For each $p \in S$ it is decidable whether there exists a directed path from p to H, and this path has a length of at most n. Thus one gets

Theorem 1. All sets accepted by Turing machines from $\operatorname{DTM}(1, n)$ are finite, and the halting problem for $\operatorname{DTM}(1, n)$ is decidable.

4. $\operatorname{DTM}(2,1)$

Generally, it has been shown by Herman [2] that the halting problem of arbitrary 1 state DTMs with 1 head and $1 k$-dimensional tape is decidable. He also proved that there exist accepted sets which are not regular.

Let $S=\{p\}$ and $V=\{0,1\}$. Then
Theorem 2. All sets accepted by machines from $\operatorname{DTM}(2,1)$ are regular, and the halting problem for $\operatorname{DTM}(2,1)$ is decidable.

Proof. Let σ be the symmetry defined by $\sigma(0)=1, \sigma(1)=0$, and μ that one defined by $\mu(L)=R, \mu(M)=M, \mu(R)=L$. By Lemma 4 it suffices to have at most 1 possibility of halting in the program. Let there be exactly one. It also suffices that this is $p 1 H$ for if it is $p 0 H$ then this may be treated using the symmetry σ. The case $p 0 L$ may be ruled out using the symmetry μ. Thus, only 2 cases remain:

The first one gives a regular set, the second one finite sets.

5. $\operatorname{DTM}(3,1)$

Let $S=\{p\}, V=\{0,1,2\}$, and $f(p, x) \in V, g(p, x) \in\{L, M, R\}, h(p, x) \in S \cup\{H\}$ denote the new symbol, the head movement, and the new state, respectively, if T is in state p and x the scanned symbol.

By Lemma 5, and using the symmetry μ, similarly to DTM(2,1), it suffices to consider only the case

In the case $f(p, 0)=f(p, 1)=0$ one gets as accepted set

$$
L_{s}(T, p)=2(0 \cup 1)^{*}\binom{0}{p} \cup\binom{1}{p} 1 * 2 \cup 2(0 \cup 1)^{*}\binom{1}{p} 1 * 0 \cup\binom{2}{p}
$$

in the case $f(p, 0)=0, f(p, 1)=1$

$$
L_{s}(T, p)=20 *\binom{0}{p} \cup\binom{1}{p} 1 * 2 \cup\binom{2}{p}
$$

in the case $f(p, 0)=f(p, 1)=1$

$$
L_{s}(T, p)=20^{*}\binom{0}{p} \cup 10^{*}\binom{0}{p}(0 \cup 1)^{*} 2 \cup\binom{1}{p}(0 \cup 1) * 2 \cup\binom{2}{p},
$$

and in the last case $f(p, 0)=1, f(p, 1)=0$ the following accepted set:

$$
\begin{aligned}
L_{s}(T, p)= & \left\{10^{m_{k}} 1 \cdots 10^{m_{1}}\binom{0}{p} 1^{n_{1}} 0 \cdots 01^{n_{k}} 2,\right. \\
& 20^{m_{k+1}} 10^{m_{k}} 1 \cdots 10^{m_{1}}\binom{0}{p} 1^{n_{1}} 0 \cdots 01^{n_{k}} 0 \\
& 20^{m_{k}} 1 \cdots 10^{m_{1}}\binom{1}{p} 1^{n_{1}} 0 \cdots 01^{n_{k}} 0 \\
& 10^{m_{k}} 1 \cdots 10^{m_{1}}\binom{1}{p} 1^{n_{1}} 0 \cdots 01^{n_{k}} 01^{n_{k+1}} 2 \\
& \left.k \geqslant 0, m_{i} \in \mathbb{N}, n_{i} \in \mathbb{N}\right\} \\
& \cup\binom{2}{p}
\end{aligned}
$$

Clearly, this is a linear deterministic context-free language not being regular. Thus:
Theorem 3. All sets accepted by machines from $\operatorname{DTM}(3,1)$ are regular except one case (up to symmetries) yielding a linear deterministic context-free language. The halting problem for $\operatorname{DTM}(3,1)$ is decidable.

