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1. INTRODUCTION AND SUMMARY

The usual approach to congruences on inverse semigroups is to first notice that
a congruence p on an inversc scmigroup S is completely determined by the
family of its classes containing idempotents. T'his family, called a kernel normal
system, has been characterized abstractly.

We adopt a different approach: Scheiblich [19] proved that p is also uniquely
determined by its restriction to the idempotents, called the trace of p, and the
union of all its classes containing idempotents, called the kernel of p. The results
proved here indicate that this way of looking at congrucnces has ceratin advan-
tages. This leads, in a natural way, to the congruence ¢ on the lattice 4 of all
congruences on S introduced by Reilly and Scheiblich [17]. In our terminology
pfr if and only if p and + have the same trace. The congruence 6 gives us a
first decomposition of the lattice A that is useful in gaining some overview of the
congruences on S. For example, the #-~class of the equality relation consists of all
idempotent separating congruences, and the #-class of the universal relation
consists of all group congruences. Both of these #-classes have attracted con-
siderable attention. The last cited authors also give the form of the least and the
greatest clement of each f-class. Hence for a given congruence p on 8, one can
identify the least and the greatest element of the #-class containing p. As special
cases, one obtains the greatest idempotent separating congruence and the least
group congruence.

Besides some preliminaries on terminology, we summarize in Section 2 the
resulis of Reilly and Scheiblich [17] that will be needed in the paper.

We begin in Section 3 by characterizing the congruence 6 in several ways in
terms of congruences and the s -equivalence. We draw several interesting
consequences of this result concerning §-classes and their least and greatest
elements.

In Section 4, we consider the trace and the kernel of a congruence p. These
results arc based on the fact that p is determined by its trace and its kernel. We
establish necessary and sufficient conditions on a pair (£, K for the existence of 2

231
0021-8693/78/0552-0231%02.00/0

Copyright © 1978 by Academic Press, Inc.
All righte of reproduction in any form reserved.


https://core.ac.uk/display/82554317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

232 MARIO PETRICH

congruence p on S such that £ is the trace and K is the kernel of p. We call (¢, K}
a congruence pair and explore the relationship between congruences and
congruence pairs.

We collect in Section 5 various results concerning kernels and congruences.
Group congruences are taken up in Section 6 where it is proved that the mapping
p— p Y o, where ¢ is the least group congruence on .S, is a homomorphism of 4
onto the lattice of all group congruences on S.

For a categorical ideal I, we characterize in Section 7 the f-class of the greatest
congruence on S having [ as a class in terms of primitive homomorphic images.
The f#-class of a Rees congruence of any ideal is also described.

We characterize in Section 8 all congruences on a P-semigroup. These are
expressed directly in terms of parameters figuring in the definition of a P-semi-
group. In Section 9 we construct all congruences on a polycyclic monoid. Some
concluding remarks in Section 10 round up our study.

2. PRELIMINARIES

We consider only congruences on inverse semigroups. As a background on
inverse semigroups, we recommend the books by Clifford and Preston [2,
Chap. 7]) and Howie [8, Chap. 5]), to whose notation and terminology we
generally adhere.

We record only the most frequently used notation and nomenclature. Let .S be
any semigroup. If p is a congruence on S and a € S, then ap is the p-class con-
taining a. If p and 7 are congruences on S and p 2 7, then p/r is the congruence
on S/p defined by

a’Tp/TbT¢>(lpb (a,bES).

If S/p is a group (semilattice of groups, etc.), then p is a group (semilattice of
groups, etc.) congruence on S. A subset K of S is saturated for a congruence p on S
if K is the union of some p-classes. A congruence p on S is idempotent separating
if each p-class contains at most one idempotent. Following Vagner [19], we call
an inverse semigroup S an antigroup if the equality relation is the only idem-
potent separating congruence on S; these semigroups are usually called funda-
mental inverse semigroups. For any sets 4 and B, we write A\B ={ac 4 |a¢ B}.
The equality relation on any set is denoted by ..

We now summarize some of the results of Reilly and Scheiblich [17] for
inverse semigroups in somewhat different guise. On the lattice A of all con-
gruences on an inverse semigroup S, the relation 8 given by

plr<plpg=r1lg
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is a congruence. Let [p] stand for the f-class containing p. Then the mapping
p — [p] is a complete lattice homomorphism of /4 onto //8.
A congruence ¢ on the semilattice E of idempotents of S is normal if

eéf=>ateatalfa (e, fckE acs).
For a normal congruence £ on E, the relation £max and £min defined on S by

a fmax p = gleq £ bleb forallec E|

g {ming o ge — be forsomeec E, efalafbh

are the greatest and the least elements of [p], respectively, where p € 4 is such
that p |z = &.

It follows from this that for any p € 4, the relations pmax and pmin defined on
S by

@ pmax b < atea p bleb forallec E,

@ pmin b <> ae == be forsomeeec £, epalapbb

are the greatest and the least elements of [p], respectively. This can be easily
verified directly.

For p the equality relation, we obtain pmax == p, the greatest idempotent
separating congruence on S, and for p the universal relation, we get pmin = o,
the least group congruence on S. Normal congruences were used by Eberhart
and Selden [3] to characterize the congruences on free one parameter semi-
groups and by Scheiblich [18] for congruences on symmetric inverse semi-
groups. The paper of Green [4] contains an extensive discussion of congruences
on inverse semigroups.

We fix the notation S, E, 4, 6, [p], p, o as introduced above. However, we will
denote by p and o the greatest idempotent separating and the least group con-
gruences on any semigroup except when there is a need to emphasize the semi-
group in question.

3. 6-CrassES

We will first characterize the relation 6 in several ways and then deduce some
consequences of this result. This will be followed by a closer look at the structure
of a f-class.

TueoreM 3.1. The following statements concerning congruences p and v on S
are equivalent.
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iy pbr.
(i) pCTmax, ?’max/P = Fsio -
(iii) ap bp = ar |\ br (a, be S).
(iv) ap o bp <= ar H# br (a,be S).
(v) pN 7l and p N\ 1|, are group congruences (e € E).

(vi) plp 7 and 7/p O\ T are idempotent separating comgruences.

