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Mitochondrial reactive oxygen species (ROS) are indispensible for T cell activation-induced expression of in-
terleukin 2 (IL-2) and CD95 ligand (CD95L, FasL/Apo-1L) genes, and in turn, for CD95L-mediated activation-
induced cell death (AICD). Here, we show that manganese superoxide dismutase (MnSOD/SOD2), a major
mitochondrial antioxidative enzyme, constitutes an important control switch in the process of activation-
induced oxidative signal generation in T cells. Analysis of the kinetics of T cell receptor (TCR)-triggered
ROS production revealed a temporal association between higher MnSOD abundance/activity and a shut-
down phase of oxidative signal generation. Transient or inducible MnSOD overexpression abrogated T cell
activation-triggered mitochondrial ROS production as well as NF-xB- and AP-1-mediated transcription.
Consequently, lowered expression of IL-2 and CD95L genes resulted in decreased IL-2 secretion and
CD95L-dependent AICD. Moreover, upregulation of the mitochondrial MnSOD level is dependent on
oxidation-sensitive transcription and not on the increase of mitochondrial mass. Thus, MnSOD-mediated
negative feedback regulation of activation-induced mitochondrial ROS generation exemplifies a process of
retrograde mitochondria-to-nucleus communication. Our finding underlines the critical role for MnSOD
and mitochondria in the regulation of human T cell activation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

T cell receptor (TCR) triggering induces rapid upregulation of a
transcription program essential for proliferation, differentiation as
well as activation-induced cell death (AICD) of T lymphocytes. The
TCR signaling cascade splits downstream of PLCy1 activation into
two arms. On the one hand, inositol 3,4,5-triphosphate (IPs)-induced
rise in intracellular Ca?" concentration activates Ca®"-dependent
transcription factors, e.g. NF-AT. On the other hand, diacylglycerol
(DAG)-mediated activation of PKCO and RasGRP proteins leads to
NF-B and AP-1 induction. Triggering of these three transcription fac-
tors orchestrates a full immediate-early transcriptional response
upon T cell activation [1]. Thus, T cell activation can be induced by si-
multaneous treatment with ionomycin (Iono), a Ca®>* ionophore and
NE-AT activator, and phorbol 12-myristate 13-acetate (PMA), a DAG
mimetic and NF-kB/AP-1 activator [2].

Abbreviations: ROS, Reactive oxygen species; IL-2, interleukin 2; CD95L/FASL/APO-
1, CD95 ligand; AICD, activation-induced cell death; MnSOD/SOD2, manganese super-
oxide dismutase; TCR, T cell receptor
* Corresponding authors. Tel.: +49 6221 423765; fax: +49 6221 411715.
E-mail addresses: m.kaminski@dkfz.de (M.M. Kaminski), k.guelow@dkfz.de
(K. Glilow).
1 These authors contributed equally to the work.
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In addition, TCR induction is accompanied by reactive oxygen spe-
cies (ROS) generation. Although potentially deleterious for a cell, the
ROS are kept in check by cellular antioxidative systems which lead to
a controlled non-toxic activation-induced rise in the intracellular pro-
oxidative status. In particular, hydrogen peroxide (H,0,) as a
signaling molecule facilitates triggering of the oxidation-dependent
transcription factors NF-<B and AP-1 and is therefore indispensible
for T cell activation [3-8]. Simultaneous presence of this DAG/PMA-
dependent oxidative signal (NF-<B/AP-1 triggering) and the Ca®*-
mediated signal (NF-AT triggering) is necessary for T cell activation-
induced gene expression (e.g. IL-2, IL-4, CD95L). A single signal by
itself is insufficient [3,9-12]. Different enzymatic sources, such as
the mitochondrial respiratory chain, lipooxygenases and NADPH oxi-
dases (NOX2 and DUOX1) contribute to ROS generation upon TCR
triggering [3,10,13-16].

The pivotal role for mitochondria in T cell activation is an emerg-
ing field of research. Mitochondria of resting or in vitro expanded
human T cells localize to the immunological synapse shortly after
its formation [17-19]. They modulate amplitude and duration of
the Ca?™ signal [20]. They are also believed to increase a local ATP
gradient necessary for TCR-induced phosphorylation events [19].
Moreover, we and others demonstrated that mitochondria are the
main generator of the activation-induced oxidative signal in resting
or in vitro expanded human T cells [3,9,10,13,21]. We demonstrated
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a crucial role for mitochondria as oxidative signaling organelles in
the process of T cell activation-induced transcription as well as
CD95L-mediated AICD [3,10]. Our experimental work elucidated a
novel signal transduction pathway leading from the TCR signalo-
some via PKC6 activation to superoxide anions (O3 ) release by the
mitochondrial respiratory chain complex I. Next, 05~ leave the mito-
chondria in a form of H,O, to act as an oxidative signal in a cyto-
plasm [3,10].

The concept of an oxidative signal implies its tight regulation and
transient character. Furthermore, according to the current under-
standing of the molecular mechanisms of mitochondrial ROS genera-
tion, complex [-mediated ROS release poses a potential threat to
mitochondrial DNA (mtDNA) integrity [22]. Thus, the oxidative
signal generated upon TCR activation is expected to be followed by
an antioxidative response eventually leading to the shut-down of
ROS production.

Here, we report a regulatory role for manganese superoxide dis-
mutase (MnSOD/SOD2), a major antioxidative enzyme of the mito-
chondrial matrix, in T cell activation-induced oxidative signal
generation. MnSOD, up-regulated upon T cell activation on the tran-
scriptional, translational and enzymatic level, participates in the
downregulation of the TCR-induced pro-oxidative intracellular status.
Its overexpression inhibits NF-kB- and AP-1-mediated transcription
of activation-induced genes, such as IL-2 and CD95L. Consequently,
Jurkat T cells which have higher mitochondrial MnSOD content are
significantly less susceptible to CD95L-mediated AICD. Moreover,
TCR-induced MnSOD expression is dependent on triggering of the
oxidation-dependent transcription factor NF-xB. Thus, the negative
regulatory function of MnSOD exemplifies a retrograde mechanism
of mitochondria-to-nucleus communication.

Decreased MnSOD expression levels, gene silencing, inactivating
mutations or gene polymorphisms, all have been associated with tu-
morigenesis, also in the case of lymphoma and leukemia develop-
ment [23-33]. Moreover, several reports addressed the importance
of MnSOD for T cell differentiation and function [23,32,34,35]. In
that respect, our results shed a new light on the understanding of a
T cell-specific function of MnSOD, one of the catalytically fastest and
thus most intriguing enzymes of the human cell.

2. Materials and methods
2.1. Chemicals

Dichlorodihydrofluorescein diacetate (H,DCF-DA) was purchased
from Invitrogen, Germany. Antibodies were obtained from R&D Sys-
tems (murine IgG2a monoclonal, cl. 20102 anti-CD3 antibody isotype
control), Millipore, Germany (rabbit polyclonal anti-MnSOD), Santa
Cruz, Germany (goat polyclonal anti-CuzZnSOD), Cell Signalling, USA
(rabbit polyclonal anti-cytochrome c), BD, Germany (rabbit polyclon-
al anti-ERK1), Sigma, Germany (mouse monoclonal anti-y-tubulin),
Merck, Germany (rabbit polyclonal anti-catalase), Thermo Scientific
(mouse monoclonal anti-prohibitin 1 antibody, 1I-14-10) and Abcam
(rabbit polyclonal anti-thioredoxin reductase 2). Content of mito-
chondrial respiratory complexes was analyzed using Total OXPHOS
WB Antibody Cocktail from Mito Sciences (Eugene, OR, USA). Mono-
clonal anti-CD95 (anti-APO-1) and anti-CD3 antibodies (OKT3)
were prepared from hybridomas as described previously [9]. All
other chemicals, if not noted otherwise, were purchased from
Sigma, Roth or Merck.

2.2. Cell culture

The Jurkat T cell line sub-clone J16-145 [9] was cultured in Iscove's
Modified Dulbecco's Medium (IMDM), primary human T cells in Ros-
well Park Memorial Institute Medium (RPMI-1640). Both media were
supplemented with L-glutamine and 10% foetal calf serum (FCS).

2.3. Isolation and in vitro expansion of human T cells

Human T cells were isolated via Ficoll-Paque density centrifuga-
tion followed by rosetting with S-(2-aminoethyl)-isothiuronium
bromide hydrobromide-treated sheep erythrocytes as described
previously [3,9,10]. T cells were expanded by stimulation with
phytohemagglutinin (1 pg/ml) for 16 h and subsequent culture in
[L-2-containing (25U/ml) RPMI-1640+10% FCS for 5-6 days
(*day 6” T cells).

