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1. INTRODUCTION AND SUMMARY 

The usual approach to congruences on inverse semigroups is to first notice that 
a congruence p on an invcrsc scmigroup S is completely determined by the 
family of its classes containing idempotents. This family, called a kernel normal 

system, has been characterized abstractly. 
WC adopt a different approach: Scheihlich [19] proved that p is also uniqueIy 

determined by its restriction to the idempotents, called the trace of p> and the 
union of all its classes containing idempotents, called the kernel of /I. The results 

proved here indicate that this way of looking at congruences has ceratin advan- 
tages. This leads, in a natural way, to the congruence B on the lattice /I of ail 
congruences on S introduced by Reilly and Scheihlich [17]. In our terminology 
p& if and only if p and 7 have the same trace. The congruence 8 gives us a 

first decomposition of the lattice fl that is useful in gaining some overview of the 
congruences on S. For example, the O-class of the equality relation consists of all 
idcmpotcnt separating congruences, and the O-class of the universal relation 

consists of all group congruences. Both of these O-classes have attracted con- 

siderable attention. The last cited authors also give the form of the least and the 
greatest clement of each Q-class. Hence for a given congruence p on S, one can 
identify the least and the greatest element of the B-class containing p. As special 

cases, one obtains the greatest idempotent separating congruence and the least 
group congrucncc. 

Resides some preliminaries on terminology, vve summarize in Section 2 the 
results of Reilly and Scheihlich [17] that will be needed in the paper. 

?Ve begin in Section 3 by characterizing the congruence 6 in several ways in 
terms of congruences and the R-equivalence. We draw several interesting 
consequences of this result concerning O-classes and their least and greatest 
elements. 

In Section 4, we consider the trace and the kernel of a congruence pm These 
results arc based on the fact that p is dctcrmined by its trace and its kernel. We 
establish necessary and sufficient conditions on a pair (.$, K) for the existence of a 
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congruence p on S such that E is the trace and K is the kernel of p. We call (c, K) 

a congruence pair and explore the relationship between congruences and 

congruence pairs. 
We collect in Section 5 various results concerning kernels and congruences. 

Group congruences are taken up in Section 6 where it is proved that the mapping 
p -+ p V 0, where 0 is the least group congruence on S, is a homomorphism of/l 
onto the lattice of all group congruences on S. 

For a categorical ideal 1, we characterize in Section 7 the B-class of the greatest 
congruence on S having 1 as a class in terms of primitive homomorphic images. 
The B-class of a Rees congruence of any ideal is also described. 

We characterize in Section 8 all congruences on a P-semigroup. These are 
expressed directly in terms of parameters figuring in the definition of a P-semi- 

group. In Section 9 we construct all congruences on a polycyclic monoid. Some 
concluding remarks in Section 10 round up our study. 

2. PRELIMINARIES 

We consider only congruences on inverse semigroups. As a background on 
inverse semigroups, we recommend the books by Clifford and Preston [2, 
Chap. 71) and Howie [g, Chap. 5]), to whose notation and terminology we 
generally adhere. 

We record only the most frequently used notation and nomenclature. Let S be 
any semigroup. If p is a congruence on S and a E S, then ap is the p-class con- 
taining a. If p and 7 are congruences on S and p 2 T, then p/r is the congruence 
on S/p defined by 

arp/rbreapb (a, b E S). 

If S/p is a group (semilattice of groups, etc.), then p is a group (semilattice of 

groups, etc.) congruence on S. A subset K of S is saturated for a congruence p on S 
if K is the union of some p-classes. A congruence p on S is idempotent separating 

if each p-class contains at most one idempotent. Following Vagner [19], we call 
an inverse semigroup S an antigroup if the equality relation is the only idem- 
potent separating congruence on S; these semigroups are usually called funda- 
mental inverse semigroups. For any sets A and B, we write A\B = {a E A 1 a 4 B). 
The equality relation on any set is denoted by L. 

We now summarize some of the results of Reilly and Scheiblich [17] for 
inverse semigroups in somewhat different guise. On the lattice fl of all con- 
gruences on an inverse semigroup S, the relation 0 given by 
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is a congruence. Let [p] stand for the &class containing p. hen the mapping 
p -+ [p] is a complete lattice homomorphism of A onto A/S. 

A congruence ( on the semilattice E of idempotents of S is ~0~~~~ if 

e ZJ f + a-lea < a-lfa (e,fEE,aES). 

For a normal congruence 6 on E, the relation fm*x and (min defined on S by 

a fmax b o a-lea E b-leb for all e E E, 

atminboae=be for some e f E, e E a-la ( 696 

are the greatest and the least elements of [p], respectively, where p E A is such 
that p lE = E. 

It follows from this that for any p E A, the relations ‘ornax and Pmin defined on 

S by 

a pmax b o a-lea p b-leb for all e E E, 

a pmin b * ae = be for some e E E, e p &a p b-lb 

are the greatest and the least elements of [p], respectively. This can be easily 
verified directly. 

For p the equality relation, we obtain pmax = p, the greatest idempotent 
separating congruence on S, and for p the universal relation, we get Pmin = O, 
the least group congruence on S. Normal congruences were used by Eberhart 
and Selden [3] to characterize the congruences on free one parameter semi- 
groups and by Scheiblich [18] f or congruences OR symmetric inverse semi- 
groups. The paper of Green [4] contains an extensive discussion of congruences 
on inverse semigroups. 

We fix the notation S, E, A, 6, [p], p, u as introduced above. 
denote by p and (T the greatest idempotent separating and the least group con- 
gruences on any semigroup except when there is a need to emphasize the semi- 
group in question. 

3. &CLASSES 

We will first characterize the relation 0 in several ways and then deduce some 
consequences of this result. This will be followed by a closer look at the structure 
of a &class. 

THEOREM 3.1. The following statements concerning cmgmelences p and 7 OS, S 
are equivalent. 
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(i) p 19 7. 

(ii> P -C7max, CECJP = wr,. 

(iii) up E*. bp 0 a~ p by (a, b E S). 

(iv) up 29 bp * a7 8 6~ (a, b E S). 

(v) p n 7 lep and p n 7 1 e7 are group congruences (e E E). 

(vi) p/p n 7 and r/p n 7 are idempotent separating congruences. 