Proof. (i) = (ii). First note that pmax = Tmax s0 that p C rmax . For any
a,be S, we have

ap pmax/p bp < @ prax b

< aleapbleb forallee E
<~ (ap) (ep).(ap) = (bp) (ep) (bp)  for all ep e ),
< ap psy, bp.

(i) = (i). Observe that p |z C 7max |z = 7 | . Further, for any e, f € E, we
have

eTf = €Tmax f = ep Tmax/p fp = ep ps/, fp
=ep=fp=epf

and thus also 7' |z C P |.
(1) = (ili). For any a, b€ S, we have

ap pbp < (ap)™ (ep) (ap) = (bp)™ (ep) (bp) ~ forallec E

< aleapbleb : forallec E
< alear b leb forallee E
< {(alT 1) (er) (ar) = (br) ™ (er) (br) forallee E
< ar pbr.

(iii) = (i). For any ¢, f € E, we obtain

epfrep=fpeppufp=erpfr

<er =freerf

(i) = (iv). Let @,b€.S and assume that ap # bp. Then (ap) (ap)™ =
(bp) (bp)™* and (ap)~' (ap) = (bp)~" (bp), which implies that aa—!p b and
ala p b7'b. The hypothesis implies that aa=!7bb! and a—lar b, which
evidently implies that ar 5# br. By symmetry, ar # br implies ap S bp.

(iv) = (i). Let ¢, fe E and assume that e pf. Then ep# fp so that, by
hypothesis, er # fr, and hence e 7 f. Symmetrically, e 7 f implies e p f.
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(i) = (v). It suffices to prove that p 6+ and p C r implies that p|,, is 2
group congruence for every e e E. Hence suppose p 87, pCr, and let ec E.
If feer N E, then e 7 f and thus e p f. Hence all idempotents of er are p-related,
which means that p |, is a group congruence.

(v) = (i). Lete feEand assumethatepf. Thenfeepandpic|,, isa
group congruence, so that ep N7 f. Hence p|zC 7z, and symmetrically
ple27e.

(i) = (vi). For ¢, fe E, we obtain

elpN7) plont flpNty=epf=erf=epnaf
=elpN7)=flpOr)

which shows that p/p N 7 is idempotent separating.
(vi) = (i). For ¢, fcE, we have
epf=elpnm) plpnr flonm)=dpnr)=FflpNr)
=>epNrtf=erf

which shows that p |z C 7 | . Symmetrically, we also havep [z D 7 |z

CoroLLARY 3.2. A congruence p on S is the greatest element of iis 6-class if and
only if Sp is an aniigroup.

Proof. Using the equivalence of (i) and (ii) in Theorem 3.1, we obtain
P == pmax <> Pmax/p = ¢ <= pgs, = ¢ <> Sfp is an antigroup.

PropositioN 3.3. Let p,7€A. Then v = pmin tf and only if p 2+ and for
every e€ E, T |,, is the least group congruence on ep.

Proof. Necessity. Let ec E and a, b € ep. Note that
arb<af =bf forsomefek, fpaltapbh, (hH
and denoting by ¢, the least group congruence on ep, we have
ac,b<af =bf forsomefeep N E. (2}
Let (1) hold. Then ¢ p @ implies e p a~a so that epf. Thus feeo N E and (2)

holds. Conversely, let (2) hold. Then fpa and fpb, which implies that
Fparapbib and (1) holds. Consequently r = o, .

Sufficiency. By Theorem 3.1, we have p 0 v and hence pmm C 7. Thus for
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any e € E, epmin C er. Conversely, let a € er. Then af = ef for some feer N E
since 7 |,, is the least group congruence on ep. In particular e p @, which implies
that e p aa. Since also ¢ p f, we obtain a pmin €, and hence a € eppmin . Conse-~
quently er = epmin - Since e € E is arbitrary, it follows that 7 = pmiy, .

4. TrACES AND KERNELS

We establish here the main characterization theorem for congruences on an
arbitrary inverse semigroup. In order to facilitate our discussion, we introduce
the following concepts.

DEerFINITION 4.1. Let p be a congruence on an inverse semigroup S with the
semilattice of idempotents E. The restriction p | is the trace of p, to be denoted
by tr p, and the set

kerp = {ae S| apeforsomeec K}

is the kernel of p.

We consider below necessary and sufficient conditions on a pair (¢, K) in
order that there exists a congruence p on S such that tr p = ¢ and ker p = K.
Such conditions were first given by Scheiblich [19], and simpler ones by Green
[4, Proposition 3.9]. Recall that a subsemigroup K of S is full if EC K, and
self-conjugate if a1 Ka C K for all a e S.

DermirioN 4.2. Let S be an inverse semigroup with the semilattice £ of
idempotents. A full, self-conjugate inverse subsemigroup K of .S is a normal
subsemigroup. If, in addition, £ is a normal congruence on E satistying

(i) aeekK,eéa'la=ack,
(i) acK = alea f alae,

for all ae S, ec E, then (&, K) is a congruence pair for S. In such a case, define
a relation ¢ x) on S by

arerb=alafblbab ek

Note that if EC K C S, then K is a normal subsemigroup of S if and only if
it is self-conjugate and a, b € K implies ab~! € K. Thus a normal subsemigroup
of S is strongly reminiscent of a normal subgroup of a group, and « g) of the
congruence induced by it. In order to show that «(, ) is 2 congruence, we first
prove a technical lemma.

Lemma 4.3. If (¢, K) is a congruence pair for S, then
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(i) aebekK, efalta=abek
(ify abeK=>abeck,
(iit) ab e kK, ala £ = alea £ bleb,
Jor all a,be S, eckE.
Proof. (i) Let aebe K and e § a~ta where ec E, a,b6¢ 5. Then
aeb = ae(bb—1) b = ab(b~leb), 0
(ab) (ab) = b~Ya1a) b £ b1eb,

which by Definition 4.2(i) yields ab € K.

(ii) Forabe K and e € E, we have b~%eb € E so that aeb € K by {1) since K
is full.

