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Abstract

This paper introduces the notion of a quasi-hom-Lie algebra, or simply, a ghl-algebra, which is a
natural generalization of hom-Lie algebras introduced in a previous paper [J.T. Hartwig, D. Larsson,
S.D. Silvestrov, Deformations of Lie algebras usinglerivations, math.QA/0408064]. Quasi-hom-

Lie algebras include also as special cases (color) Lie algebras and superalgebras, and can be seen as
deformations of these by maps, twisting the Jacobi identity and skew-symmetry. The natural realm
for these quasi-hom-Lie algebras is generalizations-deformations of the Witt atgetdarivations

on the Laurent polynomial§[z, 7 ~1]. We also develop a theory of central extensions for ghl-algebras
which can be used to deform and generalize the Virasoro algebra by centrally extending the deformed
Witt type algebras constructed here. In addition, we give a number of other interesting examples of
quasi-hom-Lie algebras, among them a deformation of the loop algebra.
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1. Introduction

The classical Witt and Virasoro algebras are ubiquitous in mathematics and theoretical
physics, the latter algebra being the unique one-dimensional central extension of the for-
mer [2,8,9,11-13,19,23]. Considering the origin of the Witt algebra this is not surprising:
the Witt algebrav is the infinite-dimensional Lie algebra of complexified polynomial vec-
tor fields on the unit circleSt. It can also be defined as= C ® Vect(S?) = @,,.;, C - dy,
whered, = —1"*1d/dt is a linear basis fov, and the Lie product being defined on the gen-
eratorsd, as({d,,d,) = (n — m)d,+, and extended linearly to the whode This means
in particular that anyf € o can be written as’ = f - d/dt with f € C[z, 1], the alge-
bra of Laurent polynomials, and hengecan be viewed as the (complex) Lie algebra of
derivations orC[¢, r~1]. When the usual derivation operator is replaced by its difference
discretization or deformation, the underlying algebra is also in general deformed, and the
description and understanding of the properties of the new algebra becomes a problem of
key importance.

To put the present article into the right perspective and to see where we are coming
from we briefly recall the constructions from [14]. In that paper we considered deforma-
tions of o usingo -derivations, that is, linear mag3 satisfying a generalized Leibniz rule
D(ab) = Dab + o (a) Db. As we mentioned above the Witt algelaraan be viewed as the
Lie algebra of derivations ofi[z, r~1]. This observation was in fact our starting point in
[14] in constructing deformations of the Witt algebra. Instead of just considering ordinary
derivations orC[z, t~1] we considered -derivations. In fact, we did something even more
general as we considered unital commutative associ@tiagyebras4 and ao -derivation
A on A. Forming the cyclic leftd-moduleA- A, a left submodule of thel-module®,, (A)
of all o-derivations on4, we equipped4 - A with a bracket multiplication-,-), such that
it satisfied skew-symmetry and a generalized Jacobi identity with six terms

(V0@ 0y, 2a)a +8 - (x, (3. 2)a)e) =0, (1)

X, ¥,

where (O, , . denotes cyclic summation with respectitpy, z and wheres € A. In the
case whem is a unique factorization domain (UFD) we showed that the whlmodule
9, (A) is cyclic and can thus be generated by a single elemeBinceC[z, 1] is a UFD
this result applies in particular to the-derivations on the Laurent polynomial§z, r 1,
and so we may regar®, (C[z, 1~ 1]) as a deformation of = Diq(C[t, 1~ 1]). As a result
we have a Jacobi-like identity (1) @, (C[z, r~1).

Furthermore, in [14] we concentrated mainly on the case wheif \ {0} and so the
Jacobi-like identity (1) simplified to the Jacobi-like identity with three terms

(s +ih (). (v, 2)e)e =0,

X, ¥,z

where ¢ = ¢/8 is 1/5-scaled version ob: A- A — A - A, acting on this left mod-
ule asao(a - A) = o(a) - A. Motivated by this we called algebras with a three-term
deformed Jacobi identity of this forinom-Lie algebrasUsing that any non-zero alge-
bra C-endomorphismo on C[t, r~1] must be on the formw (1) = ¢¢* for s € Z and
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g € C\ {0}, we obtained a-parametric family of deformations which, when= 1,
reduces to g-deformation of the Witt algebra and becomimgiheng = 1. This deforma-

tion is closely related to the-deformations of the Witt algebra introduced and studied in
[1,3-7,20,21,26-28]. However, our defining commutation relations in this case look some-
what different, as we obtained them, not from some conditions aiming to resolve specifi-
cally the case ofi-deformations, but rather by choosifiir, r 1] as an example of the un-
derlying coefficient algebra and specifyiago be the automorphism, : f () — f(gt) in

our general construction faer-derivations. By simply choosing a different coefficient alge-

bra or basier-derivation one can construct many other analogues and deformations of the
Witt algebra. The important feature of our approach is that, as in the non-deformed case, the
deformations and analogues of the Witt algebra obtained by various choices of the underly-
ing coefficient algebra, of the endomorphisnand of the basie -derivation, are precisely

the natural algebraic structures for the differential and integral type calculi and geometry
based on the corresponding classes of generalized derivation and difference type operators.