2.4. Determination of activation-induced ROS generation

Jurkat T cells were stained with 5 pM H,DCF-DA for 20 min, then
stimulated with PMA (10 ng/ml) for 30 min. To determine the kinet-
ics of ROS production, primary T cells were stimulated with plate-
bound anti-CD3 antibody (30 pg/ml) for the indicated time periods
and stained with 5 uM H,DCF-DA 20 min before the end of the incu-
bation time. Cells were washed with ice-cold PBS and ROS generation
was assayed by FACS (FACS Canto II, BD Germany). ROS generation
was quantified as increase in mean fluorescence intensity (MFI), cal-
culated according to the following formula: increase in MFI (%)=
[(MFIstimulated - MFIunstimulated) /MFIunstimulated] x 100 [3']0]

2.5. Sub-cellular fractionations

To isolate cytosol, cells were suspended in hypotonic lysis buffer
(10 mM Tris, pH 7.4, 1.5 mM MgCl,, 5 mM KCl, “Roche Complete”
protease inhibitors cocktail (Roche, Germany)) and passed through
a 25G needle 20 times. Cell debris was separated by centrifugation
(2 min, 300 g). The membrane fraction was then separated from the
cytosol by centrifugation at 800g for 45 min. To isolate the
mitochondria-enriched fraction, cells were passed through a 25G
needle in hypotonic lysis buffer (10 mM Tris, pH 7.5, 1 mM EDTA,
250 mM sucrose, “Roche Complete” protease inhibitors cocktail
(Roche, Germany)). The cell debris was pelleted by centrifugation
(750 g, 10 min) and removed. Thereafter, the supernatant was centri-
fuged again (11,000 g, 30 min) and the pellet lysed in radioimmuno-
precipitation assay buffer (RIPA). Protein concentration was
determined with the bicinchoninic acid method (BCA, Pierce) and
equal amounts of protein were analysed by Western blotting (WB)
as described before [10].

2.6. Transfection and MnSOD overexpression

Jurkat T cells were transfected with a CMV-driven expression
plasmid carrying human MnSOD ¢DNA (coding sequence
NM_001024465.1, accession number BC012423; pCMV-SPORTS,
Open Biosystems) or empty vector (pcDNA3, CMV promoter, Invitro-
gen; 3 pg/transfection) with or without a RFP expression vector (for
measurements of ROS generation; mRFP1-pcDNA3, CMV promoter;
2 pg/transfection) or EGFP expression vector (for cell death assay;
pmaxGFP, CMV promoter, Lonza; 2 pg/transfection). Transfections
were performed using AMAXA nucleofection technology (“Cell Line
Nucleofector® kit V”, Lonza) according to the manufacturer's proto-
col. After over-night recovery cells were subjected to further
experiments.

2.7. Luciferase reporter assays

Firefly luciferase reporter constructs containing: (i) the CD95L
(—860/+100) promoter, (ii) the IL-2 (—300/4+47) promoter, (iii)
three copies of the AP-1 binding site from the SV40 enhancer
(CGGTTGCTGACTAATTG), (iv) four copies of the NF-xB consensus se-
quence (GGAAATTCCCC) in the pTATA-Luc vector were kindly provid-
ed by Dr. M. Li-Weber (DKFZ, Heidelberg). A Renilla luciferase-
expression reporter pRL-TK plasmid (Promega) was used as an
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internal control for transfection efficiency. For single transfection
1.3x 108 Jurkat T cells were electroporated with 2 pg of pRL-TK plas-
mid, 5 pg of the firefly luciferase reporter construct and 20 pg of the
MnSOD expression plasmid (or empty vector) as previously de-
scribed [3,9]. After over-night recovery, cells were divided and trea-
ted with PMA (10 ng/ml) and ionomycin (1 puM) for 8 h. Firefly and
Renilla luciferase activities were measured using a “Dual Luciferase
Kit” (Promega, USA) and a 96-well plate luminometer (Berthold, Ger-
many). To normalize obtained results, firefly luciferase activity was
divided by the respective Renilla luciferase activity. Results presented
are normalized relative light units (RLU).

2.8. RNA isolation, reverse transcription and quantitative real-time PCR

RNA was isolated using the “RNeasy mini kit” (QIAGEN, Germany)
and reverse-transcribed with “Reverse transcription PCR” kit (Applied
Biosystems, Germany). Quantitative real-time PCR was performed
using the “Power SYBR Green PCR Master Mix” (Applied Biosystems).
The primers used for MnSOD gene expression analysis were: sense 5’-
CTGGACAAACCTCAGCCCTA-3, anti-sense 5-TGATGGCTTCCAGCA-3'.
Primers used for CD95L, IL-2 and GAPDH were reported before [3].
Gene expression was analyzed using the 7500 Real-Time PCR Systems
and Sequence Detection Software, Applied Biosystems, v. 2.0.2. Gene
expression levels were normalized using GAPDH expression as an en-
dogenous reference as previously described [3].

2.9. Cell death assay

Jurkat T cells were stimulated with PMA (10 ng/ml) and lono
(10 uM) for 24 h. Cell death was analyzed by a drop in the forward-
to-side-scatter (FSC/SSC) FACS profile of dead cells as compared to
living [3,9,10]. To assess cell death of MnSOD-expressing cells, cells
were co-transfected with a GFP expression vector. For FACS analysis
GFP-positive (GFP™), living cells were gated as shown in Suppl.
Fig. 3B. The decrease of GFP™ cells was calculated according to
the following formula: decrease in GFP™" cells (%) =[(GFP ™ control —
GFP+stimulated) /GFP+c0ntrol] x100.

2.10. Determination of mitochondrial mass and mitochondrial
membrane potential via FACS

Mitochondrial mass was assessed by fluorescence staining with
acridine orange 10-nonyl bromide (NAO, Sigma, a fluorescent dye
binding to cardiolipin in the inner-mitochondrial membrane) or
MitoFluor Green (MFG, Invitrogen, a fluorescent dye accumulating
in mitochondria independently of membrane potential). T cells
were stimulated with plate-bound anti-CD3 antibody (30 pg/ml) for
indicated time periods. 20 min before the end of stimulation time,
cells were stained with NAO (75 nM) or MFG (50 nM). Next, cells
were washed twice with PBS and the mean fluorescence intensity
was measured by FACS. Rhodamine 123 fluorescent dye (Rh123,
Sigma) was used in an unquenched mode to determine changes of
mitochondrial membrane potential according to the method of Chen
et al. [36]. Briefly, cells were stained with 10 uM Rh123 for 15 min be-
fore harvest and directly analyzed by FACS.

2.11. Generation of doxycyclin (DOX)-inducible MnSOD-overexpressing
Jurkat T cells

Human MnSOD cDNA was amplified from pCMV-SPORT6-MnSOD
(Open Biosystems) with the primer pair 5’-CCGGAATTCATGTT-
GAGCCGGGCAGTGTGCG-3’ and 5'-CGGGGTACCTTACTTTTTGCAAGC-
CATGTATC-3’, and cloned into pRev-TRE-Tight (Clonetech, USA).
Retroviruses were generated by transfection of Phoenix cells with
pRev-TRE-MnSOD. Jurkat M2 cells, harbouring the DOX dependent
transactivator (courtesy of Dr. Lars Weingarten and Dr. Tobias P.

Dick, DKFZ, Heidelberg) were infected and cultured in medium sup-
plemented with 100 pg/ml hygromycin for 7 days. The resulting
cells were sub-cloned twice and screened for DOX-inducible MnSOD
expression by WB.

2.12. Western blotting and band intensity determination

SDS-polyacrylamide gel electrophoresis (PAGE) and Western blot
analysis were performed as described previously [10]. Band intensi-
ties were quantified with application of NIH software Image]A
v.1.45b and normalized to the respective loading control.