(i) Let abte K, al{bh, ecE. Then by Definition 4.2(ii), we have
{ab) e(ab™) & (ab~1) " (ab™) e which implies

blatea) b1 £ b(a) b~ £ b(b~1D) ble = bble,
whence
a7 lea = (aa) (a 'ea) (a"'a) £ (b71D) (atea) (b~1b) £ (b~1) (bb'e) b = b1eb,

as required.
The main characterization theorem for congruences follows.

Taeorem 4.4. If (¢, K) is a congruence pair for an inverse semigroup S, then
Kz x) 15 a congruence on S with trace § and kernel K. Conversely, if p is a con-~
gruence on S, then (te p, ker p) is a congruence pair for S and p = x(tr, xer,) -

Proof. Let (£, K) be a congruence pair for S, and Iet x = k(. g) . It follows
immediately that « is reflexive and symmetric. Let axd and & xc. Then
ata £b716 £ e and ab7!, b € K. Hence a(b716) ¢! € K which together with
5715 ¢ ata implies ac! € K by Lemma 4.3(1). Thus @ « ¢, and « is transitive.

Next let ax b and ce S. Then

(acy™* (acy = c~Ya'a) ¢ £ ¢ (b~1b) ¢ = (be)™ (be),
since a~ta £ b~1b and £ is a normal congruence, and
(ac) (be)y' = a{cc) b1e K
by Lemma 4.3(ii) since ab~! € K. Consequently ac « be. Further,

(ca)y ™t (ca) = ac ) a £ b7 Y cic) b = (be)™ {bc)

481/55/2-4
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by Lemma 4.3(iii) since a~%a £ b~1b, and
(ca) (cby L =c(ab)cle K

since ab~! € K and K is self-conjugate. Therefore « is a congruence on S.

It is obvious that tr k = &. If a ke for e € E, then ala £ e, ae € K which by
Definition 4.2(i) yields ae K. Conversely, if ae K, then axa'a. Conse-
quently ker « = K.

Conversely, let p be a congruence on S. A simple verification shows that
(tr p, ker p) is a congruence pair for .S. Let a K (trp kerp) D. Then ala p b71b and
ab= p e for some ¢ € E. Hence

a = a(a'a) p (ab™) b p b,

b = b(b~1b) p (ba™) a p ea,
whence apebpelea) = eapb. Thus wr,ker,) Cp, the opposite inclusion is
trivial.

Other characterizations of congruences on inverse semigroups were given by
Scheiblich [19] and Green [4].

CoroLLARY 4.5. Let € be the set of all congruence pairs for S ordered by
(6 K) < (¢, K)=£C 8 KCK.
Then the mappings
(¢, K)— k¢ x) and  p—>(tr p, ker p)

are mutually inverse lattice isomorphisms of € onto A and of A onto €, respectively.

5. SUPPLEMENTS

Since the intersection of normal congruences is a normal congruence, the set
@ of all normal congruence on E is a complete lattice with meet equal to the
intersection. We denote by V the join both in 4 and in @. The first two parts of
the next result are due to Reilly and Scheiblich [17, Theorem 5.1] and the third
part to Green [4, Theorem 3.4].

ProrositioN 5.1. For any family & of congruences on S, we have

tr (Yp=(Vtrp, tr\/ p=Vtrp, ker () p= () kerp.
pEF PEF

PEF pPEF pEF PEF
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For a congruence ¢ on E, the least normal congruence containing it does not
seem to admit a simple expression. However, the greatest normal congruence
contained in £ is given by ‘

eéf < alea £ afa forallae S,

which is easily verified.
Levmma 5.2. Letp, 7€ A besuchthat p Crand p 6 v. Then
apb<arb ab*ekerp (a, b€ S).

Proof. 'The direct part is trivial. For the converse, assume that a7 b and
ab— e ker p. Then a=' 7 5! and hence a~la = 5~'b. Since p § =, this implies that
atapbib. Further, ab'eckerp implies ab*pe for some ec E. Then
a(b71b) p b so that a p eb since 57b p a'a. Also ba~* p e which implies da—a p ea
and hence b p ea. Consequently

apebpelea) =eapb,

as required.
This lemma and its proof immediately yield

Cororrary 5.3. For any p € A, we have

apb <= apmaxh, ablekerp

< alatrp bbb, ab~' € ker p.
ProrostTioN 5.4. For pe A, the following statements are irue.

(1) Sfp is a semilatiice of groups if and only if S|pmax is a semilatiice.
(i1} S/p is a bisimple tnverse w-semigroup if and only if Slpmax is @ bicyckc
SEmIgronup.

Progf. Note that Theorem 3.1 implies the statement
ap p bp < apmax == bpmax - B
If 8jp is either a semilattice of groups or a bisimple inverse w-semigroup, then
p =2 and hence (1) gives (S/p)/# =2 S/pmax, which proves the direct

implications. Let S/pmax be a semilattice. For any a€ S, e E, we have by
Corollary 5.3

ae p ea <= ge pmax €4, (ae) (ea)™ € ker p.
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The first part on the right is true since S/pmax is a semilattice. The second part
is true since (ae) (ea)™ = (aea™) ¢ € E. Hence ae p ea and Sfp is a semilattice
of groups. Finally, let S/pmax be a bicyclic semigroup. Then Theorem 3.1 yields

ap H bP <> APpmax = mea.x .

Hence (S/p)/s# is a bicyclic semigroup. A simple argument shows that S/p is a
bisimple inverse w-semigroup.

As a consequence, we obtain a slight strengthening of a recent result of
Mills [13] and Hardy and Tirasupa [6].

COROLLARY 5.5. Let v denote the least semilattice congruence on S. Then
Nmin 5 the least semilattice of groups congruence on S.

Proof. First, Proposition 5.4 implies that S/ymin is a semilattice of groups.
Let p be any semilattice of groups congruence on S. Then S/pmax is a semi-
lattice, again by Proposition 5.4, so that % C pmax . Now let @ nmin b. Then
ae = be for some ¢ € E such that ey ey b. Hence e pyax a, which implies that
€ pmax @ 'a and thus also e p a~'a. Analogously we have e p b~1b. Now ae — be
implies ae p be, which together with ¢ p a—%a p b= yields a p b. Thus nmin C p,
which establishes the minimality of ymin as a semilattice of groups congruence.