We remarked in the beginning that the Witt algebtaas a unique (up to isomorphism)
one-dimensional central extension, namely the Virasoro algebra. In [14] we developed,
for the class of hom-Lie algebras, a theory of central extensions, providing cohomologi-
cal type conditions, useful for showing the existence of central extensions as well as for
their construction. For natural reasons we required that the central extension of a hom-
Lie algebra is also a hom-Lie algebra, i.e., that we extend within the category of hom-Lie
algebras. In particular, the standard theory of central extensions of Lie algebras becomes
a natural special case of the theory for hom-Lie algebras when no non-identity twisting
is present. This implies that in the specific examples of deformation families of Witt and
Virasoro type algebras constructed within the framework of [14], the corresponding non-
deformed Witt and Virasoro type Lie algebras are included as the algebras corresponding
to those specific values of deformation parameters which remove the non-trivial twisting.
We rounded up [14], putting the central extension theory to the test applying it for the
construction of a hom-Lie algebra central extension ofg¢kdeformed Witt algebra pro-
ducing ag-deformation of the Virasoro Lie algebra. Fgr= 1 one indeed recovers the
usual Virasoro Lie algebra as is expected from our general approach.

A number of examples of deformed algebras constructed in [14] do not satisfy the three-
term Jacobi-like identity of hom-Lie algebras, but obey instead twisted six-term Jacobi-like
identities of the form (1). These examples are recalled for the reader’s convenience among
other examples in Section 3. Moreover, there exists also many examples where skew-
symmetry is twisted as well. Taking the Jacobi identity (1) as a stepping-stone we introduce
in this paper a further generalization of hom-Lie algebras by twisting, not only the Jacobi
identity, but also the skew-symmetry and the homomorphisitself (replaced byx in
this paper). In addition, we let go the assumption tha an element ofA and assume
instead that it is a linear magpon A. We call these algebragiasi-hom-Lie algebragr in
short justghl-algebras(see Definition 1). In this way we obtain a class of algebras which
not only includes hom-Lie algebras but also color Lie algebras, Lie superalgebras and Lie
algebras as well as other more exotic types of algebras, which then can be viewed as a kind
of deformation of Lie algebras in some larger category.

The present paper is organized into two clearly distinguishable parts. The first, con-
sisting of Sections 2 and 3 concerns the definition of ghl-algebras and some more or
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less elaborated examples of such. The second part, Section 4, is devoted to the (central)
extension theory of ghl-algebras. Let us first comment some on the first part. In Sec-
tion 3 we give, based on observations and results from [14], examples of ghl-algebras
generalizations-deformations or analogues of the classical Witt algelimaaddition to
showing how the notion of a ghl-algebra also encompasses Lie algebras and superalgebras
and, more generally, color Lie algebras by introducing gradings on the underlying linear
space and by suitable choices of deformation maps. We also remark that we can define
generalized color Lie algebras by admitting the twistand 8. As another, new, example

of ghl-algebras we offer a deformed version of the loop algebra. Section 4 is devoted to
the development of a central extension theory for ghl-algebras generalizing the theory for
(color) Lie algebras and hom-Lie algebras. We give necessary and sufficient conditions
for having a central extension and compare these results to the ones given in the existing
literature, for example [14] for hom-Lie algebras and [29,30] for color Lie algebras. As a
last example we consider central extensions of deformed loop ghl-algebras in Section 4.3.

2. Definitions and notations

Throughout this paper we I&tbe a field of characteristic zero and &t(L) denote the
linear space ok-linear maps of thé&-linear spacd..