Proof. (i) * (ii). First note that pmax = 7max so that p C Taco. For any 
a, b E S, we have 

ap pmax/p bp - a pmax b 

+ a-lea p b-leb 

*Cap>-' (eP).(aP) = VPY (ep) VP) 

0 apkhb~. 

for all e E E 

for all ep E Es,,, 

havc(ii) * (i). Ob serve that p IE C 7max IE = T lE . Further, for any e, f E E, we 

e Tf * e wxf * ep k&fp - ep tLslpfp 
* ep =fp 3 epf, 

and thus also T lE C P lE. 

(i) 3 (iii). For any a, b E S, we have 

a~ ~bp * (a~>-'(epP) (a~> = @PY(~P) @P> for all e E E 

e a-lea p b-leb for all e E E 

e a-lea T b-leb for all e E E 

o (UT-~) (e7) (a~) = (bT)-l (eT> (bT) for all e E E 

oUTpbb7. 

(iii) G- (i). For any e, f E E, we obtain 

epf *ep =fp -eppfp c-eTPfT 
*eT =fT *eTf. 

(i) * (iv). Let a, b E S and assume that up S? bp. Then (ap) (a~)-’ = 

(bp) @P)-l and (up)-' = (b-'(bp), which implies that aa-l p bb-l and 
a-lap b-lb. The hypothesis implies that au-l T bb-l and a-la -J- b-lb, which 
evidently implies that UT 2 bT. By symmetry, UT A? bT implies up S? bp. 

(iv) =+- (i). Let e, f E E and assume that e p f. Then ep 2 fp so that, by 
hypothesis, eT # fT, and hence e 7 f. Symmetrically, e 7 f implies e p f. 
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(ij * (v). It suffices to prove that p 0 T and p C 7 implies that p je7 is a 
group congruence for every e E E. Hence suppose p 0 r, p C 7, and let e E E. 
Hff~ e7 n E, then e of and thus e p$ Hence all idempotents of e7 are p-related, 
which means that p Ia7 is a group congruence. 

(v) j (i). Let e, f E E and assume that e pf* ThenjE ep and p n 7 Ieii is a 
group congruence, so that e p n ~j~ Hence p jE C 7 iE , and symmetricahy 

P IE 1 i- IE . 

(i) * (vi) For e,f E E, we obtain 

e(pn7) p/pn~ f(pn7) *epf*e~f=+epn~f 

*e(pn~)=f(pn~j 

which shows that p/p n 7 is idempotent separating. 

(vij a (i). For e, f E E, we have 

e PS * 4p n 7) P/P n 7 f(~ * ~1 3 4~ * 4 =Sb f-3 4 

*epnnf=serf, 

which shows that p 1s C T jE . Symmetrically, we also have p jE 1 T jE . 

COROLLARY 3.2. A congruence p on S is the greatest eiement of its 8-class if and 
only zyS/p isan antigrozfp. 

Proof. Using the equivalence of (i) and (ii) in Theorem 3.1, we obtain 

p = prim CJ. p~&p = 6 e +usID = L 0 S/p is an antigroup. 

PROPOSITION 3.3. Let p, T E A. Then 7 = pmin if and only if p 1 T and for 
every e E E, T lep is the least group congruence on ep. 

Proof. Necessity. Let e E E and a, b E ep. Note that 

aTb*af=bf for some f E E, f p a-b p b-lb, (1) 

and denoting by 0, the least group congruence on ep, we have 

ci G, b * af = bf for some f E ep n E. 

Let (1) hold. Then e p a implies e p a-la so &hat e p$ Thus JE ep r? E and (2) 
holds. Conversely, let (2) hold. Then fp a and jp b, which implies that 
fp a-la p b-lb and (1) holds. Consequently 7 = o’B ~ 

Sz@iency. By Theorem 3.1, we have p 0 7 and hence pEtin C T. Thus for 
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any e E E, epmin C er. Conversely, let a E er. Then af = ef for some f E er n E 
since 7 lep is the least group congruence on ep. In particular e p a, which implies 
that e p a-la. Since also e p f, we obtain a pmin e, and hence a E ep,in . Conse- 
quently er = epmin . Since e E E is arbitrary, it follows that I = pmin . 

4. TRACES AND KERNELS 

We establish here the main characterization theorem for congruences on an 
arbitrary inverse semigroup. In order to facilitate our discussion, we introduce 
the following concepts. 

DEFINITION 4.1. Let p be a congruence on an inverse semigroup S with the 
semilattice of idempotents E. The restriction p IE is the trace of p, to be denoted 

by tr p, and the set 

kerp={aESjapeforsomeeEE] 

is the kernel of p. 
We consider below necessary and sufficient conditions on a pair (.$, K) in 

order that there exists a congruence p on S such that tr p = .$ and ker p = K. 
Such conditions were first given by Scheiblich [19], and simpler ones by Green 
[4, Proposition 3.91. Recall that a subsemigroup K of S is fuZZ if E _C K, and 
self-conjugate if a-lKa C K for all a E S. 

DEFINITION 4.2. Let S be an inverse semigroup with the semilattice E of 
idempotents. A full, self-conjugate inverse subsemigroup K of S is a normal 
subsemigroup. If, in addition, E is a normal congruence on E satisfying 

(i) ae E K, e < U-~U 3 a E K, 

(ii) a g K * a-lea 5 a-lae, 

for all a E S, e E E, then (E, K) is a congruence pair for 5’. In such a case, define 
a relation K~~,~J on S by 

a K(~,~) b * a-la E b-lb, ab-l E K. 

Note that if E C K 2 S, then K is a normal subsemigroup of S if and only if 
it is self-conjugate and a, b E K implies ab-l E K. Thus a normal subsemigroup 
of S is strongly reminiscent of a normal subgroup of a group, and K($,~J of the 
congruence induced by it. In order to show that K(~,~) is a congruence, we first 
prove a technical lemma. 

LEMMA 4.3. If (.$, K) is a congruence pair for S, then 
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(i) aeb E K, e ( a-la * ab E K, 

(ii) ab E K + aeb E K, 

(iii) ab-l i K, a-la 6 b-lb + a-lea 5 b-leb, 

fog all a, b E S, e E E. 

Proof. (i) Let aeb E K and e f a-la where e E E, a, b E S. Then 

aeb = ae(bb-I) b = ab(b-leb), 

(ab)-l (ab) = b-l(a%) b { b-leb, 
(1) 

which by Definition 4.2(i) yields ab E K. 