ProposITION 5.6. For any p € A, we have

ker pmax = {a e S| ae p ea for all e € E},
ker pmin ={a € .S | ae = e for some e € E, e p a”la}.

Proof. Let acker pmax . Then a ppax f for some fe E and thus a—tea p ef
for all ec E. For e = aa™, we get a~'a p aa'f which implies @ p a?a%f and
thus apaf. For ¢ = f, we have a'fapf so that fap afp a. But then ea =
a(a'ea) p (af) e = ae. Conversely, assume that aepea for all ec E. Then

alea p (aa) e for all e ¢ E, which shows that a pmax @ 'a and a € ker pmax .
For the second equality, we have

a e ker pmin < @ pmin f for some fe E
<= ae = fe forsomefeE and eckE, epalapf

< aqe = e forallec E, epaa.
CoroLLARY 5.7. For any normal congruence ¢ on E, we have
ker {mox = {a e S| alea & a'ae for all e € E}.

For p the equality relation on .S, we obtain 1 = pmax , the greatest idempotent
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separating congruence on S, and for p the universal relation on S, we get
¢ = pmin , the least group congruence on S. They have the familiar form

apb-<alea = bleh forall eek,
aoch < ae = be forsomeee E,

and their kernels are, respectively,

El={aeS|aec =-eaforallecE}

Ew ={aecS|ae=ecforsomeeceE}.

Here E{ is the centralizer of E in S, and Ew is the closure of £ in S relative to
the partial order which we will discuss below. For an extensive discussion of
these congruences, consult Howie [7], in particular cf. Theorem 3.2 with the
next proposition.

ProrositioN 5.8. A semigroup S is a subdirect product of a group and an
antigroup if and only if Eo N E{ = E.

Proof. Let S be a subdirect product of a group G and an antigroup 4, and
let {g, a) € Ew N EL. Then (g, a) € Ew, which implies (g, a) (1, &) = (1, &) for
some ec E, so that g = 1. Further, (g, a) € E{ implies that {g, ¢} (1, ¢) =
(1, e) (g, a) for all idempotents e in 4, and hence ge = eaforallee E, . Since 4
is an antigroup, we deduce that a € £, . We have shown that (g, a) ¢ £.

Conversely, if Ew N E{ = E, then by the last assertion of Proposition 5.1 we
have ker{oc M p) = E which evidently implies that ¢ N p is the equality relation.
But then S is a subdirect product of the group Sfjo and the antigroup S/u.

For the next result, we need a lemma.

Levma 5.9. Let ¢ be an idempotent separating homomorphism of S onto T.
Then apb < ap pbd for all a,be S.

Proof. 'The direct implication is obvious. Let a¢ u bd. Then (ad)~ {ed) (ad)
= (b}~ (ed) (b) for all ec Eg, so that (¢ lea)d = (b~teb) ¢ for all ec Es.
Since ¢ is idempotent separating, we must have gleq = b~%eb forall e € B, and
aub.

As a consequence of [5, Theorem 13], this lemma remains valid if we sub-
stitute p by Green'’s relations 3, &, Z or #. It is easy to see that it is also valid
for @. In particular, | S/H | = 1T|H | for A =H#, L, X, D, §.

ProprositioN 5.10. For every inverse semigroup S there exists a group G, a
subdirect product T of S|y and G, and an idempotent separating homomorphism ¢ of
T onto S.
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Proof. Let S be an inverse semigroup. According to [11, Corollary 2.5], S is
an idempotent separating homomorphic image of an E-unitary inverse semigroup
T. That T is E-unitary means that ker ¢ = E; . Hence

ker(y,ﬂa)gkerc:ET,
tripNo)Ctrp =y,

so that p M o is the equality relation, and T is a subdirect product of the anti-
group T/u and the group TYo. It follows from Lemma 5.9 that T'/u ~ S/u.

CoROLLARY 5.11. Every inverse semigroup is an idempotent separating homo-
morphic image of a subdirect product of a group and an antigroup.

ProrosiTION 5.12. For any p € A and e € E, we have

ep = e(tr p)™ax N ker p.
Proof. 'This formula is equivalent to
ep = epmax M ker p.

Let a € epmax N ker p. Then @ pmax e and ap f for some fe E. Then aape
and ala p f so that e p f, whence a p e. Hence ¢ pmax M ker p C ¢ep, the opposite

inclusion is obvious.
This result provides an explicit demonstration of the fact that the trace and

the kernel determine the classes of the congruence containing the idempotents,
and thus the entire congruence.
Inverse semigroups S have a natural paritial order defined by

a>b < ab™t = bb.
For any subset K of S, the set
Ko ={acS|az=bforsomebe K}
is the closure of K in S. Subsets K of S for which Kw = K are closed in S.

The next result provides an alternative characterization of congruence pairs
(cf. [19, Theorem 2.17).

ProrosttioN 5.13. Let € be a normal congruence on E and K be a normal
subsemigroup of S.
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(i) Condition (i) in Definition 4.2 is equivalent to: for all a e S, afmax K
is closed in aqfmex,

(i1 Condition (i) in Definition 4.2 is equivalent fo: K C ker £max,

Proof. (i) Direct part. Let ac S, beaémax N\ K, ceafmeX ¢ > 5. Then
c(b7b) = (¢b™*) b = bbb = b € K and b fmax g {maX ¢ which implies 515 £ ¢ e,
Hence condition (i) in Definition 4.2 yields ¢ € K so that ¢ € afmax 1 K.

Converse. Let aee K, e £ ala where ec E, ac S. Then e £max g-1g and
hence ae £m3% g, so that ae € aé™3= N K. Further, a{ae)™ = (ae} (ae)™, which
says that ¢ 2> ae. The hypothesis implies that ¢ € K.

(if) 'This follows directly from Corollary 5.7.

Note that in terms of the natural partial order, we have for any 4,5 .S,
ped that @ pmin b is equivalent to the existence of ¢€ .S such that @ > ¢,
b=c, apbpe.

Let 4 denote the lattice of all idempotent separating congruences on S.
Green [4, Theorem 3.4] proved a result related to the following

ProposiTioN 5.14. For any normal subsemigroup K of S, contained in Ef
define a relation wy on S by

argb<aX b ableck.