Definition 1. A quasi-hom-Lie algebra (ghl-algebra) is a tuplg (-,-) ., «, 8, @) where

L is ak-linear space,

(-,)r:L x L — L is a bilinear map called a product or a brackeLin
a, B:L — L, are linear maps,

w: D, — Lx(L)is a map with domain of definitio®,, C L x L,

such that the following conditions hold:
e (B-twisting) The mapx is a8-twisted algebra homomorphism, that is,
((x),a(y))p=Boalx,y)r, forallx,yelL;
o (w-symmetry) The product satisfies a generalized skew-symmetry condition
(x,y)L =w(x, y)(y,x)r, forall(x,y) € Dy;

¢ (ghl-Jacobi identity) The bracket satisfies a generalized Jacobi identity

(o0, (v, 200) + Bl (v, 2)L)1)} =0,

X, ¥,z

forall (z, x), (x,y), (v,2) € D.
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Note that ife =id;, thenp =id|;. 1y on (L, L) € L. To avoid writing all the maps
{(-,)r, oL, B andw; when presenting a quasi-hom-Lie algebka (-,-)., «r, BL, wr) we
simply write L, remembering that there are maps implicitly present.

Quasi-hom-Lie algebras form a category with morphisms (called strong morphisms)
linear mapsp: L — L’ satisfying:

(M1) ¢((x, y)L) = (p(x), ¢ ()1,
(M2) poa=da o,

(M3) pop=p0¢

in addition to:

(M4) powr(x,y) =wr(P(x),¢(y)) 0.

A weak quasi-hom-Lie algebra morphism is a linear niap> L’ such that just con-
dition (M1) holds. Note that (M4) is automatic dii, L), if (x, y) € D, . In a similar
fashion one can prove thgf o oy o wy (x, y) = wp(ar (x), @ (y)) o B oap,0n(L, L)
if (x,y) € D,,, following from the g-twisting and thew-symmetry. It is clear what we
mean by weak and strong isomorphisms. By a short exact sequence of ghl-algebras
andL, we mean a commutative diagram

0 a E L 0
C{ui C(El C(Ll/
0—>0a—>F—">1 0 )
ﬂaT ﬂET ﬂLT
' pr
0 a E L 0

with exact rows and whereand pr are strong morphisms. It is obviously a triviality to
extend the above to arbitrary exact sequences of ghl-algebras.

Definition 2. A short exact sequence as (2) is a quasi-hom-Lie algebra extensiooyof,

or by a slight abuse of language, we say thas an extension of. by a.

3. Examples

Example 3. By taking 8 to be the identity id andw = —id; we get the hom-Lie algebras
discussed in a previous paper [14]. We recall the definition for the reader’'s convenience.
A hom-Lie algebra is a non-associative algebraquipped with an algebra endomorphism

a: L — L and with bracket multiplicatior, -),, such that

o (x,y)q = —(y, x)q (Skew-symmetry),
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e O, y.2{(@ +1idL)(x), (y, 2)a)a = O (¢-deformed Jacobi identity)

for all x, y,z € L. Specializing further, we get a Lie algebra by takimgequal to the
identity idy .

A I'-graded algebra, with™ an abelian group, is & -gradedk-linear spaceV =
®, < Vy with bilinear multiplication« respecting the grading in the sense tHgt« V,, <
Vyi+y,- The elements,, € V,, are called homogeneous of degsee

Example 4. Lie algebras are covered by a more general notion, namely the color Lie
algebras (or"-gradede-Lie algebras). Herd™ is any abelian group and the color Lie
algebraL with bracket(,-) decomposes ab = P, L, Where(Ly,, Ly,) S Ly, 4y,

for y1, y2 € I'. In addition, the “color structure” includes a mapI” x I’ — k, called a
commutation factor, satisfying

o c(yr, vy)e(yy, va) =1
o e(Vx + ¥y, ¥2) = e(Vn, V)Ee(Yy, ¥2), ande(yx, vy + v2) = (¥, ¥y)E(Vx, Yo

for vy, vy, y; € I'. The color skew-symmetry and Jacobi condition are now stated, with the
aid of ¢, as

b (X, )’> = _S(Vx, yy)<y7-x>!
o ey, v X, (¥, 2)) +e(ye, v, (2, X)) +e(yy, v iz, (x, ) =0

forxel, , yelL, andze L, . Color Lie algebras are examples of ghl-algebras. This
can be seen by grading in the definition of ghl-algebrag = @yer L,, and putting
a=p=id, andw(x, y)v = —&(yy, yy)v for v e L, where(x, y) € D, = (Uyer Ly) x
(Uyep L,) andy,, y, € I" are the graded degrees.ofandy. The w-symmetry and the
ghl-Jacobi identity give the respective identities in the definition of a color Lie algebra. The
Lie superalgebras are obtained When= Z, = Z/2Z ande(yx, yy) = (=1, where

YxVy is the product irZ.

Sincewa; = B = id for (color) Lie algebras, there is only one notion of morphism
in this case, namely the usual (color) Lie algebra homomorphism. By not restrigting
to be the identity in Example 4 we can define color hom-Lie algebras, and similarly, with
Br #idr, color ghl-algebras.