(ii) For ab E K and e E E, we have b-leb E E so that aeb E R by (I) since R 
is full. 

(iii) et ab-1 E K, a-l 5 b-lb, e E E. Then iay Definition 4.2(E), we have 
(ab-‘)-l e(ab-r) 6 (ab-l)-I (ab-l) e which implies 

b(a-lea) b-l 5 b(a) bFe < b(b-lb) b-le = bb-le, 

whence 

a-lea = (a-la) (a-lea) (a-la) E (b-lb) (a-lea) (b-lb) 4 (b-l) (bb-le) b = b-leb, 

as required. 
The main characterization theorem for congruences follows. 

THEOREM 4.4, If ([, K) is a congruence pair for an inverse semigrmp S, then 
K(s,g) is a congruence on s with trace t and kernel K. Converse@, zy p is a con- 
gruence on S, then (te p, ker p) is a congruence pair for S and p = K(L~,,~~~,) . 

Proof. Let ([, X) be a congruence pair for S, and let K = K(~,~) . It fohows 
immediately that K is reflexive and symmetric. Let a K b and b K c. Then 
a-la [ b-lb 5 c-lc and ab-I, bc-l E K. Hence a(b-lb) c-r E R which together witb 
b-lb 5 a-la implies ac-l E K by Lemma 4.3(i). Thus a K c, and K is transitive. 

Next let a K b and c E S. Then 

(ac)-1 (ac) = c-l(a-la) c f c-l(b-lb) c = (EC)-l (bc), 

since a-la 5 b-lb and [ is a normal congruence, and 

(ac) (bc)-1 = a(cc+) b-l E K 

by Lemma 4.3(G) since ab-l E K. Consequently ac K bc. Further, 

(ca)-l (ca) = a-l(c-lc) a 6 b-l(c-lc) b = (bc)-l (bc) 
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by Lemma 4.3(iii) since a% e b-lb, and 

(ca) (cb)-l = c(ab-l) c-l E K 

since ab-1 E K and K is self-conjugate. Therefore K is a congruence on S. 
It is obvious that tr K = f. If a K e for e E E, then a-%r E e, ae E K which by 

Definition 4.2(i) yields a E K. Conversely, if a E K, then a K a-%~. Conse- 
quently ker K = K. 

Conversely, let p be a congruence on S. A simple verification shows that 
(tr p, ker p) is a congruence pair for S. Let a K(&,kerp) 6. Then a-% p b-lb and 
ab-l p e for some e E E. Hence 

a = a(~%) p (ab-I) b p eb, 

b = b(b-lb) p (ba-l) a p ea, 

whence a p eb p e(ea) = ea p 6. Thus K(trp,kerp) C p, the opposite inclusion is 
trivial. 

Other characterizations of congruences on inverse semigroups were given by 
Scheiblich [19] and Green [4]. 

COROLLARY 4.5. Let V be the set of all congruence pairs for S ordered by 

(6 K) < (E’, K’) + E _C 5’, K _C K’. 

Then the mappings 

([f K) + K&J) and P -+ (tr P, ker P) 

are mutually inverse lattice isomorphisms of V onto A and of A onto V, respectively. 

5. SUPPLEMENTS 

Since the intersection of normal congruences is a normal congruence, the set 
@ of all normal congruence on E is a complete lattice with meet equal to the 
intersection. We denote by V the join both in A and in @. The first two parts of 
the next result are due to Reilly and Scheiblich [17, Theorem 5.11 and the third 
part to Green [4, Theorem 3.41. 

PROPOSITION 5.1. For any family 9 of congruences on S, we have 

tr n P = f-7 trf, 
PEP PEF 

tr V P = V tr P, 
p&F Pep 

ker n p = n ker p. 
PEP PEF 
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For a congruence f on E, the least normal congruence containing it does not 
seem to admit a simple expression. However, the greatest normal congruence 
contained in E is given by 

e $ f * a-lea 6 a-lfu for al! a E S, 

which is easily verified. 

LEMMA 5.2. Let p, T E A be such that p C T and p 6 7. Then 

apboarb,aPEkerp (a, b E S). 

Proof. The direct part is trivial. For the converse, assume that a T b an 
e-1 E ker p. Then a-l 7 b-1 and hence a-la 7 b-lb. Since p 6 7, this implies that 

a-lap b-lb. Further, ab-l E ker p implies ab-’ p e for some e E E. Then 
a(b-lb) p eb so that a p eb since b-lb p a-la. Also ba-1 p e which implies b&a p ea 
and hence b p ea. Consequently 

as required. 

a p eb p e(ea) = ea p b, 

This lemma and its proof immediately yield 

&ROLLARY 5.3. For any p E A, we have 

apbeap,,,b, ab-lEkerp 

-+ a-la tr p b-lb, abP E ker p. 

bOPOSITIQN 5.4. FOT p E fl, the fobEloz&g statements we true. 

(i) S/p is a semilattice of groups if and only if S/prnax is a semilattice. 

(ii) S/p is a bisimple inverse u-semigroup if and only if Sipmax is a bicydic 
semigroup. 

Proof. Note that Theorem 3.1 implies the statement 

If S/p is either a semilattice of groups or a bisimple inverse w-semigroup, then 
p = A? and hence (1) gives (S/p)/% s S/pmax , which proves the direct 
implications. Let S/pmitx be a semilattice. For any a E S, e E E, we have by 
Corollary 5.3 

ae p ea 0 ae pmax ea, (ae) (ea)-” E ker ,p. 
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The first part on the right is true since SIpmax is a semilattice. The second part 
is true since (ae) (ea)-r = (sea-r) e E E. Hence ue p eu and S/p is a semilattice 
of groups. Finally, let S/p max be a bicyclic semigroup. Then Theorem 3.1 yields 

ap s+? bp 0 upmax = b pmax . 

Hence (S/p)/X is a bicyclic semigroup. A simple argument shows that S/p is a 
bisimple inverse w-semigroup. 

As a consequence, we obtain a slight strengthening of a recent result of 
Mills [13] and Hardy and Tirasupa [6]. 

COROLLARY 5.5. Let 77 denote the least semilattice congruence on 5’. Then 

rmin is the least semilattice of groups congruence on S. 