Then xxc 4 and ker ky = K. Conversely, if pc 4, then ker p is a normal sub-
semigroup of S contained in El and p = kyer, . Define a function ker on 4 by

ker: p — ker p.

Then ket is a complete lattice isomorphism of 4 onto the lattice of all normal sub-
semigroups of S contained in EL.

Proof. TFirst note that idempotent separating congruences are precisely those
whose traces coincide with the equality relation. For any normal subsemigroup
K of S, and ¢ the equality relation, condition (i) of Definition 4.2 is automatically
satisfied. For K C E{ = ker u, by Proposition 5.13, condition {ii} of Definition
4.2 is also satisfied. It remains to prove that «g == x(, ) , and for this it suffices
to show that a~la = b1, ab' € K C E{ implies aa! = bb. Indeed

aa! = a(aa) a-t = a(bb) a=t = (abY) (bb) (ba~)
— (bbY) ab-tbat = (bb1) aat

and analogously 67t = (aa™t) (bb1) so that ae™ = bb1.
Since for any p & 4, ker p is a normal subsemigroup contained in ker p = £Z,
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in order to establish the second statement, it suffices to prove that the meet and
the join in 4 coincide with those in the poset X' of all subsemigroups of S. Let
{K_}ues be a family of normal subsemigroups of S contained in E{. By Proposi-
tion 5.1, NK, is a normal subsemigroup contained in E{. The join VK, in X
consists of all xx, --» x, € S such that %, %, ,..., ¥, € UK, . It is immediate
that VK, is a full inverse subsemigroup of S contained in E{. For any %k =
X%+ %, with x;, € UK, and a € S, we have

aka = a-ux, - %0 = af(aa) x,] %, xya
= axy(aa )] % -+ xpa = (a%ya) @My - x40

== - = (@ Yya) (@ %,0) - (e %,a) € VK,

since all x; are in the centralizer E{ of E. Hence VK, is self-conjugate and thus a
normal subsemigroup of S.

6. Grour CONGRUENCES

These form the f-class of congruences whose trace is the universal relation on
E. We denote by I the lattice of all group congruences on S. We will see below
that there exists a homomorphism of 4 onto I" which leaves I" elementwise
fixed. We start with characterizations of p V ¢ where pe A and o is the least
element of I

ProposITION 6.1. For p a congruence on S and a, b elements of S, each of the
Jollowing statements is equivalent to a p V o b.

(1) aepbe for some ec k.
(i) a(ker p) N blkerp) #a.
(i) aEb*Nkerp+# &.

Progf. According to ([7], Theorem 3.9), p V ¢ = opo. Assume first that
acpob. Then ao x, xpy, ¥ ob for some x, y € S. Then af = &f and yg = bg
for some f, g € E. Letting e = fg, we obtain ae = xe p ye = be which proves (i).

Next assume that (i) holds and let K == ker p. Then (ae) (be)1c K and thus
aebl € K which implies that b—'(aeb™')be K. But then b(b—laeb~1b)e bK,
that is (6b7') (aa™?) (ae) (b) € bK. It follows that acedK where ¢ =
[a71(bb™") a] e(b~'6) € E. Consequently ac € aK N 6K and (ii) holds.

Now suppose that (ii) is valid, say @k = bl where &, [ € K. Then akk-1b"! =
b(lk1) b1 € K since Ik € K. Hence aEb—* N K = @ and (iii) holds.

Finally, assume that (iii) holds, say aeb~' e K where ec E. Then aebp f
for some fe E. It follows that ae(b='b) p fb = b(b~'fb). Letting g = e(b~'fb),
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we obtain ag p by with ge E, whence aoag, agpbg, bpob. Consequently
a opo b, as required.

ProposiTION 6.2. For any p € A, we have

ker(p Vo) =1{ac S| aepefor someec E}
={ae S|alkerp)Nkerp £ @}
={aeS|aknkerp+# &}
= (ker p} w.

Proof. The first three equalities follow directly from Proposition 6.1.
According to {7, Theorem 3.9], we have p V ¢ = opo. Let 2 € ker(opo). Then
acx,xpy,yoelorsomex,yeSandec k. It follows that af = xf and yg = ¢g
for some f, g € E. Letting t = ¢fg, we obtain at = x1, xf p yi, yf = t with i € E.
Hence at p t and af € ker p. Since a > at, it foliows that ¢ € (ker p) w.

Conversely, let a € (ker p) w. Then a > & for some b c ker p. Hence ab™ =
66 and b p e for some e € E. Thus a(b~6) = b(6~8) so that ac b, bpe, coe
which shows that @ opo e, that is a € ker(opo).

TreorReEM 6.3. Let I' denote the lattice of ail group congruences on S. Then
the mapping ¢ defined by

p:p—>pVeo (ped)
s a homomorphism of A onto I

Proof. let p,red and a (p Vo) N (7 Vo)b. Then by Proposition 6.1, we
have ae p be and af 7 of for some ¢, f € E. Hence aef p N 7 bef with ef € E which
by Proposition 6.1 implies a(p N 7) Vo b. Consequently (p V)N (rVo)C
(p N 7) V o; the opposite inclusion is trivial. Hence ¢ is a M-homomorphism;
it is obvious that ¢ is a V-homomorphism. Finally, ¢ maps 4 onto I since ¢
feaves I” elementwise fixed.

For a characterization of ¢ itself, we first need a lemma.

Levva 6.4, For any nonempty subset K of S, we have Ko = (KE) w.

Prosf. Let ae Ko. Then a ok for some ke K, so that ae = ke for some
ec E. Hence

alke) = aekL = ekt = (ke) (ke)~';

that is, @ > ke e KE and thus ¢ € (KE) w. Conversely, let e e (KE) w. Then
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a = ke for some ke K, ecE. It follows that aek! == kek~! which implies
a(ek—k) = k(ekk) where ek'k € E. Thus a o k and a € K.
COROLLARY 6.5. The classes of ¢ are the sets (aE) w. In particular,

ach < (af)w = (bE) w.