2.13. Measurement of MnSOD activity

At least 8x107 expanded human T cells were stimulated with
plate-bound anti-CD3 antibody for 8 h. Thereafter, cells were collect-
ed, washed with PBS, snap-frozen in liquid nitrogen and stored over-
night at —80 °C. Jurkat T cells (1x107 cells) were transfected by
nucleofection with MnSOD-encoding plasmid or empty vector. After
24 h of resting period cells were lysed and MnSOD activity was mea-
sured. SOD activity was detected using a commercial “SOD Assay
Kit-WST” according to manufacturer's protocol (Dojindo Molecular
Technologies Inc., Japan). A computer-tuneable spectrophotometer
(Spectramax Plus Microplate Reader, Molecular Devices, USA) operat-
ing in the dual wavelength mode was applied. Samples were analyzed
in temperature-controlled 96-well plates in a final volume of 300 pl.
Briefly, cells were disrupted using a 27G needle in ice-cold ETC buffer
(20 mM Tris-HCI pH 7.4, 250 mM sucrose, 50 mM KCl, 5 mM MgCl,)
and the homogenates were centrifuged at 600 g, 4 °C for 10 min.
The resulted supernatant was sonicated (Branson Sonifier 450, USA)
to disrupt mitochondrial membranes. MnSOD activity was measured
in the presence of CuzZnSOD inhibitor (3 mM NaCN) and normalized
to the protein content. To correct for inter-experimental variation
the enzymatic activities obtained from three independent experi-
ments were subjected to z-transformation (see Fig. 1; for measured
values, see Suppl. Fig. 1B).

2.14. Determination of IL-2 secretion

IL-2 concentration was measured by enzyme-linked immunosor-
bent (ELISA) assay (BD OptEIA Set Human IL-2, Becton Dickinson).
Jurkat T cells were transfected by nucleofection with vector encoding
human MnSOD or control empty vector (as described before). After
over-night recovery (18 h) cells were stimulated with PMA (10 ng/
ml) and ionomycin (1uM) for 7 h. Next, the supernatants were
cleared by centrifugation and measurements were performed accord-
ing to the manufacturer's instructions.

2.15. Caspase 8 activity assay

Jurkat T cells were transfected with MnSOD encoding and control
empty vector (as described previously). After an over-night resting
period (18 h) the cell suspension was cleared from the dead/damaged
cells by Ficoll-Paque density centrifugation. Thereafter, cells were
stimulated with PMA (10 ng/ml) and ionomycin (1 uM) for 24 h. Cas-
pase 8 activity was measured using a “Caspase-Glo 8®” kit (Promega,
USA) and a 96-well plate luminometer (Berthold, Germany) accord-
ing to manufacturer's instruction.

3. Results

3.1. Rise in MnSOD content and activity inversely correlates with T cell
activation-induced oxidative signal generation and gene expression

T cell activation-induced release of H,0, from mitochondria has
been described to be crucial for gene expression including CD95L
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Fig. 1. T cell activation-induced ROS generation and ROS-dependent gene transcription inversely correlate with MnSOD activity and protein content. A, In vitro expanded human T
cells (“day 6”) of three healthy donors were stimulated via plate-bound anti-CD3 antibodies (30 pg/ml) for the indicated time periods and stained with H,DCF-DA. The level of
activation-induced ROS was assessed by FACS and calculated as percentage increase in mean fluorescence intensity (MFI) +/— SD of triplicated measurements. B, Expanded
human T cells were stimulated by plate-bound anti-CD3 antibodies. Expression of ROS-dependent genes (IL-2, CD95L) was analyzed at the indicated time points using quantitative
real-time RT-PCR and normalized to GAPDH expression. Representative results are presented as triplicated measurements +/— SD (for data obtained from cells of other donors, see
Suppl. Fig. 1A). C, Expanded human T cells were stimulated via plate-bound anti-CD3 antibodies for the indicated time points. Cells were lysed and protein levels were determined
by WB analysis (arrow indicates CuZnSOD band). Representative blot for triplicated experiment is presented. The extent of MnSOD upregulation was determined according to sig-
nal intensity over loading control (as described in the Materials and methods section). D, T cells from three healthy donors were 8 h stimulated via plate-bound anti-CD3 antibodies
and MnSOD activity was measured in activated and unstimulated cells. Data are presented as ‘z-scores’ of three independent experiments +/— SD; Student's t test: p<0.05 (*). For
measured values, see Suppl. Fig. 1D). Cells within the experiments were collected, stained or lysed at the same time, applying the same conditions.

and cytokines, e.g. IL-2 and IL-4 [3,9-12]. However, few data are avail-
able about the regulation and kinetics of ROS generation in human T
cells. In order to determine the profile of oxidative signaling, in vitro
expanded primary human T cells were re-stimulated by plate-
bound agonistic anti-CD3 antibodies and time course of ROS produc-
tion was determined. T cells of all investigated donors showed a rapid
increase in ROS production, with a maximum being reached after 1 to
2 h. Then, a slow decline in ROS generation during the following 6 h
was observed (Fig. 1A). Since ROS facilitate NF-B triggering, we ana-
lyzed the expression of NF-kB responsive genes, IL-2 and CD95L. The
increase of transcript levels reached maximum after 1 to 2 h which
corresponds to the kinetics of ROS production (Fig. 1B and Suppl.

Fig. 1A). Of note, stimulation with an isotype-matched control anti-
body did not lead to an increase in ROS generation or gene expression
(Suppl. Fig. 1B). Since ROS are constantly detoxified by dedicated en-
zymatic systems, protein levels of several antioxidative proteins were
analyzed in primary human T cells upon stimulation. Interestingly,
the extent of activation-induced ROS production inversely correlated
with the MnSOD content (Fig. 1C; Suppl. Fig. 1C). The amounts of
other major enzymes of the antioxidative defense, like cytosolic
CuZnSOD, mitochondrial thioredoxin reductase (TrxR2) and catalase
were not altered. Furthermore, a rise in MnSOD content resulted in
a significant enhancement of MnSOD-specific enzymatic activity
(Fig. 1D, Suppl. Fig. 1D).
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3.2. The oxidative signal generated by mitochondria regulates MnSOD upregulation of MnSOD was due to TCR-induced mitochondrial pro-
expression liferation, decreased mitochondrial turnover or transcriptional upre-
gulation. To investigate mitochondrial proliferation upon TCR

TCR triggering has been associated with increased mitochondrial stimulation the mitochondrial mass of primary human T cells was de-
biogenesis [37]. Thus, we analyzed whether the observed termined by either immunoblotting (Fig. 2A) or the use of the
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Fig. 2. Upregulation of MnSOD is mediated by oxidation-dependent transcription and not by an increase of mitochondrial mass. A-C, In vitro expanded human T cells (“day 6”) were
stimulated by plate-bound anti-CD3 antibodies (30 pg/ml) for indicated time periods. A, Cells were lysed and protein content was analyzed by WB. Levels of MnSOD upregulation
were determined according to signal intensity over loading control. B, Cells were stained with MitoFluor Green (MFG) or 10-nonyl acridine orange (NAO) 20 min before the end of
the respective stimulation period. Mitochondrial mass was analyzed by FACS in triplicated samples (+/— SD). A and B, representative results of triplicated experiments (i.e. donors)
are presented. C, Expression of MnSOD was analyzed at the indicated time points using quantitative real-time RT-PCR and normalized to GAPDH expression. Results of triplicated
measurements +/— SD for three independent experiments (i.e. donors) are presented. D, Pre-activated T cells were stimulated for 2 h via plate-bound anti-CD3 antibodies
+/— 30 min pre-incubation with 20 mM N-acetyl-cysteine (NAC). Activation-induced expression of CD95L, IL-2 and MnSOD was analyzed by quantitative real-time PCR and
normalized to GAPDH expression. Representative results of triplicated measurements +/— SD for three independent experiments (i.e. donors) are presented.
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mitochondria-specific fluorescent dyes MFG and NAO (Fig. 2B).
The content of mitochondrial proteins remained unchanged when
compared with loading control as well as no change in MFG accumu-
lation could be observed. Intriguingly, NAO staining showed a tran-
sient increase in fluorescence which paralleled the kinetics of ROS
production but not the rise in MnSOD content. Binding of NAO to car-
diolipin, a lipid component of the inner-mitochondrial membrane,
could be influenced by changes in cardiolipin oxidation or mitochon-
drial membrane potential [38,39]. Moreover, the transient character
of the observed change makes mitochondrial proliferation unlikely.
Thus, the increase in MnSOD content does not simply reflect an
over-all increase in cellular mass of mitochondria.