6. $\operatorname{DTM}(2,2)$

At first some methods reducing the number of machines to be treated are considered. Let $S=\{p, q\}$ and $V=\{0,1\}$. In the program of a Turing machine T let $f(s, x) \in V$, $g(s, x) \in\{L, M, R\}, h(s, x) \in S \cup\{H\}$ denote the new symbol to be written, the movement of the head, and the new state, respectively, if T is in state s and the head is scanning x. By Lemma 4 let there be exactly 1 possibility of H. Thus, from originally $13^{4}=28561$ only $4 \cdot 12^{3}=6912$ machines are left. Using Lemma 5 , this number can be reduced to 3072.

Using the symmetries σ and μ from $\operatorname{DTM}(2,1)$ and π defined by $\pi(p)=q, \pi(q)=p$, the following reductions decrease the number of Turing machines to be considered.

Lemma 7. It suffices to have only $h(q, 1)=H$ as halting.
Proof. By using the symmetries σ, π, and $\sigma \pi=\pi \sigma$.
By the next lemma $g(q, 0)=L$ is eliminated.
Lemma 8. It suffices to have only $g(q, 0)=M$ or $g(q, 0)=R$.
Proof. By using the symmetry μ.
The following one fixes p as initial state.
Lemma 9. It suffices to have p as initial state.
Proof. Let q be initial state. Then there are 2 cases to be considered, namely $h(q, 0)$ $=q$ and $h(q, 0)=p$. The first case yields machines from $\operatorname{DTM}(2,1)$ which have been considered already. Let therefore $h(q, 0)=p$ with $f(q, 0)=z$.

If $g(q, 0)=M$ then let γ be the deterministic $g s m$-mapping defined by the finite automaton

$$
\left(V \cup(V \times S),\{A, B\},\{A\},\{B\},\left\{A x x A, A\binom{z}{p}\binom{0}{q} B, B x x B \mid x \in V\right\}\right)
$$

with initial state A and final state B. Then

$$
L_{s}(T, q)=\gamma\left(L_{s}(T, p) \cap V^{*}\binom{z}{p} V^{*}\right) \cup\binom{1}{q}
$$

If $g(q, 0)=R$ then let δ and ε be deterministic $g s m$-mappings defined by the finite automata

$$
\left(V \cup(V \times S),\{A, B, C\},\{A\},\{C\},\left\{A x x A, A\binom{x}{p} x B, B z\binom{0}{q} C, C x x C \mid x \in V\right\}\right)
$$

with initial state A and final state C, and

$$
\left(V \cup(V \times\{p\}),\{A, B\},\{A\},\{B\},\left\{A\binom{x}{p} x B, B x x B \mid x \in V\right\}\right)
$$

with initial state A and final state B. Then

$$
\begin{aligned}
L_{s}(T, q)= & \binom{0}{q} \in\left(L_{s}(T, p) \cap(V \times\{p\}) \cdot V^{*}\right) \\
& \cup \operatorname{rev}\left(\delta\left(\operatorname{rev}\left(L_{s}(T, p) \cap V^{*} z(V \times\{p\}) V^{*}\right)\right)\right) \cup\binom{1}{q}
\end{aligned}
$$

where rev denotes the mirror image.

Thus, the following cases remain to be considered: $h(q, 0)=p$ with $g(q, 0)=M$ or $g(q, 0)=R$, and with $h(p, 0)=h(p, 1)=q$ or $h(p, 0)=p, h(p, 1)=q$ or $h(p, 0)=q$, $h(p, 1)=p . h(p, 0)=h(p, 1)=p$ trivially can be ruled out.