7. 6-CLASSES OF AN IDEAL

To each ideal I of S we can associate the f-class of the greatest (resp. least)
congruence on S having I as a class.

An inverse semigroup S with zero all of whose nonzero idempotents are
primitive is a primitive inverse semigroup (briefly S is primitive). An ideal I of any
semigroup S is categorical if for any a, b, c€ S, ab, bc ¢ I implies abc ¢ 1. If pis a
homomorphism of an inverse semigroup S onto a primitive inverse semigroup 7,
then the complete inverse image of 0 of T under ¢ is a categorical ideal of S.
Conversely, to each categorical ideal I of S once can in a natural way associate a
homomorphism onto a primitive inverse semigroup T with the property enun-
ciated above.

An ideal I of S is prime if for any a, b € .S, aSh C I implies that either a el
or bel. Categorical prime ideals are in the same correspondence to homo-
morphic images of .S which are 0 or Brandt semigroups as the categorical ideals
vs. primitive homomorphic images. For a complete discussion, consult [2,
Sect. 7.7].

TrEOREM 7.1. Let I be a proper categorical ideal of S. The set X of all con-
gruences p on S having I as a class and for which S|p is primitive forms a 0-class
with the greatest element y:

ayb < (vay el < xby el for all x, y € ST)
and the least element A:
alb <ae=be¢l  forsomeecE or abel

Moreover,

kery ={aeS|eaec¢ I for someeec E} U I,
ker A ={acS|ae=-ed¢lforsomeecE} UL

The common trace of all congruences in X is given by

elfweg=frdl  forsomegeE or e fel
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The kernels K of congruences in 2 are normal subsemigroups of S satisfying
IC K Ckervy, aecK\I,ecE = acKk.

Proof. 1t is easy to verify that y is the greatest congruence on .S having 7 as
one of its classes. Further [2, Lemma 7.64] implies that A is the least congruence
on S for which [ is a class and whose quotient semigroup is primitive. Hence A is
the least element of X. It follows from the minimality of A that S}y is a hormo-
morphic image of S/A, which implies that S|y is also primitive. Hence y is the
greatest element of 2. Further, the congruence y/) is a O-restricted congruence
on S/A Since S/A is a primitive inverse semigroup, it follows easily that y/A is
idempotent separating. Now Theorem 3.1 implies that v § A

Obviously tr A coincides with the relation € in the statement of the theorem,
and hence ¢ is the trace of any congruence in 2. Next let p € /4 be such that
p 0y. By Theorem 3.1, we have for any a, b€ S,

ap H bp = ay H by < ay = by

<ayb-<=apylpbp

since 3¢ coincides with the equality relation in the primitive inverse anti-
group Sfy. Consequently o# = y/p in S/p, which evidently implies that S/p

is primitive and that [ is a class of p. Hence p € 2 which proves that [y] C 2. But
then 2 coincides with the §-class [y].

Forany a€ S, we have a € ker y if and only if .
xayel <xeyel  forsomeecE andall x,yeSh b
If eel, then e(aa) el and thus a = a(alg) . If e ¢ 1, then eee ¢ I implies
eae ¢ I. Conversely, assume that eae ¢ I; we will show that (1) holds. Let xay ¢ 1.
Then xa, ea ¢ I which implies that (xa) a=', ale ¢ I. Since I is categorical, it
follows that xaa—'e ¢ I. But then xe(aa?) €I and thus xe ¢ I. Analogously, we
have ey ¢ I which yields xey ¢ I. A similar argument can be used to show that
xey ¢ 1 implies xay ¢ I. This proves (1) and hence ker o has the form stated in
the theorem. A simple argument shows that ker A has the form in the statement
of the theorem.
In order to prove the last assertion of the theorem, in view of Proposition
5.13(i1), it suffices to show that for any a € S, ¢ € E, the statements

aecK,efata=ack, (2)

aec K\l =>ackK (3

S

are equivalent. Assume that (2) holds and let ae € K\I. Then aae ¢ I and hence



248 MARIO PETRICH

(a7%e) (a7 ae) = e(aae) ¢ I. It follows that ¢ £ a—ta and (2) implies that a € K.
Conversely, assume that (3) holds and let aee K, e £ aa. If a €1, then a e K.
Suppose that a ¢ I. Then e £ a~'a implies that e ¢l and also that e £ a"lae.
But then alae ¢ I, so ae € K\I. Now (3) yields a € K, as required.

The special case of the above theorem when [ is also a prime ideal yields 2
in which all congruences p have the property that S/p is a Brandt semigroup.

The theorem characterize the 6-class of the greatest congruence on S for
which the categorical ideal I is saturated. The next proposition describes the
greatest and the least elements of the f-class of the Rees congruence p; for any
ideal I of S. Recall that

apb<abel or a=b

ProrositioN 7.2. Let I be an ideal of S.

(i) 1 is saturated for every congruence in the 0-class of p; .
(i) (pr)max s the greatest congruence on S contained in 3£ U (I X I).

(i) p = (o;)min has the property: p|; is the least group congruence on I,
p ls\ is the equality relation.

Proof. (1) Let pOp;, apb, acl. Then aapb1b so that alap,b72b.
Since a~la eI, it follows that 515 €I and hence b e 1.

(i) According to Theorem 3.1, (p;)max/p; is the greatest idempotent
separating congruence on S/p; , hence the greatest congruence on S/p; contained.
in &£ . The assertion in (ii) now follows from the correspondence of congruences.
on S and on S/p;.

(i) We know that
@ (p)min b < ae =be  forsomeecE, ¢p;aiap;b1h.

If a ¢ I, then we must have e = a~la = b5, s0 a == b. If a €1, then so are both:
b and e. Conversely, if ge = be with a, b, ec I, then ep; a'a p; b~1h trivially.
Hence the restriction of (p;)min to I coincides with the least group congruence
on I.

8. CONGRUENCES ON P-SEMIGROUPS

We apply here the results of Section 4 to P-semigroups constructed by
McAlister [10]; the full importance of this class of semigroups is exhibited in
[11]. A description of these semigroups goes as follows.