The TCR-induced temporal changes of ROS levels paralleled those
observed for NF-xB responsive genes, IL2 and CD95L (Fig. 1A and B,
Suppl. Fig. 1A). MnSOD transcription has been previously reported
to depend on NF-«B induction [40-42]. Analysis of the TCR-induced
changes in MnSOD transcript levels revealed positive correlation
with intracellular pro-oxidative status (Figs. 2C and 1A). Since NF-
KB triggering is oxidation-dependent, we investigated whether the
increased MnSOD expression was a result of activation-induced ROS
production. To this end, we applied the ROS scavenger, N-acetyl-
cysteine (NAC). We and others previously showed that, addition
of NAC efficiently inhibits T cell activation-induced ROS generation
and NF-«B triggering [3,9,43] (Suppl. Fig. 2A and B). As presented
in Fig. 2D, pre-treatment with NAC abrogated the oxidative signal de-
pendent transcription of IL-2 and CD95L genes. Correspondingly,
treatment with NAC (Fig. 2D, Suppl. Fig. 2D) also blocked MnSOD
transcription, indicating a dependence of MnSOD upregulation on
activation-induced ROS generation. Moreover, Trolox, a water-
soluble vitamin E derivative, which blocked activation-induced
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ROS generation (Suppl. Fig. 2C), also inhibited transcriptional upregu-
lation of MnSOD and IL-2 (Suppl. Fig. 2D). In the applied concentra-
tion range both anti-oxidants did not display any toxic effects
(Suppl. Fig. 3A and B). Thus, the TCR-triggered upregulation of
MnSOD represents a negative feedback loop regulating ROS
production.

3.3. Increase in MnSOD content inhibits T cell activation-induced ROS
generation

An association between PMA-triggered mitochondrial H,O, gen-
eration and increase in MnSOD content and activity was also shown
for the Jurkat T cell line [10]. Although, the kinetics of mitochondrial
oxidative signal generation differs from that of in vitro expanded
human T cells (in Jurkat T cells the signal peaks after 30 min-1 h,
data not shown), we decided to apply Jurkat T cells as a model sys-
tem. Moreover, efforts to transiently overexpress MnSOD in expand-
ed human T cells were unsuccessful (data not shown). To analyze
the physiological role of T cell activation-induced increase in
MnSOD content and activity, MnSOD was transiently overexpressed
in Jurkat T cells. MnSOD overexpression neither affected the viability
of transfected cells (Suppl. Fig. 4A) nor influenced mitochondrial
membrane potential, mitochondrial mass or the content of major
subunits of respiratory chain complexes (Suppl. Figs. 4B, C and 5A).
As revealed by band intensity analysis, the level of MnSOD protein
upon overexpression (1.8-3.1 fold increase in intensity; Figs. 3 and
4A and Suppl. Fig. 5A) resembles the ones reached upon activation
of Jurkat T cells (2.1 fold increase in intensity; Suppl. Fig. 5A) as
well as activation of expanded human T cells (1.7-5.1 increase in
intensity; Figs. 1C, 2A and Suppl. Fig. 1C). Concomitantly, cells
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Fig. 3. MnSOD regulates T cell activation-induced ROS production. A and B, Jurkat T cells were transiently transfected by electroporation with MnSOD-expressing or empty (EV)
vector. Mitochondria-enriched fractions (A) or cytosol and membrane fractions (B) were isolated by differential centrifugation 24 h after transfection and intracellular localization
of MnSOD was analyzed by WB. C, Jurkat T cells transfected with EV or MnSOD-encoding plasmids and RFP reporter plasmid were stained with H,DCF-DA and stimulated with PMA
(10 ng/ml) for 30 min. Left panel, the levels of activation-induced ROS were assessed by FACS in triplicated samples +/— SD (for gating strategy, see Suppl. Fig. 6A) and calculated
as percent increase in mean florescence intensity (MFI). Right panel, MnSOD overexpression was verified by WB. D, Jurkat T cells were stably transfected by retroviral transduction
using a MnSOD expression construct under control of a doxycycline (DOX)-inducible promoter and sub-cloned in the presence of hygromycin. Thereafter, cells were treated with
DOX for 48 h or left untreated. Left panel, cells were stained with H,DCF-DA and stimulated with PMA (10 ng/ml) for 30 min. The level of activation-induced ROS was analyzed by
FACS in triplicated samples +/— SD. Right panel, MnSOD overexpression was verified by WB. A-D, Representative results for triplicated experiments are presented. Levels of
MnSOD overexpression were determined by measurements of signal intensity over loading control.
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overexpressing MnSOD display an increased MnSOD-specific enzy-
matic activity (Suppl. Fig. 5B). Since MnSOD activity depends on
sub-cellular localization of the enzyme, cells overexpressing MnSOD
were fractionated by differential centrifugation into mitochondria-
enriched (Fig. 3A) or cytoplasmic and membrane fractions (Fig. 3B).
A significant increase in mitochondrial MnSOD content was detected
as demonstrated by WB analysis (Fig. 3A and B). Thus, overexpression
of MnSOD in Jurkat T cells seems to be a suitable model system to
mimic T cell activation-induced MnSOD upregulation.

To directly measure the influence of increased MnSOD levels
on activation-induced ROS production, MnSOD was overexpressed
together with the red fluorescent protein (RFP) to control for
transfection efficiency (for gating strategy, see Suppl. Fig. 6A).
As shown by FACS analysis, the release of H,0, from mitochon-
dria was significantly decreased in MnSOD-overexpressing RFP-
positive cells (Fig. 3C). To further investigate this finding, a Jurkat
T cell line stably transfected with MnSOD under control of a doxy-
cycline (DOX) dependent transactivator/promoter system (J16-
MnSOD) was generated. Pre-treatment with DOX for 48 h resulted
in enhanced MnSOD protein levels (2.1 fold increase in band in-
tensity). In consequence, activation-induced ROS generation was
decreased (J16-MnSOD, Fig. 3D). In contrast, in the control cell
line containing the transactivator/promoter system alone no
changes in the activation-induced ROS production could be ob-
served upon DOX pre-treatment (J16-ctrl, Fig. 3D). In conclusion,
elevated MnSOD levels lead to a decrease in stimulation-induced
ROS production.

3.4. Higher mitochondrial abundance of MnSOD inhibits T cell
activation-induced gene expression

The activation of AP-1 and NF-kB transcription factors is highly de-
pendent on the increased intracellular pro-oxidative status. Thus, we
analyzed the effect of higher mitochondrial MnSOD content on T cell
activation-mediated AP-1 and NF-«B triggering using luciferase re-
porter constructs. Upon MnSOD overexpression, AP-1 and NF-kB trig-
gering was decreased which coincided with the reduced ROS release
from mitochondria (Fig. 4A).

Next, we investigated NF-xB and AP-1 dependent induction of the
IL-2 promoter. Cells with higher amounts of MnSOD protein showed a
lowered IL-2 driven luciferase signal (Fig. 4B). Activation-induced IL-
2 transcription was also clearly decreased in Jurkat T cells overexpres-
sing MnSOD in a transient (Fig. 4C) and DOX-inducible manner
(Fig. 4E). Furthermore, increased MnSOD content resulted in a de-
creased ability to secrete IL-2 upon activation (Fig. 4D). Therefore,
the MnSOD level critically regulates the T cell activation-triggered
transcriptional response.

3.5. Increase in MnSOD content negatively regulates T cell activation-
induced CD95L-mediated AICD

Expanded T cells as well as Jurkat T cells undergo CD95L-mediated
AICD upon TCR triggering or PMA/Iono stimulation. T cell activation-
induced upregulation of CD95L transcription strictly depends on oxi-
dative signal-mediated NF-xB and AP-1 triggering [9-12]. Therefore,
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are presented as triplicated measurements +/— SD.

we investigated whether reduced levels of the oxidative signal in cells
overexpressing MnSOD affect CD95L expression and AICD. To this
end, we transiently co-expressed a CD95L promoter luciferase
reporter construct together with MnSOD. MnSOD overexpression
abrogated activation-induced CD95L promoter activity (Fig. 5A).
Moreover, MnSOD overexpression led to reduced CD95L transcript
levels (Fig. 5B). In addition, DOX-treated J16-MnSOD cells showed
lower CD95L transcript levels upon stimulation as compared to con-
trol cells (Fig. 5C).

To test whether reduced CD95L transcription results in reduced
cell death, Jurkat T cells were transiently co-transfected with

MnSOD and green fluorescent protein (GFP). Next, apoptosis was in-
duced by stimulation with PMA/Iono and the decrease in the number
of living GFP-positive cells (GFP*) was determined by FACS measure-
ment (Suppl. Fig. 6B). Overexpression of MnSOD resulted in approxi-
mately 50% decrease in AICD (Fig. 5D). Moreover, increased
abundance of MnSOD protein led to significantly lower caspase 8 ac-
tivity measured 24 h after AICD induction (Fig. 5E). AICD was also de-
creased in DOX-treated J16-MnSOD cells (Fig. 5F). However, in the
latter case an additional effect of DOX cannot be ruled out—the con-
trol cell line showed a slight decrease in cell death after DOX treat-
ment (Fig. 5F).