Example 5. The loop algebra of a Lie algebrag is defined to be the set of (Laurent)
polynomial mapsf : S — g, whereS? is the unit circle, with multiplication defined by
(f.8)(x) = (f(x), gx))g, for x € X. Itis not difficult to see thaf = g ® C[t, +~1] with
bilinear multiplication given by

(fO, g@™5={f glg @,
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Loop algebras are important in physics, especially in conformal field theories and super-
string theory [8,9,11,12].
Let g be a ghl-algebra. Then the vector space= g ® k[z,r~1] can be considered
as the algebra of Laurent polynomials with coefficients in the ghl-alggbRut o :=
ag ®id, By 1= By ®id andwy := wy ®id and define a product ghby (x ® ", y ® ™) 5 =
(x,y)g ® "™ With these definitiong is a ghl-algebra. The verification of this consists of
checking the axioms from Definition 1 of ghl-algebras. Theskew symmetry is checked
as follows:
(x@1", y®@1") g =(x,y)g """ = (wg(x, y)(y. x)g) @ """

= (0g(x,y) @) ((y, %) g ® ") =y (x, y)(y 1", x @ 1");.
Next we prove thg;-twisting of oy. Firsta(x ® t") = ag(x) ® 1", and so
(g (x @1"), ag(y ®@1™))g = (og (x) @ 1", ag(y) ® ")

= (ag(x), ag(y))g ® P = (Bgoag(x,y)g) ® e

=By o (ag(x, y)g ® 1) = Bz o az((x, y)g ®1"T™).
The ghl-Jacobi identity lastly, is as follows. The left-hand side is
Doseot,x@M(lega @), (y@ ™ z@1)5);
Bzl @1, (y® 1™, 2®1')5)5).

where the notatiori® here is used for cyclic summation with respectt® ", y ® 1",
z®t!. The first term in the parentheses is

(g(r @), (y®1", 2@ 1)) = (g (1) ® 1", (y® 1", 2@ 1))
= (ag(x), (y,2)g)g ® prrmtl
and the second
Bylx ®1", (y®1™, 2 ®;l>é>§ =B ((x, (7, 2)g)g ® frm+y
= (Bg(x, (v, 2)g)g) ® "M,

Adding these terms and then summing up cyclically, using that, according to definition,
wz(z® tx @) = wg(z, x) ®id, we get

O(wg(z, x) ®id) ({ag (X), (v, 2)g)g + Bglx, (v, 2)g)g) @ "7 H

= <© wg(z’x)«ag(x)’ (yﬂ Z)g>g + ﬁg(-xv <y7 Z)g)g)) ® tn+m+l

X,¥,Z
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and the expression in parentheses is zero girisa ghl-algebra.

We now turn to a large and important class of ghl-algebras associated with twisted
derivations, providing new classes of deformations of Lie algebras.

3.1. o-derivations

In this section, we led denote a commutative, associativ@lgebra with unity, and let
D, (A) denote the set af-derivations on4, that is, the set of alk-linear mapsD: A — A
satisfying thes -Leibniz rule

D(ab) = D(a)b+ o (a)D(D).

We now fix a homomorphism : A — A, an elemenA € ®,(A), and an elemerit € A,
assuming that these objects satisfy the following two conditions:

o (AnNn(4)) € Ann(A), (3)
A(o(a)) =680 (A(a)), forac A, 4)
where AnfA) ={ae A|la-A=0}. Let A-A={a-A|ae A} denote the cyclic

A-submodule of9, (A) generated byt and extendr to A- A by o(a- A) =o(a) - A.
We have the following theorem, which introducek-algebra structure ol - A.

Theorem 6 (cf. [14]). If (3) holds then the map,-), defined by setting
(a-Ab-Ag=(0@@)-Ao(b-A)— (b)) -A)o(a-A), fora,beA, (5

where o denotes elementwise composition, is a well-defikedgebra product on the
k-linear spaceA - A, and it satisfies the following identities
(a-A,b-A)g=(0(a)AD) —o(b)Aa)) - A, (6)
(a-A,b-Ayy=—(b-A,a- Ay, (7

fora, b, c € A. Moreover, if(4) holds, then

(V(o@ - Ab-Asc-Ag)o +38-(a- A, (b-Ac- A)g)g) =0, (8)

a,b,c
The algebrad - A in the theorem is a ghl-algebra with=o0, 8 =8 andw = —id 4.4.