Proof. First, Proposition 5.4 implies that S/qmin is a semilattice of groups. 
Let p be any semilattice of groups congruence on S. Then Sipmax is a semi- 

lattice, again by Proposition 5.4, so that r] _C pmax . Now let a vmin b. Then 
ae = be for some e E E such that e v a 7 b. Hence e pmax a, which implies that 

e Pmax a -la and thus also e p a-la. Analogously we have e p b-lb. Now ae = be 
implies ae p be, which together with e p a-la p b-lb yields a p b. Thus Tmin C p, 
which establishes the minimality of 77 min as a semilattice of groups congruence. 

PROPOSITION 5.6. For any p E A, we have 

ker pmax = {u G S 1 ae p ea fo? all e E E), 

ker pmin = {a E S ] ae = e for some e E E, e p a%}. 

Proof. Let a E ker pmax . Then a p max f for some f E E and thus a-reap ef 
for all e E E. For e = au-l, we get a% p au-If which implies a p a2a-lf and 
thus a p uf. For e = f, we have u-‘fu pf so that fa p uf p a. But then ea = 
a(a-lea) p (af) e = ae. Conversely, assume that ae p ea for all e E E. Then 
a-lea p (~-~a) e for all e E E, which shows that a pmax u-la and a E ker pmax . 

For the second equality, we have 

a E ker pmin 9 a pmin f for some f E E 

+ae =fe forsomefeE and eEE, epa-lapf 

*ae=e for all e E E, e p a-%~. 

COROLLARY 5.7. For any normal congruence f on E, we have 

ker p” = {a E S 1 a-lea [ a-lae for all e E E}. 

For p the equality relatron on S, we obtain p = pmax , the greatest idempotent 
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separating congruence on S, and for p the universal relation on S, we get 

Q = Pmin , the least group congruence on S. They have the familiar form 

a p b CJ a-lea = b-leb for ali e E E, 
aobeae=be for some e E E7 

and their kernels are, respectively, 

Et = (a E S / ae = ea for all e E E), 

Ecu = (a E S j ae = e for some e E E}. 

ere El is the centralizer of E in S, and Ew is the closure of E in relative to 
e partial order which we will discuss below. For an extensive cussion of 

these congruences, consult Howie [7], in particular cf. Theorem 3.2 with the 
next proposition. 

hOPOSITIQN 5.8. A semigroup S is a subdiyect product of a group aazd a?8 
alztigroup if and only if Ew n Et = E. 

Proof. Let S be a subdirect product of a group G and an antigroup A, and 
let (g, a) E Ew n ES. Then (g, a) E E co, which implies (g, a) (I, e) = (1, e) for 
some e E .EA so that g = 1. Further, (g, a) E I?‘< implies that (g, a) (2, e) = 
(1, e) (g, a) for all idempotents e in A, and hence ae = ea for all e E E, . Since A 
is an antigroup, we deduce that a E EA . We have shown that (g, a) E E. 

Conversely, if Ew n EC = E, then by the last assertion of Proposition 51 we 
e ker(o CI p) = E which evidently implies that (T CI p is the equality relation. 
then S is a subdirect product of the group S/O and the antigroup Sip* 

For the next result, we need a lemma. 

EEMIW 5.9. Let 4 be an idempotent separating ho~o~o~~h~s~ of S onto T. 
Then a p b c> a+ p b$ fobr all a, b E S. 

Proof. The direct implication is obvious. Let a+ ,U b+. Then (a4)-l(e$> (a$) 

= (b$)-l (e+) (b+) for all e E Es , so that (a-lea) $ = (b-leb) $J for all e E Es s 
Since 4 is idempotent separating, we must have a-lea = b-leb for all e E B, , and 
a p b. 

As a consequence of [.5, Theorem 131, this lemma remains valid if we sub- 
stitute p by Green’s relations Z, 9, W or $. It is easy to see that it is also valid 
for 52, In particular, / S/,X j = / T/L%? / for LF = A?, .9,W, 9, 9. 

PROPosITIm 5.10. Fou every inverse semigroup S there exists a group G, a 
subdirect product T of S/p and G, and an idempotent separating ~o~~o~o~~h~s~~ 4 of 
T 0&Q s. 
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Proof. Let S be an inverse semigroup. According to [l 1, Corollary 24, S is 
an idempotent separating homomorphic image of an E-unitary inverse semigroup 
T. That T is E-unitary means that ker (5 = ET. Hence 

ker(p n G) C ker (J = ET , 

tr(p n CT) L tr p = C, 

so that p n (T is the equality relation, and T is a subdirect product of the anti- 

group T/p and the group T/a. It follows from Lemma 5.9 that T/p G S/p. 

COROLLARY 5.11. Every inverse semigroup is an idempotent separating homo- 
morphic image of a subdirect product of a group and an antigroup. 

PROPOSITION 5.12. For any p E A and e E E, we have 

ep = e(tr p)mm n ker p. 

Proof. This formula is equivalent to 

ep = epmax n ker p. 

Let a E epm, n ker p. Then a pmax e and apf for some fEE. Then &ape 

and a-la p f so that e p f, whence a p e. Hence e pmax n ker p C ep, the opposite 
inclusion is obvious. 

This result provides an explicit demonstration of the fact that the trace and 
the kernel determine the classes of the congruence containing the idempotents, 
and thus the entire congruence. 

Inverse semigroups S have a natural partial order defined by 

a >, b e ab-l = bb-1. 

For any subset K of S, the set 

Kw={aESIa>bforsomebEK} 

is the closure of K in S. Subsets K of S for which Kw = K are closed in S. 
The next result provides an alternative characterization of congruence pairs 

(cf. [19, Theorem 2.11). 

PROPOSITION 5.13. Let E be a normal congruence on E and K be a normal 
subsemigroup of S. 
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(i) Condition (i) in Dejkition 4.2 is equivalent to:for all a E S, ap” (1 K 
is closed in atmax. 

(ii) Condition (ii) in Definition 4.2 is equivalent to: KC ker 5”““. 

Proofs (i) Direct part. Let a E S, b E a[ max n K, c E apax2 c 3 b. The11 
c(b-lb) = (cb-I) b = bb-lb = b E K and b (m&x a [“ax c, which implies b-lb f c-k 

ence condition (i) in Definition 4.2 yields c E K so that c E at”“” n K. 

Conaerse. Let ae E K, e E a-la where e E E, a E S. Then e px a-la and 
hence ae Emax a, so that ae G atmax n K. Furthe (ae)-1 = (ae) (ae)-I, which 
says that a >, ae. The hypothesis implies that a E 

(ii) This follows directly from Gorollary 5.7. 