Let & be a partially ordered set. The meet of elements 4 and B of & is.
denoted by 4 A B if it exists. Let % be an ideal and a subsemilattice of &, that is,
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f Ac¥, BeZ, B< A, then Be# and if 4, Be%, then A A B exists and
belongs to #%. Let G be a group acting on & by order automorphisms on the left.
Let

PG X, & ={4,8e¥ x G| AAgBand g4 A B) exist and belong to ¥},
with multiplication
(4,8) (B, h) = (4 A gB, gh).

Then § = P(G, %, %) is an E-unitary inverse semigroup (that is, ker o = E).
Conversely every F-unitary inverse semigroup is isomorphic to one so con-
structed.

For the rest of this section, we fix a semigroup S = P{G, &, %) and denote
by E the semilattice of its idempotents. Then £ o~ % by the isomorphism

A->(A,1), where 1 is the identity of G. We first characterize normal con-
gruences on F.

Lemva 8.1, Let € be an equivalence relation on % satisfying
() (A4,8)eS,BEC=>AANgBEANgC.

Define on E a relation & by
(A4, 1)E(B,1) = A¢B.

Then & is a normal congruence on E. Conversely, every normal congruence on E can
be so obtained.

Proof. First let £ satisfy (o). For g = 1, we get that £ is a congruence on %,
and hence £ is a congruence on E. Let (4, g)€ S and (B, 1) £(C, 1). Then

(4,8) (B, 1) (4,8)" = (A A gB,g) (74,7 = (A NgB, 1)
and analogously (4, g) (C, 1) (4, &)t = (4 A gC, 1), which by («) implies that
(4,8) (B, 1) (4,9 £(4,8)(C, 1) (4, 97
so that £ is a normal congruence on E. The converse follows by reversing the

steps.

Next we characterize all normal subsemigroups of S. By #(#%) dencte the set
of all ideals of %.



250 MARIO PETRICH

LemmA 8.2. Let N be a normal subgroup of G and 7w: N — #(¥) be a function
satisfying
B) lr=9,
(y) Aegm Behn =Y ANB)e(hy)n,
) A g eSS, Behr=AAgBAghg=*Ac(ghg™)m.

Then
N, ={(4,8)eS|Acgn}

is a normal subsemigroup of S. Conversely, every normal subsemigroup of S can be
50 obtained for unique N and .

Proof. Let (4,g)eN, . Then 4 €gnand A € 1= so that g7 4 & g~ by (y),
and hence (g4, g1 e N, . Thus N, is closed under the taking of inverses.

Next let (4, g), (B, k)€ N, . Then g4 c g7 and B € hnr which implies
that g(g*4 A B)e(gh) = again by (y). Hence A A gB e (gh) =, that is,
(A N gB, gh) € S. Thus N, is closed under multiplication.

Let (4,g)e S and (B, ) e N, . Then B € hw and (8) implies

(4,8) (B, h) (4, )" = (A N gB A ghg™4, ghg™") e N, .

Hence N, is self-conjugate. Condition («) ensures that N, will be full. Therefore
N, is a normal subsemigroup of S.
Conversely, let K be a normal subsemigroup of .S, and let

N ={geG|(4,g) e K for some A ¥}

and define 7 on N by
gn={Ae¥|(4, g ek}

It is straightforward to show that N and = satisfy all the conditions spelled out
above and that N, = K. For example, (y) is verified by computmg (B, By (4,2);
also (y) implies that each grr is an ideal of #.

Lemva 8.3. With the notation of Lemmas 8.1 and 8.2, (€, N,) is a congruence
pair for S if and only if

() (4 ges, AéB, ANBegn = Aegn.
() Acgn, Be% => AANgB¢{AANB.
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Proof. Itis anotational convenience to take the left—right duals of conditions
(1) and (i1} in Definition 4.2, viz.,

eacN, ecE efaa'!=achN_,

aeN,,eckE = aea™ £ aae.
It is easily checked that these two definitions are eguivalent. Now
B4 geN,, (BNEAYMAH =4 geN,

is clearly equivalent to (¢); analogously for (n).

When all the conditions («)~{n) are fulfilled, we have a congruence pair
(¢, N,), and conversely. Hence the above lemmas, in conjunction with Theorem
4.4, yield the following characterization of congruences on S.

Tueorem 8.4. Let S = P(G, %, ¥) be a P-semigroup. Lei & be an equivalence
relation on% satisfying condition (), w be a function mapping a normal subgroup N
of G into the ideals of ¥ satisfying (B), (v), (), and assume that (), (n) hold. Define
@ velation p = p( .y on S by

(4,9)p(B,h) = AEB,  AANghBe(gh)n

Then py; ) is a congruence on S. Conversely, every congruence on S can be uniguely
written in this form.

For £ as above, we have

(4,5) Emosx (B by < ANgCEBARC  forall Ced,
(Ag) Emin (B 1) = AEB, g=Fh

Another characterization of congruences on P-semigroups was given by
MecAlister [12].

9, CoNGRUENCES oN Porvcycric MoNoips

Munn and Reilly [14] proved that a congruence on a bisimple w-semigroup
S is either idempotent separating or is a group congruence. They characterized
the former as well as the resulting quotient semigroups. Group congruences on
these semigroups were constructed by Ault {1].

Among the numerous generalizations of a bisimple inverse w-semigroup,
a very natural one is that of a polycyclic monoid, which we now proceed to
describe.
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Let X be any nonempty set. Denote by X* the free monoid on X, that is the
set of all finite sequences (words) over X, including the empty sequence, under
concatanation as multiplication. Let G be a group and ¢ be a homomorphism of
X* into the monoid of endomorphisms on C (that is, the empty word & maps
onto the identity endomorphism on G). For any ge G and w e X*, we write
g¥ instead of gd(w). On the set § = (X* X G X X*) U {0} where 0 is an extra
symbol, define a multiplication by

(u, g, v) (w, b, 2) = (u, ght, t2) if v = fw
= (tu, gh, %) if w=tv

and all other products are equal to 0. Then S = S(X, G, $) is a polycyclic
monoid. :

This monoid was introduced by Nivat and Perrot [15] who established an
abstract characteristic of it; cf. [9, Theorem 3.3]. When card X =1, this
essentially reduces to the bisimple w-semigroup constructed by Reilly [16]
with a zero adjoined. Since the congruences for this case have been characterized,
as mentioned above, we consider only the case card X > 1. For any subgroup
H of G and x e X, we write

He={g*|ge H}.