M.M. Kamifiski et al. / Biochimica et Biophysica Acta 1823 (2012) 1041-1052 1049

Due to its protective action on mitochondria MnSOD inhibits apo-
ptosis triggered by TNF-q, irradiation or anti-cancer drugs [44-48].
Particularly, in the case of cell death induced by TNF-a receptor en-
gagement MnSOD was suggested to provide protection against toxic
effects of mitochondrial 05~ [45,48]. Thus, we analyzed whether ob-
served reduction in AICD of MnSOD-overexpressing Jurkat T cells is
a consequence of general disturbance in downstream mitochondrial
apoptotic events or reduced CD95L expression. To this end, MnSOD-
overexpressing cells were treated with the agonistic CD95 antibody
(anti-APO-1). Thereafter, the decrease in GFP™ cells was measured
by FACS. No difference in apoptosis induction could be observed for
all antibody concentrations tested (Fig. 5G) showing that the reduc-
tion of AICD does not relate to reduced sensitivity towards CD95-
induced apoptosis but is indeed an effect of decreased CD95L
expression.

In conclusion, we showed that increased MnSOD levels in stim-
ulated T cells negatively correlate with ROS production. Further-
more, we demonstrated that increased MnSOD levels down-
regulate T cell activation-induced ROS production, AP-1 and NF-<B
activation, ROS-dependent gene transcription as well as CD95L-
mediated AICD. Thus, the activation dependent upregulation of
MnSOD comprises a new regulatory negative feedback loop in TCR
signaling (Fig. 6).

4. Discussion

TCR-mediated gene expression strictly depends on the simulta-
neous presence of two signals, a DAG/PMA-dependent H,0, signal
and an IPs/Iono-dependent Ca2™ signal, and consequently on simulta-
neous activation of oxidation-dependent (e.g. NF-xB, AP-1) and Ca*-
dependent (e.g. NF-AT) transcription factors [1-3,7,10]. Neither signal
is sufficient by itself for induction of IL-2/CD95L expression or CD95L-
dependent AICD.

The activation-induced oxidative signal is generated by different
enzymatic sources including the phagocytic NADPH oxidase NOX2
[14] and the non-phagocytic NADPH oxidase DUOX1 [16]. We and

1. Signaling phase

|

Hzoz ﬂ—) NF-KE/AP-!U _E_
e

H_O ﬂ—> NF-KB/AP—WH _ﬁ
22

Nucleus

Mitochondria

Fig. 6. Schematic representation of the MnSOD-mediated regulation of T cell
activation-induced oxidative signaling. Signaling phase (1), upon T cell activation mito-
chondrial complex I-mediated O5™ release is up-regulated. MnSOD participates in gen-
eration of H,0, by mitochondria. Due to low MnSOD levels, H,0, could also be
generated by reactions other than O3 dismutation, which have product/substrate
ratio higher than that of the dismutation reaction. A rise in the cytoplasmic H,0, con-
centration leads to activation of the redox-dependent transcription factors, NF-<B and
AP-1, and therefore facilitates expression of immediate-early CD95L/IL-2 genes as well
as MnSOD. Signal shut-down phase (2), transcriptional upregulation of MnSOD results
in its higher mitochondrial content and activity. Mitochondrial H,0- release is inhib-
ited, presumably due to the out-titration effect of higher intra-mitochondrial MnSOD
abundance. Lowering of cytoplasmic H,0, levels leads to a less pro-oxidative environ-
ment and blunts NF-xB and AP-1 activation.

others have previously identified mitochondrial respiratory complex
I as an essential source of ROS generation upon TCR stimulation
[3,10]. Treatment with complex I inhibitors or siRNA mediated down-
regulation of NDUFAF1, a crucial complex I assembly factor, efficiently
block TCR triggering-induced ROS production and gene expres-
sion [3,10]. Thus, mitochondria function as oxidative signaling organ-
elles during T cell activation

According to experiments on isolated mitochondria, the first step
of complex I-mediated H,0, generation is formation of O5~ and its re-
lease into the mitochondrial matrix [22]. Next, O5  has to be trans-
formed into H,0,, which acts as an oxidative signaling molecule. As
electrically neutral and relatively stable compound, H,0, crosses mi-
tochondrial membranes, diffuses into the cytosol and potentiates TCR
signaling via reversible inactivation of negative regulatory phospha-
tases or direct influence on NF-kB/AP-1 activity or DNA binding
[7,8,49].

In order to avoid potentially deleterious ROS effects as well as to
allow for spatiotemporal signaling integration, the extent and dura-
tion of the oxidative signal have to be tightly regulated. Therefore,
the TCR-induced generation of the mitochondrial oxidative signal is
expected to be limited by a subsequent antioxidative response.

MnSOD is a major antioxidative enzyme, localized exclusively in
the lumen of the mitochondrial matrix. It provides a first line of de-
fense against O5 released by the electron chain as a byproduct of res-
piration [50]. MnSOD protects mitochondrial proteins, lipids and
mtDNA from O3~ by efficiently dismutating it to H,O, and O,. Impor-
tantly, the enzyme operates with one of the fastest catalytical rates
known (reaction rate constant at pH 7.8, k=app. 2x10°M~'s™!
[50]). Moreover, in activated T cells residual MnSOD activity fulfills
an additional role. It mediates the first step in the process of mito-
chondrial oxidative signal generation by facilitating O3~ to H,0,
conversion.

Interestingly, we have observed that the kinetics of the TCR-
induced oxidative signal generation as well as NF-kB/AP-1-dependent
IL-2 and CD95L gene expression inversely correlates with the protein
content of MnSOD (Figs. 1A-C, 2A, Suppl. Fig. 1A, C). Strikingly, the
amounts of other major antioxidative enzymes, such as CuZnSOD
(SOD1, located in the cytoplasm and mitochondrial inter-membrane
space) as well as H,O,-removing proteins, catalase (located in perox-
isomes, cytoplasm, mitochondrial inter-membrane space) and thiore-
doxin reductase 2 (TrxR2, located in the mitochondrial matrix)
remained unaltered. In addition, rise in the MnSOD protein level cor-
responded with a significant increase in MnSOD-specific activity
(Fig. 1D, Suppl. Fig. 1D).

The influence of enhanced MnSOD activity and content on mito-
chondrial H,0, generation is a matter of debate. Nevertheless, the-
oretical models underline that in the case of steady-state Os
generation increased MnSOD activity potentially results in over-all
decreased H,0, release from mitochondria [51,52]. Moreover, in
different experimental systems where MnSOD was overexpressed
or down-regulated respective decrease or increase of cellular oxi-
dative stress was observed [32,53,54]. Increased amounts of
MnSOD more efficiently remove O3 due to the out-titration effect.
Thus, there is a reduced probability of 05 to participate in other
H,0,-generating reactions (e.g. reduction of aconitase [4Fe-4S]
cluster), that yield more H,0, per single O  molecule than the
dismutation reaction itself [52]. Consequently, TCR-induced O3 re-
lease by complex I, which during the signaling phase manifests it-
self in H,O, generation (05 generation increased, MnSOD “low”,
H,0, release increased) is followed by a signal shut-down phase
(05~ generation increased, MnSOD “high”, H,0, release decreased,
see Fig. 6) [51,52].

Results obtained with Jurkat T cells overexpressing MnSOD in a
transient or DOX-inducible fashion support this assumption. In both
experimental systems used, enforced upregulation of MnSOD content
significantly blocked PMA-induced mitochondrial oxidative signal
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generation already during the signaling phase (Fig. 3C, D). Interesting-
ly, as reported before [10], MnSOD activity in non-transfected Jurkat
cells initially rises upon PMA or TCR stimulation independently of
subsequent activation-induced upregulation of MnSOD content, thus
facilitating at first the oxidative signal generation. In addition, as we
reported in a recent study [55], when the T cell activation-induced
rise in MnSOD content was abolished, due to NF-«B pathway inhibi-
tion by constitutive IkBa expression, oxidative signal generation
was enhanced.

It is therefore apparent that MnSOD serves as a regulatory and
limiting switch in the process of oxidative signal generation of acti-
vated T cells. However, since the mitochondrial redox equilibrium de-
pends on a confined glutathione pool [56] and separate thioredoxin
system [57] analysis of secondary steps governing TCR-induced mito-
chondrial H,0, generation and scavenging is necessary to fully eluci-
date the mechanisms of the oxidative signal generation.