Note that in terms of the natural partial order, we have for any a, b E S; 
p E A that LZ Pmin b is equivalent to the existence of c E S such that a 3 c, 
b>c, apbpc. 

Let .A denote the lattice of all idempotent separating congruences on S. 
Green [4, Theorem 3.41 proved a result related to the followmg 

PROPOSITION 5.14. For any normal s~bserni~~o~~ R of S, contained in EC 
de$ne a relation ~~ on S by 

aKXb saPb,ab-1EK. 

Then KKE A and ker K~ = K. Conversely, ij p E A, then ker p is a normal szkb- 
semigroup of S contained in EC and p = ~~~~~ e Define a Junctim ker ala A by 

ker: p -+ ker p. 

Then ker is a complete lattice isomorphism of A onto the lattice of all normal sub- 
semigroups of S contained in Et. 

Proof. First note that idempotent separating congruences are precisely those 
whose traces coincide with the equality relation. For any normal s-ubsemigroup 
K of S, and [ the equality relation, condition (i) of Definition 4.2 is automatically 
satisfied. For .K Z Et = ker E,G, by Proposition 5.13, condition (ii) of Definition 
4.2 is also satisfied. It remains to prove that K~ = K(‘,~) , and for this it su 
to show that a-la = b-lb, ab-1 E K _C El implies aa-r = bb-1. Indeed 

aa-l = a(a-la) a-1 = a(b-lb) a-1 = (ab-l) (bb-I) (ba-I) 

= (bb-1) ab-lba-1 = (bb-1) aa-l 

and analogously bb-l = (au-r) (bb-l) so that au-r = b&l. 
Since for any p E A, ker p is a normal subsemigroup contalned in ker p = Et, 
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in order to establish the second statement, it suffices to prove that the meet and 
the join in d coincide with those in the poset .Z of all subsemigroups of S. Let 
{KE}olEA be a family of normal subsemigroups of S contained in El. By Proposi- 
tion 5.1, nK, is a normal subsemigroup contained in EC. The join VK, in Z 
consists of all x1x2 ... x, E 5’ such that x1, x2 ,..., x, E UK,. It is immediate 
that VK, is a full inverse subsemigroup of S contained in El. For any K = 

x1x2 *.* x, with xi E UK, and a E S, we have 

a-lka = a-1x,x, . . . x,a = a-l[(ua-1) Xl] x, . . . x,a 

= a-l[xl(ua-l)] x2 . . . x&2 = (a-lx+) u-lx, . . . x&z 

= ... = (a-lx,u) (a-lx,u) ... (u-‘~,a) E VK, 

since all xi are in the centralizer Et of E. Hence VK, is self-conjugate and thus a 
normal subsemigroup of S. 

6. GROUP CONGRUENCES 

These form the O-class of congruences whose trace is the universal relation on 
E. We denote by J’ the lattice of all group congruences on S. We will see below 
that there exists a homomorphism of /l onto r which leaves I’ elementwise 
fixed. We start with characterizations of p V cr where p e/l and o is the least 
element of r. 

PROPOSITION 6.1. For p a congruence on S and a, 6 elements of S, each of the 
following statements is equivalent to a p V CI b. 

(i) ue p be for some e E E. 

(ii) u(ker p) n b(ker p) #a. 

(iii) uEb-l n ker p # D. 

Proof. According to ([7], Theorem 3.9), p V (T = uppa. Assume first that 
uupab.Thenuox,xpy,yabforsomex,y~S.Thenuf=xfandyg=bg 
for some f, g E E. Letting e = fg, we obtain ue = xe p ye = be which proves (i). 

Next assume that (i) holds and let K = ker p. Then (ae) (be)-1 E K and thus 
ueb-1 E K which implies that b-l(ueb-I) b E K. But then b(b-Qzeb-lb) E bK, 
that is (bb-1) (UC’) (ae) (b) E bK. It follows that ac E bK where c = 
[a-l(bb-l) a] e(b-lb) E E. C onsequently ac E UK n bK and (ii) holds. 

Now suppose that (ii) is valid, say a,% = b2 where k, 1 E K. Then akk-lb-1 = 
b(Zk-l) 6-l E K since Zk-1 E K. Hence aEb-1 n K # m and (iii) holds. 

Finally, assume that (iii) holds, say aeb-l E K where e E E. Then aeb-1 p f 
for some f~ E. It follows that ae(b-lb) pfb = bjb-lfb). Letting g = e(b-lfb), 
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we obtain ag p bg with g E E, whence a o ag, ag p bg, bg CT b. Conseqilmtly 
a 4pa b, as required. 

PROPOSITION 6.2. FQT any p EA: we have 

ker(pVa)=(aES/aepejorsomeeEE) 

=(aESja(kerp)nkerp# a;) 

=(aES/uBnkerpf a> 

= (ker p) w. 

Proof. The first three equalities follow directly from Proposition 6.1. 
According to [7, Theorem 3.91, we have p V 5 = CT~CT. Let a E ker(Gppo). Then 
aox,xpy,ycreforsomex,y~Sande~E.Itfollowsthataf=xfandyg=g 
for some J: g E E. Letting t = efg, we obtain at = xt, xt p yt, yt = t with t E B. 

ence at p t and at E ker p. Since a > at, it follows that a E (ker p) W. 
Conversely, let a E (ker p) w. Then a > b for some b E ker p* ence ab-1 = 

bb-l am3 b p e for some e E E. Thus a(b-lb) = b(b-lb) so that a 5 b, b p e, e CT e 
which shows that a ~ppa e, that is a E ker(opo). 

THEOREM 6.3. Let r denote the lattice oj all group cong~~~ces on S. Then 

the mapping $ de$ned by 

is a ko~o~o~pkis~ of (1 onto r. 

F'75of. Let p, 7 E A and a (p V CT) n (T V CT) b. Then by Proposition 6.1, we 
have ae p be and af T nf for some e, f E E. Hence aef p n T bef with ef f E which 
by Proposition 6.1 implies a (p n T) V o b. Consequently (p V 0) CI (T V CT) C 
(p A T) V a; the opposite inclusion is trivial. Hence $ is a n-homomorphism; 
it is obvious that $ is a V-homomorphism. Finally, $ maps .A onto I’ since $ 
leaves F elementwise fixed. 

For a characterization of (T itself, we first need a lemma. 