The next reduction eliminates $h(q, 0)=q$.
Lemma 10. It suffices to have $h(q, 0)=p$ only.
Proof. If $h(q, 0)=q$ then, starting with p, all configurations ending in q yield regular sets since this is effectively a machine from $\operatorname{DTM}(2,1)$. After reaching q this is again such a machine yielding regular sets only.

Thus, after eliminating the case $g(p, 0)=R, g(p, 1)=L, g(q, 0)=M$ by the symmetry μ, the following cases remain (omitting f and h):

	p	q
0	$\cdot L \cdot$	$\cdot M p$
1	$\cdot R \cdot$	H

p	q		p	q	p	q		p	9		p	q
$0 \cdot L$	$R p$	0	L	$\cdot R p$	0-L	$\cdot R p$		0. M	$R p$		$0 \cdot R$	$\cdot R p$
$1 \cdot L \cdot$	H		.	H	$1 \cdot R \cdot$	H		$1 \cdot L \cdot$	H		$1 \cdot L$	H

with the possibilities for $h(p, 0)$ and $h(p, 1)$ mentioned above. This leaves $6 \cdot 3 \cdot 4 \cdot 2$ $=144$ machines from originally $4 \cdot 12^{3}=6912$.

The first case to consider is
Case 1: $g(q, 0)=M$ by the possibilities for $h(p, 0)$ and $h(p, 1)$.
Case 1.1: $h(p, 0)=h(p, 1)=q$. Then

$$
\begin{aligned}
& 0\binom{0}{p} \rightarrow\binom{0}{q} f(p, 0) \rightarrow\binom{f(q, 0)}{p} f(p, 0), \\
& 1\binom{0}{p} \rightarrow\binom{1}{q} f(p, 0) \rightarrow H, \\
& \binom{1}{p} 0 \rightarrow f(p, 1)\binom{0}{q} \rightarrow f(p, 1)\binom{f(q, 0)}{p}, \\
& \binom{1}{p} 1 \rightarrow f(p, 1)\binom{1}{q} \rightarrow H .
\end{aligned}
$$

Case 1.1.1: $f(q, 0)=0$. Then

$$
\begin{aligned}
& 0\binom{0}{p} \xrightarrow{*}\binom{0}{p} f(p, 0) \\
& \binom{1}{p} 0 \stackrel{*}{\rightarrow} f(p, 1)\binom{0}{p} \xrightarrow{*}\binom{0}{p} f(p, 0) \quad \text { if } f(p, 1)=0
\end{aligned}
$$

$$
\binom{1}{p} 0 \stackrel{*}{\rightarrow} f(p, 1)\binom{0}{p} \xrightarrow{*} H \quad \text { if } f(p, 1)=1 .
$$

which shows no effective movement to the right, thus yielding a regular set.
Case 1.1.2: $f(q, 0)=1$. Then

$$
\begin{aligned}
& 0\binom{0}{p} \stackrel{*}{\rightarrow}\binom{1}{p} f(p, 0) \xrightarrow{*} f(p, 1)\binom{1}{p} \quad \text { if } f(p, 0)=0 \\
& 0\binom{0}{p} \stackrel{*}{\rightarrow}\binom{1}{p} f(p, 0) \xrightarrow{*} H \quad \text { if } f(p, 0)=1 \\
& \binom{1}{p} 0 \stackrel{*}{\rightarrow} f(p, 1)\binom{1}{p} .
\end{aligned}
$$

which shows no effective movement to the left, thus also yielding a regular set.
Case 1.2: $h(p, 0)=q, h(p, 1)=p$. Then

$$
\begin{aligned}
& 0\binom{0}{p} \rightarrow\binom{0}{q} f(p, 0) \rightarrow\binom{f(q, 0)}{p} f(p, 0) \\
& 1\binom{0}{p} \rightarrow\binom{1}{q} f(p, 0) \rightarrow H \\
& \binom{1}{p} 0 \rightarrow f(p, 1)\binom{0}{p} \\
& \binom{1}{p} 1 \rightarrow f(p, 1)\binom{1}{p} .
\end{aligned}
$$