Remark 7. Let A be a non-empty family of commuting-derivations onA closed under
composition of maps. TheA generates a lefl-module A ® A via the ruleb(a ® d) =
(ba) ® d, wherea,b € A andd € A. We extend anyl € A from A to A ® A by the
ruled(a®d)=d(a) ®d + o(a) ® dd’, wheredd’ denotes (associative) composition
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dd'(a) =d(d'(a)). Fora € A andd € A we can identifyu ® d anda - d as operators ofl
bya ® d(r) = a(d(r)) for r € A. Define a product on monomials gf® A by

(a®d1,b®dr)s :=0(a) @d1(b ®d2) — o (b) @do(a ®@d1),

and extend linearly to the wholé® A. Then a simple calculation using the commutativity
of A and A shows that

(a®d1,b®dz)e = (0(a)di(b)) ® dz2 — (0 (b)d2(a)) ® d1.

Skew-symmetry also follows from this. Note also thatif d» € A thend; — d2 € D, (A).

If A is maximal with respect to being commutative th&n- d» € A. We see that part of

the above theorem generalizes to a setting with multplgerivations. However, if there

is a nice Jacobi-like identity as in the theorem is uncertain at this moment. The above
construction parallels the one given in [25] with the difference that [25] considers the
construction in a color Lie algebra setting.

Under the assumption that is a unique factorization domain there exigis 0, (A)
such thato, (A) = A - A, and therefore affords a ghl-algebra structure. For more details
see [14].

We now apply these ideas for the construction of some explicit examples.

3.1.1. Non-linearly deformed Witt algebras

The most general non-zero endomorphisnon A = k[z,#~1] is one on the form
o(t) =qt’ for s € Z andqg € k \ {0}. With thiso, the left. A-module®, (A) can be gen-
erated by a single elemet = nr % (1 — ¢gr*~1)~1(id — o), for n e k \ {0} andk € Z.
Forg = s = 1 we defineD asnt~*d/dt. The elemens for this D such that (4) holds is
8§ = gk*6=D 3514~y Equation (3) is clearly still valid. By putting, = —" D we
see tha®, (A) = P, ., k - d, as ak-space. Using Theorem 8, (A) can be made into a
ghl-algebra.

Theorem 8 (cf. [14]). The linear space of -derivations onA4, . (A), can be equipped
with the skew-symmetric bracket-), defined on generators b{p) as (d,,dn,)s =
q"dysd,, — q"dsd, and satisfying defining commutation relations

max(n,m)—1
<dna dm)tf =n Slgr(n - m) Z qn+mililds(n+m—1)—(k—l)—l(s—l)

[=min(n,m)

forn,m>0;

—m—1 n—1
(dy, dpn)o = 77( Z qn+m+ld(m+l)(s—l)+ns+m—k + qu+ld(s—l)l+n+ms—k>
=0 =0

forn >0, m <0;
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m—1 —n—1
(dn, dm)o = 77( Y d" M vimins i+ Y qm+n+ld(n+l)(sl)+n+msk>
1=0 1=0

form >0, n<0;

max(—n,—m)—1
(dn,dm)s =1 S'an —m) Z qn+m+ld(m+n)s+(s—l)l—k

[=min(—n,—m)

forn,m < 0.

Furthermore, this bracket satisfies thedeformed Jacobi identity

s—1
O (q" (dus, (dm> dD)o)o + " 17D (g1 ™ (o, (dm, d1>a>a) =0.

n,m,l r=0

Example 9. By specifyingk =0, n = 1 ands = 1 in the above theorem we getqa
deformed Witt algebr®,, (A) with skew-symmetric bracket,-), given on generators
dy,dy by q"d,d,, — q"d,d, and commutation relations

q"dndy — q" dpd, = ({n}q - {m}q)dn+m»

where(n}, = (¢" — 1)/(g — 1) (see [15]). The deformed Jacobi identity is

(NG + Dldn, (o di)o)o = 0.

n,m,l

Note that in this casé® is nothing but { times) the Jacksop-derivative acting on4
and also that we get a hom-Lie algebra with= 1 anda(d,) = ¢"d, associated to the
g-deformed Heisenberg algebra [15]. Notice also that by takirgl (i.e.,o = id) we
retain the classical Witt algebte= Dig.
3.1.2. o-derivations ork[z} 2, ..., z;1]

Now, we letA denote the Laurent polynomials mvariables,k[zfl, e z;,—Ll] and let
boldface letters denoté-vectors, e.g.k = (k1, ..., k,) with k; € Z for 1 <i < n. Also,
we let

_ Si1 Sin
o (zi) =d4z21 ~"Zn >

for 1<i <n, q; €k\ {0} and an integer x n-matrix [S; ;1. We choose an element
D € D, (A) given by

D= QZIGl .. .Z’:Gn (id — o),

for 0 ek \ {0} and(Gy, ..., G,) € Z". This element generates a cyclizsubmodule of
D, (A). In addition, we introduce the following notations:
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8 =81iG1+ 852G+ -+ (Sii = 1Gi + -+ 8,:Gy, forl<i<n,

n
k
o, (K) = Z Si rki, dy = _le T Z,]in D,
i=1

‘L’;Z:ai(k)—}—li—Gi, 4 =a;()+k — Gj.