If H»C H for a normal subgroup H of G and all x € X, we can define a homo-
morphism o/H from G/H to the endomorphism monoid of G by letting

(gHy =gvH  forall weX* geG.

TueoreM 9.1. Let S = S(X, G, ¢) and card X > 1. Let H be a normal
subgroup of G such that H* C H for all x € X. On S define a relation py by

(u, g, ©) pr (w, b, 3) = u = w, gh?eH, V=3,

and 0pg 0. Then py is a congruence on S and S/py o~ S(X, G/H, ¢/H). Con-
versely, every nonuniversal congruence on S can be uniquely written as py for some H.

Proof. Under the hypotheses of the direct part, let
K={(u,h,u)|ueX* he H} L {0}

The hypothesis on H clearly implies that X is closed under multiplication and
the taking of inverses. Further,
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(2, hgt, tv) if  z=1tu
<u’ & 7))_1 (2‘, h: 2) (us & 'U) = ('U, g“l, u) (tz, At s ‘Z)) if ¥ = i

0 otherwise

(try, (gt)_l kgt7 t‘l)) lf & == tu,

= (7], g—ii’ﬁg’ ‘U} L‘E % = tZ,
E 0 otherwise.

The hypotheses on H now show that if (2,4, x)e K, then also (x,g, o)™ -
(2, h, 2) (u, g, v) € K. Hence K is a normal subsemigroup of S. Noting that

(w,8,0) H (w, b, 2) >u=mw, v = g,
we see that Proposition 5.14 yields
(4, g, 0) kg (W, b, 2) =0 = w, (w, 2,0} (=, Y, w)e K| v =gz,

which evidently implies that «x = py . Proposition 5.14 now gives that py is an
idempotent separating congruence.
Define a mapping y on S by

A, g, 0)— (u, gH, v),
X0 — 0.

A simple verification shows that y is a homomorphism of S onto S(X, G/H, ¢/H)
which induces the congruence py . Hence S/py ~ S(X, G/H, ¢/H).

Conversely, let p be a congruence on S, and assume that (%, 1, w) p (v, 1, v}
for some u, v € X*, u £ v. We distinguish several cases.

Case 1. wuis a right factor of v. Letting x be the first variable occurring in v,
we can write v = xwu for some w € X*. We now calculate

(wu, 1, @) (w, 1, u) (wu, 1, @) = (g, 1, wu) (wy, 1, ) = (2, 1, &),
(wu, 1, o) (o, 1, 0) (wu, 1, &) = (&, L, wu) (v, 1, ) = (%, 1, %},

which implies (@, 1, @)p(», 1, #}. By hypothesis there is y € X such that
v 5= x. We obtain

(2,4, 2)(» Ly)p L, (y Ly

so that (3, 1,%) p 0. Since S has no proper nonzero ideals, it follows that p is
the universal relation.

Case 2. o is a right factor of u; this is symmetric to Case 1.

481/55/2-5
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Case 3. Neither Case 1 nor Case 2 occurs. Then
(w, 1, w)(u,1, ) p (v, 1,0) (1, 1, )

implies (u, 1, #) p 0, and again p is the universal congruence.
Hence let p be idempotent separating, and let K == ker p. Then

KCEl={(u,g,u)luec X* gcGtU {0}
let
H={heG|(a,h 3)eK}.

It is clear that H is a normal subgroup of G. Further,
(%, 1, @)Y (2, b, 2) (%1, &) =(D, 1, @)

shows that H® C H for all x € X. Finally,

(o, L,y (2, h 9)(@,1,u) = (u,h u)
(w, 1, YL (u, hyu)(u, 1, 8)=(2,k &)

shows that

K={(uhu)|ueX* heH}U{0}
The direct part of the proof now easily shows that p = pj .

CoroLLARY 9.2 (Perrot). Every nonuniversal congruence on S = S(X, G, ¢),
where card X > 1, is idempotent separating.

10. ConcLupING REMARKS

Among the special congruences on a general inverse semigroup we have
encountered idempotent separating congruences, group congruences, and
congruences associated with an ideal. A class of congruences we did not discuss
are the idempotent determined congruences, that is those congruences p with the
property: a p e, e € E implies a € E (a better name would be idempotent pure).
In our present notation these are precisely those congruences p for which
kerp = E.

In the diagram below, we give a review of the congruences with extremal
properties of the trace and the kernel. We use the following notation:

w = the universal relation (on .S and E),
o = the least group congruence,

7 = the least semilattice congruence,
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v == the least semilattice of groups congruence,
7 = the greatest idempotent determined congruence,
p = the greatest idempotent separating congruence,

¢ = the equality relation (on S and E),

for an inverse semigroup S with the semilattice of idempotents E.

group congruences semilaftice congruences

ker p= S

r p=w
3 7
Y = Tmin
T 5
idempotent idempotfent
determined separating
congruences congruences
ker p= £ +r P=0

255

Each of the upper two classes of congruences forms a filter of A, and each
of the lower classes forms an ideal of /. For each semilattice congruence p,
we have ker p = S and hence p = pmax; dually for each idempotent determined
congruence p, we have ker p = F and hence p = pmin - In contradistinction, the
group congruences and the idempotent separating congruences each constitute

a f-class.
It is easy to see that the following statements are equivalent:

(i) S is E-unitary,
(iiy o=m,
(it} for any pe 4, ker p = E < p = ppin;
and that also the following statements are equivalent:
(i) S is a semilattice of groups,
@) 7=ug,
(iil) for any ped, kerp =5 < p = pmax -
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A portion of the above discussion can be found in Ref. [4]. Using the methods
developed here, we have constructed all congruences on any simple inverse
w-semigroup. In view of the considerable length of the considerations involved,
this will appear in a separate communication in Glasgow Math. J.

Note added in proof. Congruences on P-semigroups were also characterized by R. P.
Jones. The lattice of inverse subsemigroups of a reduced inverse semigroup, Glasgow
Math. J. 17 (1976), 161-172.
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