Case 1.2.1: $f(q, 0)=0$. Then

$$
0\binom{0}{p} \stackrel{*}{\rightarrow}\binom{0}{p} f(p, 0)
$$

and

$$
\begin{aligned}
& L_{s}(T, p)=10^{*}\binom{0}{p} \cup 10^{*}\binom{1}{p} 1^{*} 0 \quad \text { if } f(p, 1)=0 \\
& L_{s}(T, p)=10^{*}\binom{0}{p} \cup\binom{1}{p} 1^{*} 0 \quad \text { if } f(p, 1)=1 .
\end{aligned}
$$

Case 1.2.2: $f(q, 0)=1$. Then

$$
0\binom{0}{p} \stackrel{*}{\rightarrow}\binom{1}{p} f(p, 0) \rightarrow f(p, 1)\binom{f(p, 0)}{p}
$$

and the machine has no effective movement to the left, thus yielding a regular set.

Case 1.3: $h(p, 0)=p, h(p, 1)=q$. Then

$$
\begin{aligned}
& 0\binom{0}{p} \rightarrow\binom{0}{p} f(p, 0), \\
& 1\binom{0}{p} \rightarrow\binom{1}{p} f(p, 0) \\
& \binom{1}{p} 0 \rightarrow f(p, 1)\binom{0}{q} \rightarrow f(p, 1)\binom{f(q, 0)}{p} \\
& \binom{1}{p} 1 \rightarrow f(p, 1)\binom{1}{q} \rightarrow H .
\end{aligned}
$$

Case 1.3.1: $f(q, 0)=0$. Then

$$
\binom{1}{p} 0 \stackrel{*}{\rightarrow} f(p, 1)\binom{0}{p} \rightarrow\binom{f(p, 1)}{p} f(p, 0) .
$$

This gives no effective movement to the right, thus yielding regular sets.
Case 1.3.2: $f(q, 0)=1$. Then

$$
\binom{1}{p} 0 \stackrel{*}{\rightarrow} f(p, 1)\binom{1}{p}
$$

and

$$
\begin{aligned}
& L_{s}(T, p)=10^{*}\binom{0}{p} 0^{*} 1 \cup\binom{1}{p} 0^{*} 1 \quad \text { if } f(p, 0)=0 \\
& L_{s}(T, p)=10^{*}\binom{0}{p} \cup\binom{1}{p} 0^{*} 1 \quad \text { if } f(p, 0)=1 .
\end{aligned}
$$

Now the 120 remaining machines are considered with
Case 2: $g(q, 0)=R$.
Case 2.1: $g(p, 0)=g(p, 1)=L$.
Case 2.1.1: $h(p, 0)=h(p, 1)=p$:

$$
x\binom{y}{p} \rightarrow\binom{x}{p} f(p, y)
$$

yielding no halt at all.
Case 2.1.2: $h(p, 0)=p, h(p, 1)=q$ or $h(p, 0)=q, h(p, 1)=p$. Let $m \in\{0,1\}$ and $n=1-m$ such that $h(p, m)=p$ and $h(p, n)=q$. Then

$$
\begin{aligned}
& x\binom{m}{p} \rightarrow\binom{x}{p} f(p, m), \\
& 0\binom{n}{p} \rightarrow\binom{0}{q} f(p, n) \rightarrow f(q, 0)\binom{f(p, n)}{p},
\end{aligned}
$$

$$
1\binom{n}{p} \rightarrow\binom{1}{q} f(p, n) \rightarrow H
$$

giving no effective movement to the right, and thus only regular sets.
Case 2.1.3: $h(p, 0)=h(p, 1)=q$:

$$
\begin{aligned}
& 0\binom{y}{p} \rightarrow\binom{0}{q} f(p, y) \rightarrow f(q, 0)\binom{f(p, y)}{p}, \\
& 1\binom{y}{p} \rightarrow\binom{1}{q} f(p, y) \rightarrow H
\end{aligned}
$$

giving no effective movement at all, and thus only regular scts.
For the remaining 2 subcases the following considerations give a further reduction of the number of cases.