1

Using Theorem 6, thk-subvector space &, (A) spanned byl can be endowed with a
skew-symmetric bracket defined on generators as

I Iy k kn
<dka dl >(T = qull e an dfi/ T,/l/ - qui- e quz d‘[i T

The bracket satisfies the-deformed Jacobi identity

O (qzl - 'fo (doy (), ....an(k)s {1, dn)o)o + qZGll - 'qg"Zil c- 2y, (), dn)s)o) =0.
K.Lh

More details on these deformations can be found in [14].

4. Extensions

Throughout this section we use that exact sequences of linear spaces

N

t £ opr
0 a E L 0 9)

split in the sense that there igkainear maps : L — E called a section such that ps =
id,. Note that the condition pss = id;, means that thé-linear sections is injective
and soL = s(L) (as linear spaces). This, together with the exactness, lets us deduce that
E =s(L) ® () as linear spaces. Hence a basigofan be chosen such that ang E
can be decomposed as=s(l) + t(a) for a € a and! € L, that is, we consider(a) and
s(L) as subspaces d@f.
Let us from now on assume that a and E from (9) are ghl-algebras, and that we have
a sectiorns: L — E such thatwg, w; are intertwined withy, meaning that

wp(s(x) +ua),s(y) +ub)) os =sowr(x,y), (10)
if (x,y) € Dy, and(s(x) +t(a), s(y) + (b)) € D, . In particular we have,

wg(s(x),s(y))os =sowr(x,y)
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if @ andb are taken to be zero. By definition of a sectionopr=idz, and since pr
is a homomorphism of algebras we have=r o ({s(x),s(¥))g — s{x, y)r) Yielding
(s(x),sONVE =s{x,y)L +1og(x,y), whereg:L x L — ais a 2-cocycle-likek-bilinear
map which depends in a crucial way on the sectiofThus g is a measure of the de-
viation of s from satisfying condition (M1). Furthermorg, has to satisfy a generalized
skew-symmetry condition o®,,, by (10):

tog(x,y)=(s(x),s(M)E —s{x,y)L

=wp(s(x), s(Y)(s(y),s(xX)) g —sowr(x, y){(y, x)L

=wg(s(x), s()Us(y), s(x))E — s{y,x)L)

= wp(s(x),5(y)) otog(y,x) (11)
for (x, y) € Dy, such thai(s(x), s(y)) € Dy,.
Definition 10. Denote the set of all maps x L — a satisfying (11) by Alf)(L, a; &), the
w-alternatingk-bilinear maps associated with the extension (9), which we denotetby
keep notation short.
Remark 11. For Lie algebrasvg (s(x), s(y)) is just multiplication by—1 and thus by
linearity and injectivity of the map, the condition (11) reduces to(x, y) = —g(y, x),

which is the classical skew-symmetry, independent on the extension.

By the commutativity of the boxes in (2) we hawg o pr = pro ag which means that
pro(a¢g —soay opr)=0and so

ap =soapopr+to f, (12)

wheref: E — ais ak-linear map. By a similar argument we get

Be=sofBropr+toh, (13)

for ak-linears: E — a. Obviously, bothf and/ depends on the section chosen. To sim-
plify notation we do not indicate explicitly this dependence in what follows.

Since any € E ande’ € E can be decomposed as=s(x) + ¢(a) ande’ = s(y) + ¢(b)
with x, y € L anda, b € a, we have

(e, g = (s(x) + (@), s(y) +ub))E
= (@), tB))E + (s(x), L) e + (L(a), s(M)E + (s(x), s(V)E-

With (s(x), s(¥))g = s{x, y)L +t o g(x, y) we can re-write this, noting that by definition,
¢ is a morphism of algebras:
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(eve/)E = L<avb>a + <S(x)vt(b))E + (l(a)»S(Y))E +S<xv y)L —i—tog(x, Y)
=s(x, y)r + (t{a, b)a + (s(x), t(B) £ + (t(@), s(M)E + Lo g(x, y)),

where the expression in parentheses is(ip since:(a) is an ideal inE by the ex-
actness. The extension is called inessential # 0, which is equivalent to viewind.

as a subalgebra of. We consider only central extensions, i.e., extensions satisfying
t(a) CZ(E):={e € E | (e, E)g =0}, wherea is abelian, that iga, a), = 0. This means

in particular, by expanding, that, ¢’y g = s(x, y); + 10 g(x, y).