Concomitantly with an inhibition of the mitochondrial oxidative
signal, MnSOD overexpression leads to the abrogation of T cell
activation-induced NF-«xB and AP-1 triggering (Fig. 4A). Similar ef-
fects were reported for other experimental systems [58-61]. Conse-
quently, IL-2/CD95L promoter activities, IL-2/CD95L gene expression
as well as IL-2 secretion were inhibited (Figs. 4B-E and 5A-C). Since
CD95L is the major mediator of AICD in Jurkat T cells [9-11], transient
or DOX-inducible MnSOD overexpression resulted in diminished
cell death upon T cell activation (Fig. 5D, F). Extent of activation-
induced caspase 8 processing was also decreased (Fig. 5E). Previously,
it has been shown that high levels of MnSOD could protect malignant
cells against cell death induced by TNF-«, anti-cancer drugs or irradi-
ation [44-48]. Moreover, cleavage and inactivation of MnSOD is a
necessary step during CD95 receptor-induced apoptosis of Jurkat T
cells [62]. However, MnSOD-overexpressing Jurkat T cells were equal-
ly prone to CD95 receptor-triggered apoptosis as control cells
(Fig. 5G). Thus, observed lower AICD could be attributed to the de-
creased activation-induced CD95L level but not to anti-apoptotic ef-
fects of MnSOD at the stage of mitochondrial rupture.

A rise in MnSOD content could not be associated with increased mi-
tochondrial mass or decreased mitochondrial turnover (Fig. 2A, B).
However, a number of reports demonstrate a positive regulatory role
for NF-<B in MnSOD transcription [40-42]. Indeed, MnSOD expression
is induced upon activation of in vitro expanded human T cells and the
transcript levels temporarily coincide with the extent of the oxidative
signal (Fig. 2C). Of note, as compared to immediate-early genes, such
as IL-2 and CD95L, MnSOD transcript levels decrease less abruptly,
which could be indicative for higher mRNA stability (Fig. 1B).

Treatment with NAC, an antioxidant capable of inhibiting
activation-induced oxidative signal generation, NF-xB activation as
well as NF-kB-dependent gene expression [3,9,10] (Suppl. Fig. 2A,
B), efficiently blocked MnSOD transcription (Fig. 2D, Suppl. Fig. 2D).
Moreover, Trolox, a compound with antioxidative properties different
from those of NAC, did not only efficiently inhibit activation-induced
ROS generation but also MnSOD expression (Suppl. Fig. 2C and D). In
addition, in a recent study by Kiessling et al. we showed that overex-
pression of IkBat, a major inhibitor of the NF-«B pathway, abrogates
upregulation of MnSOD upon T cell activation [55]. Therefore, a neg-
ative feedback loop could be postulated between ROS/NF-kB-
dependent MnSOD expression and MnSOD-dependent control of
ROS generation. Moreover, a signaling process involving T cell
activation-induced mitochondrial oxidative signal and a regulatory
role of MnSOD exemplifies a mechanism of mitochondria-to-
nucleus retrograde communication [63] (Fig. 6). A similar mechanism
for regulation of MnSOD expression by mitochondria-generated ROS
(H20,) and NF-B activation has been also proposed by others
[64,65].

The MnSOD~/~ mice, constitutively lacking protein expression, die
shortly after birth [66]. Nevertheless, application of other genetic
mouse models demonstrates a regulatory role for MnSOD in T cell

development and function. Using Lck promoter-controlled T cell-
confined MnSOD knock-out mice, Case et al. showed that MnSOD is cru-
cial for proper thymocyte differentiation, homeostatic survival of pe-
ripheral T cells as well as for T cell-mediated immune responses [34].
Conditional loss of MnSOD led to increased mitochondrial 05 levels, in-
creased thymocyte apoptosis, decreased number of peripheral T cells
and impaired clearance of the influenza A H1N1 virus. Interestingly, pe-
ripheral T cells and thymocytes were in a more activated state as judged
by a greatly increased proportion of Mel14~/CD44 ™" cells. In addition,
Maric et al. reported that a lowered content and activity of MnSOD in
peripheral T cells of INFy-inducible lysosomal thiol reductase (GILT)
knock-out mice manifests itself in increased sensitivity to TCR ligation
and accelerated development of T cell-dependent diabetes [35]. CD3
triggering of GILT~/~ T cells resulted in higher levels of O3, both before
and after stimulation, as well as increased and more persistent ERK1/2
activation.

Multiple studies support tumor suppressor function of MnSOD
[28]. Reduced protein level, inactivating mutations, genetic polymor-
phisms or gene silencing of MnSOD have been associated with
increased intracellular oxidative stress, resulting in higher suscepti-
bility to tumor development or enhanced tumorigenic potential
[24,26,27,31]. On the contrary, increased MnSOD expression exerts
an anti-tumor effect, i.e. reduces proliferation of cancer cells in vitro
or tumor formation in vivo [29,58,67]. To this end, MnSOD ~/* mice
are prone to spontaneous lymphoma development [32]. Moreover,
studies using the Lck-Bax 38/1 mouse model of T cell lymphoma dem-
onstrated that crossing with Lck-MnSOD transgenics abrogates lym-
phoma development [23]. Increased gene dosage of MnSOD
significantly improved chromosomal stability of the Lck-Bax 38/1T
cells, and in turn decreased aneuploidy of thymocytes and delayed
the onset of lymphoma.

In conclusion, the existence of a MnSOD-mediated switch in the
process of T cell activation-induced gene expression and CD95L-
dependent AICD provides yet another argument for a crucial impor-
tance of mitochondria, and MnSOD in particular, for the regulation
of T cell function.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.bbamcr.2012.03.003.

Acknowledgements

We thank D. Siiss and U. Matiba for technical support, L. Weingarten
and T. P. Dick for Jurkat M2 cells, M. Li-Weber for luciferase reporter
constructs and T. Miloud for the RFP plasmid. The project was sup-
ported by the Wilhelm-Sander-Stiftung (2004.064.1/2007.126.1) and
the Helmholtz Alliance—Immunotherapy of Cancer (HA202).

The authors declare that they do not have competing financial
interests.

References

[1] RL. Wange, Y. Huang, T cell receptor signaling: beyond complex complexes,
] Biol. Chem. 279 (2004) 28827-28836.

[2] A.Truneh, F. Albert, P. Golstein, A.M. Schmitt-Verhulst, Early steps of lymphocyte
activation bypassed by synergy between calcium ionophores and phorbol ester,
Nature 313 (1985) 318-320.

[3] M.M. Kaminski, S.W. Sauer, C.D. Klemke, D. Suss, J.G. Okun, P.H. Krammer, K.

Gulow, Mitochondrial reactive oxygen species control T cell activation by regulat-

ing IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosup-

pression, J. Immunol. 184 (2010) 4827-4841.

S.D. Goldstone, ].C. Fragonas, T.M. Jeitner, N.H. Hunt, Transcription factors as tar-

gets for oxidative signalling during lymphocyte activation, Biochim. Biophys. Acta

1263 (1995) 114-122.

S. Tatla, V. Woodhead, J.C. Foreman, B.M. Chain, The role of reactive oxygen spe-

cies in triggering proliferation and IL-2 secretion in T cells, Free Radic. Biol. Med.

26 (1999) 14-24.

S. Devadas, L. Zaritskaya, S.G. Rhee, L. Oberley, M.S. Williams, Discrete generation

of superoxide and hydrogen peroxide by T cell receptor stimulation: selective

regulation of mitogen-activated protein kinase activation and fas ligand expres-

sion, J. Exp. Med. 195 (2002) 59-70.

[4

5

6


doi:10.1016/j.bbamcr.2012.03.003

(7]

[8

[9

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M.M. Kamifiski et al. / Biochimica et Biophysica Acta 1823 (2012) 1041-1052

W. Droge, Free radicals in the physiological control of cell function, Physiol. Rev.
82 (2002) 47-95.

M. Reth, Hydrogen peroxide as second messenger in lymphocyte activation, Nat.
Immunol. 3 (2002) 1129-1134.

K. Gulow, M. Kaminski, K. Darvas, D. Suss, M. Li-Weber, P.H. Krammer, HIV-1
trans-activator of transcription substitutes for oxidative signaling in activation-
induced T cell death, J. Immunol. 174 (2005) 5249-5260.

M. Kaminski, M. Kiessling, D. Suss, P.H. Krammer, K. Gulow, Novel role
for mitochondria: protein kinase Ctheta-dependent oxidative signaling
organelles in activation-induced T-cell death, Mol. Cell. Biol. 27 (2007)
3625-3639.

P.H. Krammer, M. Kaminski, M. Kiessling, K. Gulow, No life without death, Adv.
Cancer Res. 97C (2007) 111-138.