Let $j \in\{0,1\}$ be such that $g(p, j)=L$ and $k=1-j$. If $h(p, j)=q$ then there is no effective movement to the left since

$$
\begin{aligned}
& x\binom{j}{p} \rightarrow\binom{x}{q} f(p, j) \rightarrow f(q, x)\binom{f(p, j)}{p}, \\
& \binom{k}{p} \rightarrow\binom{f(p, k)}{h(p, k)} \text { if } g(p, k)=M \\
& \binom{k}{p} y \rightarrow f(p, k)\binom{y}{h(p, k)} \quad \text { if } g(p, k)=R,
\end{aligned}
$$

thus giving only regular sets. Therefore, $h(p, j)=p$ has to be considered only.
If $h(p, k)=p$ then the machine will never halt. Thus assume $h(p, k)=q$.
Case 2.2: $g(p, k)=M$. Then

$$
\begin{aligned}
& j\binom{j}{p} \rightarrow\binom{j}{p} f(p, j), \\
& k\binom{j}{p} \rightarrow\binom{k}{p} f(p, j) \rightarrow\binom{0}{q} f(p, j) \rightarrow f(q, 0)\binom{f(p, j)}{p} \quad \text { if } f(p, k)=0, \\
& \binom{k}{p} y \rightarrow\binom{0}{q} y \rightarrow f(q, 0)\binom{y}{p}, \\
& k\binom{j}{p} \rightarrow\binom{k}{p} f(p, j) \rightarrow\binom{1}{q} f(p, j) \rightarrow H \quad \text { if } f(p, k)=1, \\
& \binom{k}{p} y \rightarrow\binom{1}{q} y \rightarrow H
\end{aligned}
$$

yielding effectively a machine from $\operatorname{DTM}(2,1)$ with only regular sets.

Thus
Case 2.3: $g(p, k)=R$ may be assumed such that the following cases remain: $g(p, j)$ $=L, h(p, j)=p, g(p, k)=R, h(p, k)=q, g(q, 0)=R, h(q, 0)=p$ with $j, f(p, j), f(p, k)$, $f(q, 0) \in\{0,1\}$ and $k \neq j$. This leaves 16 Turing machines to consider.

At first
Case 2.3.1: $f(p, j)=1$ one has

$$
\begin{aligned}
& j\binom{j}{p} \rightarrow\binom{j}{p} 1, \\
& k\binom{j}{p} \rightarrow\binom{k}{p} 1 \rightarrow f(p, k)\binom{1}{q} \rightarrow H \\
& \binom{k}{p} 0 j \rightarrow f(p, k)\binom{0}{q} j \rightarrow f(p, k) f(q, 0)\binom{j}{p}, \\
& \binom{k}{p} 0 k \rightarrow f(p, k)\binom{0}{q} k \rightarrow f(p, k) f(q, 0)\binom{k}{p} \\
& \binom{k}{p} 1 \rightarrow f(p, k)\binom{1}{q} \rightarrow H
\end{aligned}
$$

yielding as accepted sets

$$
L_{s}(T, p)=k j^{*}\binom{j}{p} \cup\binom{k}{p}(0 k)^{*} 1 \cup L_{s}^{\prime}(T, p)
$$

with

$$
\begin{aligned}
& L_{s}^{\prime}(T, p)=\binom{k}{p}(0 k)^{*} 0 j \quad \text { if } f(q, 0)=k \text { or }(f(q, 0)-j \text { and } f(p, k)=k), \\
& L_{s}^{\prime}(T, p)=k j^{*}\binom{k}{p}(0 k)^{*} 0 j \quad \text { if } f(q, 0)=f(p, k)=j
\end{aligned}
$$