Theorem 12. SUppos€L, «;y, B, wr) and(a, aq, Bq, wq) are ghl-algebras withn abelian
andthat(E, ag, Be, wg) is acentral extension @i, oy, B, wr) by (a, aq, Ba, @q). Then
for any sectiory : L — E, satisfying(10), there is arw-alternating bilinearg: L x L — a
and linear mapsf, h: E — a such thatf ot = aq, h o t = B4 and the following relations
hold

glap(x),ar(y)) =ho(soar(x,y)r +to f(s(x),s()E). (14)
O wE(s(2) +1(c), s(x) +1(a)) o (o glar (x), (v, 2)L)
+toh(s(x),s(y,2)L)E) =0, (15)

for all pairs (x,a), (v,b),(z,c) € L x a such that(s(z) + t(c), s(x) + t(a)), (s(x) +
ta),s(y) + (b)), (s(y) + t(b), s(z) + t(c)) € Dy, and where() denotes the cyclic sum-
mation Oy ). (y.5).(z.c)- Moreover, Eq(15) is independent of the choice of sectioand
function, under the additional assumptions that only sections’ satisfying(10) and
wg's such thatwg (s'(x) + t(a), s’ (y) + t(b)) ot = wg(s(x) + t(a), s(y) + 1(b)) o t, are
considered.

This last condition is fulfilled, for instance when we, in addition to (10), demand
wg(sx) +a),s(y) + (b)) ot =1owq(t(a), (b)) for all sectionss.

Proof. To simplify notation we put: := s(x) + t(a), v :=s(y) + 1(b), w := s(2) + t(c).
Whenevers is replaced withs, for instance, we change accordingly in the substitution,
e.g.,i :=5(x) + t(a). First,
(ap(s(x)), (s(¥),s(@)E)E = (@p(s(x)),s(y, 2)L +tog(y,2)E
= (s(aL(x)) +to f(s(x)),s(y,z)L +Log(y,))E
= {s(ar(x)),s{y, 2)L)E

=s{ap(x),(y,z)L)L +roglar(x),(y,z)L).

In a similar fashion we see that

Be(s(x), (s(¥),s(@))E)E =BE os{x,(y,Z)L)L +Beotog(x,(y,z)L).
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Observing that by exactnegg oo g =10h oo g, we can re-write the above as

Beos(x,{y,z)L)L +Beotog(x,(y,z)L)
=soBrx,(y,2)L)L +tohos{x,{(y,z) )L +tohotog(x,(y,2)L)
=soBr(x,(y,2)L)L +toho(s(x,(y,z)L)L +togx,{(y,2)L).

Note thats(x, (y,z)r)r +tog(x, (y,z)r) = (s(x), s{y, z) ). SO using this and (10) it
follows that (15) is a necessary condition fBrto be a ghl-algebra. We now show that
(15) is independent of the choice of sectiomnd the map:. Taking another sectiof
with pro § =id;, satisfying the intertwining conditiom g (5(x) + t(a), 5(y) + (b)) 0§ =
Sowr(x,y), we see thats — s)(x) =t o k(x), for some lineark: L — a, and so§ =
s 4+t o k. Hence, since the extension is central g(x, y) =t o g(x, y) —tok{x, y)r. By
the injectivity of: we getg(x, y) = g(x, y) — k(x, y)r. Furthermore

to(h—h)(x)=(Bg —SoBropr—BEg+sopBLopn(x)

=(s—5)oPBropr(x)=—toko P oprx)

giving since: is an injection = 1 — k o B;. o pr. We note two things before we proceed:

wgW,v)os =wg(s(x) +tk(x)+a),s(y) +tk(y)+ b)) os=sowr(x,y).

From this follows:

wgp(,v)otok=wp(,V)o (S —s)=wg(,V)os —wg(,V)os

=Sowr(x,y)—sowr(x,y)=tokowr(x,y). (16)

Hence,

(Norti, @)1 glar (). (v, 200) + 10 hE®).5(y. 2)1)E)
= (Dop. i) (o g@L). (y.2)1) = tokler (). (y.2)L)L
+1oh(s(x),s(y.2)L)E —tokoBLopr(s(x),s(y.2)L)E)
= (Nor@. i)(ogr®). (y.2)L) + 1o h(s@).s(y.2)L)E)
~ (Noe, D) orok({er (). (v.2))r +BLix. (5. 2)1)L)
= (Dorw. o (tog@L(x). (y.2)1) +10his(x).s(y. 2)L)E).

where we have used thdt is a ghl-algebra in addition to (16), and whe(® is
shorthand for , 4 (y.5), (2.c)» thereby proving the claimed independence. The left-hand
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side of the equalitylar(s(x)), ap(s(y)))g = Be o ag(s(x),s(y))g can be written as
s{ap(x),ap(y))L +toglap(x), ar (y)) and the right-hand side as

soBroap{x,y)L +tohosoar{x,y)p +tohoto f(s(x),s(Y))E.