M. Li-Weber, P.H. Krammer, Function and regulation of the CD95 (APO-1/Fas)
ligand in the immune system, Semin. Immunol. 15 (2003) 145-157.

J.S. Yi, B.C. Holbrook, R.D. Michalek, N.G. Laniewski, ].M. Grayson, Electron trans-
port complex [ is required for CD8+ T cell function, J. Immunol. 177 (2006)
852-862.

S.H. Jackson, S. Devadas, J. Kwon, LA. Pinto, M.S. Williams, T cells express a
phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation,
Nat. Immunol. 5 (2004) 818-827.

M. Los, H. Schenk, K. Hexel, P.A. Baeuerle, W. Droge, K. Schulze-Osthoff, IL-2 gene
expression and NF-kappa B activation through CD28 requires reactive oxygen
production by 5-lipoxygenase, EMBO J. 14 (1995) 3731-3740.

J. Kwon, K.E. Shatynski, H. Chen, S. Morand, X. de Deken, F. Miot, T.L. Leto, M.S.
Williams, The nonphagocytic NADPH oxidase Duox1 mediates a positive feedback
loop during T cell receptor signaling, Sci. Signal. 3 (2010) ra59.

A. Quintana, E.C. Schwarz, C. Schwindling, P. Lipp, L. Kaestner, M. Hoth, Sustained
activity of CRAC channels requires translocation of mitochondria to the plasma
membrane, ]. Biol. Chem. 281 (2006) 40302-40309.

A. Quintana, C. Schwindling, A.S. Wenning, U. Becherer, J. Rettig, E.C. Schwarz, M.
Hoth, T cell activation requires mitochondrial translocation to the immunological
synapse, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 14418-14423.

F. Baixauli, N.B. Martin-Cofreces, G. Morlino, Y.R. Carrasco, C. Calabia-Linares, E.
Veiga, J.M. Serrador, F. Sanchez-Madrid, The mitochondrial fission factor
dynamin-related protein 1 modulates T-cell receptor signalling at the immune
synapse, EMBO J. 30 (2011) 1238-1250.

M. Hoth, C.M. Fanger, R.S. Lewis, Mitochondrial regulation of store-operated cal-
cium signaling in T lymphocytes, J. Cell Biol. 137 (1997) 633-648.

G. Nagy, A. Koncz, A. Perl, T cell activation-induced mitochondrial hyperpolariza-
tion is mediated by Ca2+- and redox-dependent production of nitric oxide,
J. Immunol. 171 (2003) 5188-5197.

A.J. Lambert, M.D. Brand, Reactive oxygen species production by mitochondria,
Methods Mol. Biol. 554 (2009) 165-181.

C.I. van de Wetering, M.C. Coleman, D.R. Spitz, BJ. Smith, C.M. Knudson, Manganese
superoxide dismutase gene dosage affects chromosomal instability and tumor
onset in a mouse model of T cell lymphoma, Free Radic. Biol. Med. 44 (2008)
1677-1686.

S.S. Wang, S. Davis, J.R. Cerhan, P. Hartge, R.K. Severson, W. Cozen, Q. Lan, R.
Welch, SJ. Chanock, N. Rothman, Polymorphisms in oxidative stress genes and
risk for non-Hodgkin lymphoma, Carcinogenesis 27 (2006) 1828-1834.

P. Vineis, F. Veglia, S. Garte, C. Malaveille, G. Matullo, A. Dunning, M. Peluso,
L. Airoldi, K. Overvad, O. Raaschou-Nielsen, F. Clavel-Chapelon, ].P. Linseisen,
R. Kaaks, H. Boeing, A. Trichopoulou, D. Palli, P. Crosignani, R. Tumino, S.
Panico, H.B. Bueno-De-Mesquita, P.H. Peeters, E. Lund, CA. Gonzalez, C.
Martinez, M. Dorronsoro, A. Barricarte, C. Navarro, J.R. Quiros, G. Berglund,
B. Jarvholm, N.E. Day, T.J. Key, R. Saracci, E. Riboli, H. Autrup, Genetic suscep-
tibility according to three metabolic pathways in cancers of the lung and
bladder and in myeloid leukemias in nonsmokers, Ann. Oncol. 18 (2007)
1230-1242.

P. Koistinen, S. Ruuska, M. Saily, S. Kakko, P. Siitonen, T. Siitonen, M.J. Savolainen,
V.L. Kinnula, E.R. Savolainen, An association between manganese superoxide dis-
mutase polymorphism and outcome of chemotherapy in acute myeloid leukemia,
Haematologica 91 (2006) 829-832.

S. Wang, F. Wang, X. Shi, J. Dai, Y. Peng, X. Guo, X. Wang, H. Shen, Z. Hu,
Association between manganese superoxide dismutase (MnSOD) Val-9Ala
polymorphism and cancer risk—a meta-analysis, Eur. ]J. Cancer 45 (2009)
2874-2881.

L.W. Oberley, Mechanism of the tumor suppressive effect of MnSOD overexpres-
sion, Biomed. Pharmacother. 59 (2005) 143-148.

S. Venkataraman, X. Jiang, C. Weydert, Y. Zhang, H.J. Zhang, P.C. Goswami, J.M.
Ritchie, LW. Oberley, G.R. Buettner, Manganese superoxide dismutase overexpres-
sion inhibits the growth of androgen-independent prostate cancer cells, Oncogene
24 (2005) 77-89.

D. Hernandez-Saavedra, ].M. McCord, Paradoxical effects of thiol reagents on Jurkat
cells and a new thiol-sensitive mutant form of human mitochondrial superoxide
dismutase, Cancer Res. 63 (2003) 159-163.

E. Samper, D.G. Nicholls, S. Melov, Mitochondrial oxidative stress causes
chromosomal instability of mouse embryonic fibroblasts, Aging Cell 2 (2003) 277-285.
H. Van Remmen, Y. Ikeno, M. Hamilton, M. Pahlavani, N. Wolf, S.R. Thorpe, N.L.
Alderson, J.W. Baynes, CJ. Epstein, T.T. Huang, ]. Nelson, R. Strong, A. Richardson,
Life-long reduction in MnSOD activity results in increased DNA damage and
higher incidence of cancer but does not accelerate aging, Physiol. Genomics 16
(2003) 29-37.

D.R. Hodge, B. Peng, C. Pompeia, S. Thomas, E. Cho, P.A. Clausen, V.E. Marquez,
W.L. Farrar, Epigenetic silencing of manganese superoxide dismutase (SOD-2)

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

1051

in KAS 6/1 human multiple myeloma cells increases cell proliferation, Cancer
Biol. Ther. 4 (2005) 585-592.

AJ. Case, J.L. McGill, L.T. Tygrett, T. Shirasawa, D.R. Spitz, T.J. Waldschmidt, K.L.
Legge, F.E. Domann, Elevated mitochondrial superoxide disrupts normal T cell de-
velopment, impairing adaptive immune responses to an influenza challenge, Free
Radic. Biol. Med. 50 (2011) 448-458.

M. Maric, L. Barjaktarevic, B. Bogunovic, M. Stojakovic, C. Maric, S. Vukmanovic,
Cutting edge: developmental up-regulation of IFN-gamma-inducible lysosomal
thiol reductase expression leads to reduced T cell sensitivity and less severe auto-
immunity, J. Immunol. 182 (2009) 746-750.

L.B. Chen, Fluorescent labeling of mitochondria, Methods Cell. Biol. 29 (1989)
103-123.

J.L. Luo, H. Kamata, M. Karin, IKK/NF-kappaB signaling: balancing life and
death—a new approach to cancer therapy, J. Clin. Invest. 115 (2005)
2625-2632.

Y. Tsuchiya, T. Asano, K. Nakayama, T. Kato Jr., M. Karin, H. Kamata, Nuclear IKK-
beta is an adaptor protein for IkappaBalpha ubiquitination and degradation in
UV-induced NF-kappaB activation, Mol. Cell 39 (2010) 570-582.

L. Chang, H. Kamata, G. Solinas, J.L. Luo, S. Maeda, K. Venuprasad, Y.C. Liu, M.
Karin, The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced
cell death by inducing c-FLIP(L) turnover, Cell 124 (2006) 601-613.

X.S. Wan, M.N. Devalaraja, D.K. St Clair, Molecular structure and organization of
the human manganese superoxide dismutase gene, DNA Cell Biol. 13 (1994)
1127-1136.