being all regular.
Case 2.3.2: $f(p, j)=0$. Here one has

$$
\begin{aligned}
& j\binom{j}{p} \rightarrow\binom{j}{p} 0, \\
& k\binom{j}{p} j \rightarrow\binom{k}{p} 0 j \rightarrow f(p, k)\binom{0}{q} j \rightarrow f(p, k) f(q, 0)\binom{j}{p}, \\
& k\binom{j}{p} k \rightarrow\binom{k}{p} 0 k \rightarrow f(p, k)\binom{0}{q} k \rightarrow f(p, k) f(q, 0)\binom{k}{p}, \\
& \binom{k}{p} 0 j \rightarrow f(p, k)\binom{0}{q} j \rightarrow f(p, k) f(q, 0)\binom{j}{p},
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k}{p} 0 k \rightarrow f(p, k)\binom{0}{q} k \rightarrow f(p, k) f(q, 0)\binom{k}{p} \\
& \binom{k}{p} 1 \rightarrow f(p, k)\binom{1}{q} \rightarrow H
\end{aligned}
$$

Case 2.3.2.1: $f(q, 0)=k$. This yields as accepted sets

$$
\begin{aligned}
& L_{s}(T, p)=\left(10^{*}\binom{0}{p} 0^{*} 1 \cup\binom{1}{p}\right)\left(0^{+} 1\right)^{*} 1 \quad \text { if } k=1, \\
& L_{s}(T, p)=\left(\binom{0}{p} \cup 0\binom{1}{p} 1^{*} 0 \cup 01^{+}\binom{1}{p}\right)\left(01^{*} 0\right)^{*} 1 \text { if } k=0
\end{aligned}
$$

being all regular.
Case 2.3.2.2: $f(q, 0)=j$. Here all 4 remaining machines have to be considered.

$$
\begin{aligned}
& j=0: L_{s}(T, p)=\left(1\binom{0}{p} 1 \cup\binom{1}{p}\right)(01)^{*} 1 \\
& j=1, f(p, 0)=0: \\
& L_{s}(T, p)=\left(\binom{0}{p} \cup 0(11)^{*}\left(\binom{1}{p}(0 \cup 1) \cup 1\binom{1}{p}\right)\right)(0(0 \cup 1))^{*} 1
\end{aligned}
$$

all being regular.
The only remaining machine, with $j=1, f(p, 0)=1$ however, does not yield a regular set but

$$
\begin{aligned}
L_{s}(T, p)= & \left\{0(11)^{m_{k}} u_{k-1} \cdots u_{1}(11)^{m_{1}}\binom{0}{p} 0(00)^{n_{0}} 1(00)^{n_{1}} v_{1} \cdots v_{k-1}(00)^{n_{k}} 01\right. \\
& 0(11)^{m_{k}} u_{k-1} \cdots u_{1}(11)^{m_{1}}\binom{1}{p}(00)^{n_{1}} v_{1} \cdots v_{k-1}(00)^{n_{k}} 01 \\
& 01(11)^{m_{k}} u_{k-1} \cdots u_{1}(11)^{m_{1}}\binom{0}{p} 0(00)^{n_{0}} 1(00)^{n_{1}} v_{1} \cdots v_{k-1}(00)^{n_{k}} 1 \\
& 01(11)^{m_{k}} u_{k-1} \cdots u_{1}(11)^{m_{1}}\binom{0}{p}(00)^{n_{1}} v_{1} \cdots v_{k-1}(00)^{n_{k}} 1 \\
& \left.k \geqslant 0, m_{i} \geqslant 0, n_{i} \geqslant 0,\left(u_{i}=0, v_{i}=1\right) \text { or }\left(u_{i}=v_{i}=01\right)\right\}
\end{aligned}
$$

It is easy to see that this set is not regular but a linear deterministic context-free language being similar to that one from $\operatorname{DTM}(3,1)$.