EMMA 6.4. For any nonempty subset K oj S, we have Ku = (KE) CO. 

Pp.oof. Let a E Ku. Then a CT k for some k E K, so that ae = ke for some 
e E E. Hence 

a(ke)-1 = aek-1 = kek-1 = (ke) (ke)-1; 

that is, a 3 ke EKE and thus a E (KE) w. Conversely, let a E (KE) w. 
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a 3 ke for some k E K, e E E. It follows that aek-l = k&-r which implies 
a(ek-%) = k(ek-rk) where ek-% E E. Thus a 0 k and a E Kw. 

COROLLARY 6.5. The classes of o are the sets (aE) w. In particular, 

aab+(aE)w=(bE)cu. 

7. ~-CLASSES OF AN IDEAL 

To each ideal I of S we can associate the &class of the greatest (resp. least) 
congruence on S having I as a class. 

An inverse semigroup S with zero all of whose nonzero idempotents are 
primitive is a primitive inverse semigroup (briefly S is primitive). An ideal I of any 
semigroup S is categorical if for any a, b, c E S, ab, bc $ I implies abc 6 I. If + is a 
homomorphism of an inverse semigroup S onto a primitive inverse semigroup T, 
then the complete inverse image of 0 of T under $ is a categorical ideal of S. 
Conversely, to each categorical ideal I of S once can in a natural way associate a 
homomorphism onto a primitive inverse semigroup T with the property enun- 
ciated above. 

An ideal I of S is prime if for any a, b E S, aSb 6 I implies that either a E I 
or b ~1. Categorical prime ideals are in the same correspondence to homo- 
morphic images of S which are 0 or Brandt semigroups as the categorical ideals 
vs. primitive homomorphic images. For a complete discussion, consult [Z, 

Sect. 7.71. 

THEOREM 7.1. Let I be a proper categorical ideal of S. The set Z of all con- 

gruences p on S having I as a class and fey which S/p is primitive foyms a O-class 
with the greatest element y: 

ayb ++(xayEI 9- xby E Ifor all x, y E 9) 

and the least element A: 

aXb-=ae=be$I forsomeesE 07 a,bEI. 

Moreover, 

kery={aESIeae$IforsomeeEE}vI, 

kerh={aESIae=e$IforsomeeEE)uI. 

The common trace of all congruences in 2 is given by 

eEf -=-eg=fg$I forsomegEE or e,fsI. 
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The hernels K of congruences in 2 are normal subsem~g~Q~~s of S satisfying 

ICKCkery, aeeK\I,eEE=e- aEK, 

.Pmof. It is easy to verify that y is the greatest congruence on S having 1 as 
,one of its classes. Further [2, Lemma 7.64] implies that it is the least congruence 
on S for which I is a class and whose quotient semigroup is primitive. 
the least eiement of Z. It follows from the minimality of X that S/v 
morphic image of S/h, which implies that s/y is also primitive. Hence y is the 
greatest e!ement of Z. Further, the congruence y/X is a O-restricted congruence 
on S/h. Since S/h is a primitive inverse semigroup, it follows easily that r/h is 
idempotent separating. Now Theorem 3.1 implies that y 6 h. 

Obviously tr )r coincides with the relation 6 in the statement of the theorem, 
and hence 6 is the trace of any congruence in Z:. Next let p E p1 be such that 

y Theorem 3.1, we have for any a, b E $, 

since &? coincides with the equality relation in the primitive inverse anti- 
group s/r. Consequently Z = y/p in S/p, which evidently implies that Sip 
is primitive and that I is a class of p. Hence p E Z’ which proves that [y] C Z: But 
then Z’ coincides with the O-class [y]. 

For any a E S, we have a E ker y if and only if 

xayEI+xeyEI for sotie e E E and ali x, y E S’, 
(I) 

If e E I, then e(&a) E I and thus a = a(~-%) E I. If e $ I, then eee + I imp!ies 
eae $1. Conversely, assume that eae $ I; we will show that (I) holds. Let xay $ I: 
Then xa, ea $ I which implies that (xa) a-r, a-le $ I. Since I is categorical, it 
follows that xaa-le $1. But then xe(a&) ~1 and thus xe $1. Analogously, -we 
have ey 6 P which yields xey $ i’. A similar argument can be used to show that 
zey $ I implies xay 4 I. This proves (I) and hence ker y has the form stated in 
the theorem. A simple argument shows that ker A has the form in the statement 
,of the theorem. 

In order to prove the last assertion of the theorem, in view of Proposition 
5.13(G), it suffices to show that for any a E S, e E E, the statements 

ae E K, e ( a-k +- a E K, (2.) 

aefK\B+ aEK (3 

are equivalent. Assume that (2) holds and let ae E R\b. Then a-&e $ I and hence 
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(a-%) (a-rue) = e(&ae) $1. It follows that e t a-la and (2) implies that a E K. 
Conversely, assume that (3) holds and let ae E K, e f a-la. If a E I, then a E K. 
Suppose that a $ I. Then e t a% implies that e $ I and also that e 4 a-lae. 
But then a-lae $1, so ae E K\I. Now (3) yields a E K, as required. 

The special case of the above theorem when I is also a prime ideal yields Z 
in which all congruences p have the property that S/p is a Brandt semigroup. 

The theorem characterize the &class of the greatest congruence on S for 
which the categorical ideal I is saturated. The next proposition describes the 
greatest and the least elements of the B-class of the Rees congruence pr for any 
ideal I of S. Recall that 

aplb -a, beI or a = b. 

PROPOSITION 7.2. Let I be an ideal of S. 

(i) I is saturated for every congruence in the O-class of p1 . 

(ii> (P&~x is the greatest congrumce on S contained in 2 u (I x I).. 

(iii) p = (pl)min has the property: p II is the least group congruence on I,, 

p jsll is the equality relation. 

Proof. (i) Let p f3 pr , a p b, a ~1. Then a-rap b-lb so that a-la p1 b-lb.. 
Since a-la E 1, it follows that b-lb E I and hence b g I. 

(ii) According to Theorem 3.1, (P,)~~JP~ is the greatest idempotent 
separating congruence on S/pl, hence the greatest congruence on S/p1 contained 
in &‘. The assertion in (ii) now follows from the correspondence of congruences, 
on S and on S/p1 . 

(iii) We know that 

a (pl)min b e ae = be for some e E E, e p1 a-la p1 b-lb. 