K.K. Kiningham, Y. Xu, C. Daosukho, B. Popova, D.K. St Clair, Nuclear factor
kappaB-dependent mechanisms coordinate the synergistic effect of PMA and
cytokines on the induction of superoxide dismutase 2, Biochem. J. 353 (2001)
147-156.

Y. Xu, K.K. Kiningham, M.N. Devalaraja, C.C. Yeh, H. Majima, E.J. Kasarskis, D.K. St
Clair, An intronic NF-kappaB element is essential for induction of the human
manganese superoxide dismutase gene by tumor necrosis factor-alpha and
interleukin-1beta, DNA Cell Biol. 18 (1999) 709-722.

R. Schreck, P. Rieber, P.A. Baeuerle, Reactive oxygen intermediates as apparently
widely used messengers in the activation of the NF-kappa B transcription factor
and HIV-1, EMBO J. 10 (1991) 2247-2258.

J. Sun, Y. Chen, M. Li, Z. Ge, Role of antioxidant enzymes on ionizing radiation
resistance, Free Radic. Biol. Med. 24 (1998) 586-593.

G.H. Wong, ].H. Elwell, LW. Oberley, D.V. Goeddel, Manganous superoxide dismu-
tase is essential for cellular resistance to cytotoxicity of tumor necrosis factor, Cell
58 (1989) 923-931.

P. Mantymaa, T. Siitonen, T. Guttorm, M. Saily, V. Kinnula, E.R. Savolainen, P.
Koistinen, Induction of mitochondrial manganese superoxide dismutase confers
resistance to apoptosis in acute myeloblastic leukaemia cells exposed to etoposide,
Br. J. Haematol. 108 (2000) 574-581.

A. Suresh, L. Guedez, ]. Moreb, ]. Zucali, Overexpression of manganese superoxide
dismutase promotes survival in cell lines after doxorubicin treatment, Br. ]J.
Haematol. 120 (2003) 457-463.

J.L. Luo, H. Kamata, M. Karin, The anti-death machinery in IKK/NF-kappaB signaling,
J. Clin. Immunol. 25 (2005) 541-550.

G. Gloire, S. Legrand-Poels, J. Piette, NF-kappaB activation by reactive oxygen
species: fifteen years later, Biochem. Pharmacol. 72 (2006) 1493-1505.

B. Halliwell, J. Gutteridge, Free Radicals in Biology and Medicine, Fourth ed Oxford
University Press, USA, 2007.

R. Gardner, A. Salvador, P. Moradas-Ferreira, Why does SOD overexpression
sometimes enhance, sometimes decrease, hydrogen peroxide production? A min-
imalist explanation, Free Radic. Biol. Med. 32 (2002) 1351-1357.

S.I Liochev, 1. Fridovich, The effects of superoxide dismutase on H202 formation,
Free Radic. Biol. Med. 42 (2007) 1465-14609.

T. Nishikawa, D. Edelstein, X.L. Du, S. Yamagishi, T. Matsumura, Y. Kaneda, M.A.
Yorek, D. Beebe, P.J. Oates, H.P. Hammes, . Giardino, M. Brownlee, Normalizing
mitochondrial superoxide production blocks three pathways of hyperglycaemic
damage, Nature 404 (2000) 787-790.

X. Qi, AS. Lewin, L. Sun, W.W. Hauswirth, J. Guy, SOD2 gene transfer protects
against optic neuropathy induced by deficiency of complex I, Ann. Neurol. 56
(2004) 182-191.

M.K. Kiessling, B. Linke, M. Brechmann, D. Suss, P.H. Krammer, K. Gulow, Inhibi-
tion of NF-kappaB induces a switch from CD95L-dependent to CD95L-
independent and JNK-mediated apoptosis in T cells, FEBS Lett. 584 (2010)
4679-4688.

LH. Lash, Mitochondrial glutathione transport: physiological, pathological and
toxicological implications, Chem. Biol. Interact. 163 (2006) 54-67.

A. Kim, S. Joseph, A. Khan, CJ. Epstein, R. Sobel, T.T. Huang, Enhanced expression
of mitochondrial superoxide dismutase leads to prolonged in vivo cell cycle pro-
gression and up-regulation of mitochondrial thioredoxin, Free Radic. Biol. Med.
48 (2010) 1501-1512.

Y. Zhao, Y. Xue, T.D. Oberley, KK. Kiningham, S.M. Lin, H.C. Yen, H. Majima, J.
Hines, D. St Clair, Overexpression of manganese superoxide dismutase suppresses
tumor formation by modulation of activator protein-1 signaling in a multistage
skin carcinogenesis model, Cancer Res. 61 (2001) 6082-6088.

KK. Kiningham, D.K. St Clair, Overexpression of manganese superoxide dismu-
tase selectively modulates the activity of Jun-associated transcription factors
in fibrosarcoma cells, Cancer Res. 57 (1997) 5265-5271.

S.K. Manna, HJ. Zhang, T. Yan, LW. Oberley, B.B. Aggarwal, Overexpression of
manganese superoxide dismutase suppresses tumor necrosis factor-induced apo-
ptosis and activation of nuclear transcription factor-kappaB and activated
protein-1, J. Biol. Chem. 273 (1998) 13245-13254.



1052

M.M. Kamifiski et al. / Biochimica et Biophysica Acta 1823 (2012) 1041-1052

[61] ]J. Li, LW. Oberley, M. Fan, N.H. Colburn, Inhibition of AP-1 and NF-kappaB by

[62]

(63]

[64]

manganese-containing superoxide dismutase in human breast cancer cells,
FASEB J. 12 (1998) 1713-1723.

M. Pardo, J.A. Melendez, O. Tirosh, Manganese superoxide dismutase inactivation
during Fas (CD95)-mediated apoptosis in Jurkat T cells, Free Radic. Biol. Med. 41
(2006) 1795-1806.

Z. Liu, RA. Butow, Mitochondrial retrograde signaling, Annu. Rev. Genet. 40
(2006) 159-185.

RJ. Rogers, ].M. Monnier, H.S. Nick, Tumor necrosis factor-alpha selectively induces
MnSOD expression via mitochondria-to-nucleus signaling, whereas interleukin-
1beta utilizes an alternative pathway, J. Biol. Chem. 276 (2001) 20419-20427.

[65]

[66]

[67]

P. Storz, H. Doppler, A. Toker, Protein kinase D mediates mitochondrion-to-
nucleus signaling and detoxification from mitochondrial reactive oxygen species,
Mol. Cell. Biol. 25 (2005) 8520-8530.

Y. Li, T.T. Huang, EJ. Carlson, S. Melov, P.C. Ursell, ].L. Olson, LJ. Noble, M.P.
Yoshimura, C. Berger, P.H. Chan, D.C. Wallace, C.J. Epstein, Dilated cardiomyopathy
and neonatal lethality in mutant mice lacking manganese superoxide dismutase,
Nat. Genet. 11 (1995) 376-381.

S.L. Church, J.W. Grant, L.A. Ridnour, LW. Oberley, P.E. Swanson, P.S. Meltzer, ].M.
Trent, Increased manganese superoxide dismutase expression suppresses the
malignant phenotype of human melanoma cells, Proc. Natl. Acad. Sci. U. S. A. 90
(1993) 3113-3117.



	Manganese superoxide dismutase: A regulator of T cell activation-induced oxidative signaling and cell death
	1. Introduction
	2. Materials and methods
	2.1. Chemicals
	2.2. Cell culture
	2.3. Isolation and in vitro expansion of human T cells
	2.4. Determination of activation-induced ROS generation
	2.5. Sub-cellular fractionations
	2.6. Transfection and MnSOD overexpression
	2.7. Luciferase reporter assays
	2.8. RNA isolation, reverse transcription and quantitative real-time PCR
	2.9. Cell death assay
	2.10. Determination of mitochondrial mass and mitochondrial membrane potential via FACS
	2.11. Generation of doxycyclin (DOX)-inducible MnSOD-overexpressing Jurkat T cells
	2.12. Western blotting and band intensity determination
	2.13. Measurement of MnSOD activity
	2.14. Determination of IL-2 secretion
	2.15. Caspase 8 activity assay

	3. Results
	3.1. Rise in MnSOD content and activity inversely correlates with T cell
activation-induced oxidative signal generation and gene expression

	3.2. The oxidative signal generated by mitochondria regulates MnSOD expression
	3.3. Increase in MnSOD content inhibits T cell activation-induced ROS generation
	3.4. Higher mitochondrial abundance of MnSOD inhibits T cell activation-induced gene expression
	3.5. Increase in MnSOD content negatively regulates T cell activation-induced CD95L-mediated AICD

	4. Discussion
	Acknowledgements
	References