Summarizing, one obtains
Theorem 4. All sets accepted by Turing machines from DTM(2,2) are regular except one case only (up to symmetries) giving a linear deterministic context-free language. The halting problem for $\operatorname{DTM}(2,2)$ is decidable.

It should be noted that the machine last mentioned is not the beasy beaver machine for $\operatorname{DTM}(2,2)$ since that one is the following which can be shown easily:

	p	q
0	$1 L q$	$1 R p$
1	$R q$	H

It should also be mentioned that in most cases the sets $L_{s}(T, p)$ and $L_{c}(T, p)$ are identical, but that there are some exceptions.

7. $\operatorname{DTM}(4,4)$

Here only a machine accepting a language being not context-free is presented. This machine is

	p	q	r	s
0	R	R	L	L
1	$R q$	$0 R p$	L	$L q$
2	R	H	$R p$	\cdots
3	$L r$	$2 L s$	\cdots	\cdots

where the open positions are irrelevant and may be filled by M.
For the accepted language the following fact holds:

$$
L_{s}(T, p) \cap\binom{2}{p} 1^{*} 33=\left\{\left.\binom{2}{p} 1^{2^{n}} 33 \right\rvert\, n \geqslant 0\right\} .
$$

showing that $L_{s}(T, p)$ is not context-free.
Recently, it has been shown [3] that there exist Turing machines in $\operatorname{DTM}(2,5)$ and $\operatorname{DTM}(3,6)$ closely related to Collatz problems with unknown solutions.

Finally, in 1992 the existence of a universal Turing machine in $\operatorname{DTM}(3,10)$ was shown [8], and in 1995 the existence of another one in $\operatorname{DTM}(18,2)$ [9].

There exists also an unpublished proof by Pavlockaya on the decidability of the halting problem for $\operatorname{DTM}(3,2)$.

Acknowledgements

The author thanks the unknown reviewer for careful reading and useful hints.

References

[1] V. Diekert and M. Kudlek, Small deterministic Turing machines, Papers on Automata and Languages, Dept. of Math., Karl Marx Univ. of Economics, Budapest, 1988-4, (1989) 77-87.
[2] G.T. Herman, The Halting problem of one state Turing machines with n-dimensional tape, Z. Math. Logik Grundl. Math. 14 (1968) 185-191.
[3] P. Michel, Busy beaver competition and Collatz-like problems, Arch. Math. Logic 32 (1993) 351-367.
[4] M.I. Minsky, Size and structure of universal Turing machines using tag systems, in: Recursive Function Theory, Symposia in Pure Mathematics Vol. 5 (AMS, Providence, RI, 1962) 229-238.
[5] M.I. Minsky, Computation. Finite and Infinite Machines (Prentice-Hall, Englewood Cliffs, NJ, 1967-1972).
[6] L.M. Pavlockaya, Dostatočnye usloviya razrešimosti problemy ostanovki dlya mašin Tyuringa, Problemy Kibernetiki 33 (1978) 91-118.
[7] Yu.V. Rogozhin, Sem' universal'nyh mašin Tyuringa, Matematičeskie Issledovaniya 69 (1982) 76-90.
[8] Yu.V. Rogozhin, Universal'naya mašina Tyuringa s 10 sostayaniyah i 3 simbolami, Izvestiya Akademii Nauk Respubliki Moldova Matematika (10) (1992) 80-82.
[9] Yu.V. Rogozhin, On the notion of universality and Shannon's problem for Turing machines, Presented at MCU/UMC'95, Paris.
[10] S. Watanabe, 5 -symbol 8 -state and 5 -symbol 6 -state universal Turing machines, J. ACM 8 (1961) 476-483.

[^0]: * E-mail: kudlek@informatik.uni-hamburg.de.