If a $.l, then we must have e = &a = b-lb, so a = b. If a ~1, then so are both 
b and e. Conversely, if ae = be with a, b, e E 1, then e pr a-la p1 b-lb trivially. 
Hence the restriction of (pl)min to 1 coincides with the least group congruence 
on I. 

8. CONGRUENCES ON P-SEMIGROUPS 

We apply here the results of Section 4 to P-semigroups constructed by 
McAlister [lo]; the full importance of this class of semigroups is exhibited in 
[ll]. A description of these semigroups goes as follows. 

Let % be a partially ordered set. The meet of elements A and B of 57 is. 
denoted by A A B if it exists. Let g be an ideal and a subsemilattice of Z’“, that is,, 
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Let 

Let G be a group acting on 55 by order automorphis 

P(G, S”^, 3) = ((A, g) E ?Y x G j A A gB and g-l(A A ) exist and belong to g>> 

with multiplication 

Then S = P(G, %, 3’) is an E-unitary inverse semigroup (that is, ker u = E). 
Conversely every E-unitary inverse semigroup is isomorphic to one so con- 
structed 

For the rest of this section, we fix a semigroup S = P(G, %, “Y) and denote 
by E the semilattice of its idempotents. Then E g 3’ by the isomorphism 
A -+ (A, I), where 1 is the identity of 6. We first characterize normal con- 
gruences on E. 

LEMnqA 8.1. Let E be an equivalence relation on CP satisfy&g 

(ol)(A,g)ES,BEC*AA 

DeJine on E a relation f by 

Thn E is a nosmal congruence on E. Conversely, every nosmd conpence on E can 
be so obtailzed. 

Prooj. First let [ satisfy (13). For g = 1, we get that 5 is a congruence on TV, 
and hence 5 is a congruence on E. Let (A, g) E S and (B, 1) z (C, 1). Then 

and analogously (A, g) (C, I) (A, g)-’ = (A A gC, I), which by (a) implies that 

so that 4 is a normal congruence on E. The converse fohows by reversing the 
steps. 

Next we characterize all normal subsemigroups of S. By Y(g) denote the set 
of all ideals of @. 
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LEMMA 8.2. Let N be a normal subgroup of G and or: N -+ I(g) be a function 
satisfying 

(8) lrr = g’, 
(7) A EAT, B E hr * h-l(A A B) E (h-lg) z-, 

(6) (A, g) E S, B E hrr + A A gB A ghg-lA E (ghg-I) n-. 

is a normal subsemigroup of S. Conversely, every normal subsemigroup of S can be 
so obtained fey unique N and r. 

Proof. Let (A, g) E N,, . Then A E~V and A E 1~ so that g-lA ~g-%r by (r)> 
and hence (g-lA, g-l) E N,, . Thus N, is closed under the taking of inverses. 

Next let (A, g), (B, h) EN,, . Then g-lA E~-%T and B E hrr which implies 
that g(g-IA A B) E (gh) v again by (r). Hence A A gB E (gh) r, that is, 
(A A gB, gh) E S. Thus N, is closed under multiplication. 

Let (A, g) E S and (B, h) EN, . Then B E h5-r and (6) implies 

(A, g) (B, h) (A, g)-’ = (A A gB A ghg-lA, g&-l) E NT . 

Hence N, is self-conjugate. Condition (a) ensures that NW will be full. Therefore 
N, is a normal subsemigroup of S. 

Conversely, let K be a normal subsemigroup of S, and let 

N={gEG](A,g)EKforsomeAE?Y} 

and define r on N by 

gv=(AEgj(A,g)EK}. 

It is straightforward to show that N and QT satisfy all the conditions spelled out 
above and that N, = K. For example, (7) is verified by computing (B, h)-1 (A, g); 
also (7) implies that each gr is an ideal of (&Y. 

LEMMA 8.3. With the notation of Lemmas 8.1 and 8.2, (5, N,,) is a congruence 
pair fop S ;f and only if 

(c) (A,g)ES, AfB, AA BEgrr+ AEgrr. 

(rl) AEg?i, Beg* AAgBfAA B. 
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Proof. It is a notational convenience to take the left-right duals of conditions 
(i) and (ii) in Definition 4.2, viz., 

It is easily checked that these two definitions are equivalent. Now 

is clearly equivalent to (c); analogously for (7). 
When all the conditions (cy)-(7) are fulfilled, we have a congruence pair 

(<, N,), and conversely. Hence the above lemmas, in conjunction with Theorem 
4.4, yield the following characterization of congruences on S. 

THEOREM 8.4. Let S = P(G,%,Y)b e a P-semigroup, Let t be an equivalmce 

relation 0nY satisfying condition (a), 7~ be a function mapping a normal ~bgy~~p N 

of G into the ideals of Y satisfying (/3), (Y)~ (a), and assume that (E), (7) hold. 
a velatiorz p = P(~,~) on S by 

Then p~~,~) is a congruence on S. Conversely, every copzgzgrzkence on S cala be ~l~~~~e~~ 
written in this form. 

For 6 as above, we have 

(A, g) i+= (B, h) 0 A A gC E B A hC 

(A,g) tmin (B, h) -+a A c$ B, g = h. 

for all C E CY, 

Another characterization of congruences on .P-semigroups was given by 
McAlister [12]. 

9. CQNGRUENCES ON POLYCYCLIC MONOIDS 

Munn and Reilly [14] proved that a congruence on a bisimple w-semigrou 
S is either idempotent separating or is a group congruence. They characterize 
the former as well as the resulting quotient semigroups. Group congruences on 
these semigroups were constructed by Ault [l]. 

Among the numerous generalizations of a bisimple inverse w-semigroup, 
a very natural one is that of a polycyclic monoid, which we now proceed to 
describe. 
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Let X be any nonempty set. Denote by X* the free monoid on X, that is the 
set of all finite sequences (words) over X, including the empty sequence, under 
concatanation as multiplication. Let G be a group and $ be a homomorphism of 
X* into the monoid of endomorphisms on C (that is, the empty word ,D’ maps 
onto the identity endomorphism on G). For any g E G and w E X*, we write 
gw instead of g$(w). On the set S = (X* x G x X*) u {0} where 0 is an extra 
symbol, define a multiplication by 

(% g, v) (w, 4 4 = (% gh$, t.4 if v = tw 

= (tu, gth, x) if w = tv 

and all other products are equal to 0. Then S = S(X, G, 4) is a polycyclic 
monoid. 

This monoid was introduced by Nivat and Perrot [15] who established an 
abstract characteristic of it; cf. [9, Theorem 3.31. When card X = 1, this 
essentially reduces to the bisimple w-semigroup constructed by Reilly [16] 
with a zero adjoined. Since the congruences for this case have been characterized, 
as mentioned above, we consider only the case card X > 1. For any subgroup 
H of G and x E X, we write 

HS={g”IgeH}. 

If Ha _C H for a normal subgroup H of G and all x E X, we can define a homo- 
morphism o/H from G/H to the endomorphism monoid of G by letting 

(gH)w = gwH for all w E X*, g E G. 

THEOREM 9.1. Let S = S(X, G, $) and card X > 1. Let H be a normal 
subgroup of G such that Hx C Hfo? all x E X. On S define a relation pH by 

(u, g, v, PH (% ‘% z> + u = w> gh-l E H, v = 2, 

and 0 pH 0. Then pH is a congruence on S and S/pH s S(X, G/H, #/H). Con- 
versely, every nonuniversal congruence on S can be uniquely written as px for some H. 

Proof. Under the hypotheses of the direct part, let 

K = ((u, h, u) ) u E X”, h E H} u (0). 

The hypothesis on H clearly implies that K is closed under multiplication and 
the taking of inverses. Further, 
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(U, g, w)-1 (2, h, 2) (u, g, v) = (w, g-1, 24) 

/ 

(z, hgt, tv) if x = fu 
(tz, wg, w) if u = fx 
0 otherwise 

1 

(tv, (g”)-” $Tt, ta) if x = tu, 
= I;“’ g-l& 4 if u = tx: 

0thHWiSe. 

The hypotheses on H now show that if (z, b, z> E pi=, then also (u, g, v)-r ’ 
(z, h, x) (a, g, w) E K. Hence K is a normal subsemigroup of S. Noting that 

we see that Proposition 5.14 yields 

@, g, 4 KK (w, h, 4 + u = w, (u, g, v) (2, h-l, w) E K, v = x, 

which evidently implies that tcX. = pH . Proposition 5.14 now gives that pli is an 
idempotent separating congruence. 

Define a mapping x on S by 

I 
(% g, 4 -+ (% gf& 4, 

x: o+o. 

A simple verification shows that x is a homomorphism of S onto S(X, G/PI, $111) 
which induces the congruence pH . Hence S/pH z S(K, GIN, $,/H). 

Conversely, let p be a congruence on S, and assume that (uj I, u) p (~1, 1, v) 
for some U, w E X*, u # v. We distinguish several cases. 

case 1. u is a right factor of v. Letting x be the first variable occurring in 0, 
-we c2n write v = xwu for some w E x”. We now calculate 

1% 8, a)-“@4 l,U)(WU, 1, m) =(m, I,wu)(wu, 1, a) =(m, I, n), 

(wu, 1, a)-” (q 1, v) (wu, 1, m) = (m, I, 207-J) (q I, x) = (x, 1, x), 

which implies (a, 1, a) p (x, I, x). By hypothesis there is y E X such that 
y # x. We obtain 

so that (y, I, y) p 0. Since S has no proper nonzero ideals, it foollows that p is 
the universal relation. 

Case 2. v is a right factor of U; this is symmetric to Case I. 
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Case 3. Neither Case 1 nor Case 2 occurs. Then 

implies (u, 1, U) p 0, and again p is the universal congruence. 
Hence let p be idempotent separating, and let K = ker p. Then 

let 
K C EC = ((u, g, u) 1 u E X*, g E G} u (0); 

H=(h~Gl(@,h, IZ()EK}. 

It is clear that H is a normal subgroup of G. Further, 

(% 1, OF1(O, h, 0) (x, 1, 0) = (0, h”, 0) 

shows that Hx C H for all x E X. Finally, 

(@>L4-1(0,h, 0)(0,1,u)=(U,h,U) 

041, O)-l(%h,U)(U,l, 0)=(0,h, 0) 

shows that 

K = {(u, h, u) 1 u E X”, h E H} u (0). 

The direct part of the proof now easily shows that p = pH . 

COROLLARY 9.2 (Perrot). Every nonuniversal congruence on S = S(X, G, +), 
where card X > 1, is idempotent separating. 

10. CONCLUDING REMARKS 

Among the special congruences on a general inverse semigroup we have 
encountered idempotent separating congruences, group congruences, and 
congruences associated with an ideal. A class of congruences we did not discuss 
are the idempotent determined congruences, that is those congruences p with the 
property: a p e, e E E implies a E E (a better name would be idempotent pure). 
In our present notation these are precisely those congruences p for which 
kerp = E. 

In the diagram below, we give a review of the congruences with extremal 
properties of the trace and the kernel. We use the following notation: 

w = the universal relation (on S and E), 

(r = the least group congruence, 

7 = the least semilattice congruence, 



CONGRUENCES OK INVERSE SEMIGROUPS 255 

v = the least semilattice of groups congruence, 

7 = the greatest idempotent determined congruence, 

p = the greatest idempotent separating congruence, 

L = the equality relation (on S and E), 

for an inverse semigroup S with the semilattice of idempotents E. 

group congruences semilattice congruences 

Each of the upper two classes of congruences forms a filter of A, and each 
of the lower classes forms an ideal of A. For each semilattice corrgruentce p; 
we have ker p = S and hence p = pmax; dually for each idempotent determined 
congruence p, we have ker p = E and hence p = pmin a In contradistinction, the 
group congruences and the idempotent separating congruences each constitute 
a 6-&s. 

Ht is easy to see that the following statements are equivalent: 

(i) S is E-unitary, 

(ii) CT = 7, 

(iii) for any p E A, ker p = E a p = pmin; 

and that also the following statements are equivalent: 

(i) S is a semilattice of groups, 

(ii) “q = P, 
(iii) foranyp~R,kerp=S-+p=p,,,. 
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A portion of the above discussion can be found in Ref. [4]. Using the methods 
developed here, we have constructed all congruences on any simple inverse 
w-semigroup. In view of the considerable length of the considerations involved, 
this will appear in a separate communication in Glasgow Math. J. 

Note added in proof. Congruences on P-semigroups were also characterized by R. P. 
Jones. The lattice of inverse subsemigroups of a reduced inverse semigroup, Glasgow 
Math. J. 17 (1976), 161-172. 
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