After comparing and using the injectivity ofwe get

glar(x),ar(y)) =ho(soar(x,y)L+to f(s(x),s(¥)E).

Finally f ot = a, andh o1 = B4 follows from (12), (13), the commutativity of (2) and the
injectivity of «. The proof is complete. O

Example 13. By taking 8. = id., Bg = idg, Bq = idy andwy (x, y)vy = —1- vy for

all x,y,vp € L, wg(e,e)vg = —1-vg for all e, ¢’, vg € E (we haveD,,, =L x L and

D, = E x E here), that is if we consider only hom-Lie algebras, we recover the results
from [14]. To see this consider first (15). The assumption fhat= idg and 8, = id,
implies

toh=idg —sopr, an

and hence by exactness

toho(s{x,{(y,2)rL)L +tog(x,(y,2)L))
=(dg —sopno(s{x,(y,2))L +rogx,(y,z)L)

=s{x, (y,2)L)L —s{x, (v, 2))p +rogx, {(y,z)r) =tog(x,{y,2)L).

This means that (15) can be re-written using thatan injective ghl-algebra morphism as

(% g(lidy +ar)@), (y.2)1) =0,

X,¥,2

obtained in [14]. In the same manner, using (17) and the injectivity Bf. (14) reduces
to glap(x),ar(y)) = f{s(x),s(M)E.

Note that (17) can be written & (|, = id4 andhos|; = 0. Indeed, we can decompose
anye € E ase =s(x) + t(a) and so

toh(s(x)+t(a)) =(dg —sopn(s(x) +t(a)) =0+ t(a) = t(a).

Since: is an injection this give&(s(x) + t(a)) = t(a). Restricting even further to (color)
Lie algebras and thus having, = g = id, we have thatf satisfies a similar condition
fotlg=idgandfos|y =0.
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Example 14. Consider the following short exact sequence of color Lie algebrds and
a with the samd™-grading and commutation facter

! pr
0 a E L 0

with «(a) central inE. This setup is a special case of the construction of Scheunert and
Zhang [30] and Scheunert [29], special in the sense that we consider central extensions
and not just abelian. We shall show that our construction encompasses the one in [29,30]
for central extensions. Let us first briefly recall Scheunert and Zhang’s construction (as
given in [29]). In their setup the above sequence becomes

pr
0—— @yef ay — @yef Ey —— @yel" L, ——0.

Note that this means thatand pr are color Lie algebra homomorphisms and this in turn
implies that they are homogeneous of degree zero. Take a sectior- E which is ho-
mogeneous of degree zero, thatid,, ) € E,, forall y € I'. With this data the Scheunert—
Zhang 2-cocycle condition can be expressedias, . £(y, yx)g(x, (. z)) = 0, for homo-
geneous elements y, z and wherey,, yy, y; are the graded degreesxafy, z respectively.

Putting the above in a ghl-algebra setting means lettimday the role of the commu-
tation factore, wherew is then defined on homogeneous elements,

Dw:D£:<ULy>X<ULy>,

yel’ yel

and dependent only on the graded degree of these elements. Thg?-SEt &lt) includes

all g coming from the “defect-relation o g(x, y) = (s(x),s(y))g — s{x, y)r, for s a
homogeneous section of degree zero. Hence all giscare also homogeneous of degree
zero. Noting that o | = id, andh o 5|, = 0 from the Example 13, the relation (15) now
becomes,

O e(w,u)o (toglar(x),(y.z2)r) +toho(s(x,(y,2)L)L +1og(x,(y,2)L)))
=2(New.u)orog. (y.2)1) =0,
wherew = s(z) +t(c), u = s(x) +t(a), v = s(y) +1(b) and() indicates the cyclic summa-
tion O, ,,,,- Thisimplies that)), , . e(z, x)g(x, (y, z)) = 0, for homogeneous elements,
which is the Scheunert-Zhang 2-cocycle condition for central extensions [29].

4.1. Equivalence between extensions

Lety: E — E’ be aweak ghl-algebra morphism satisfying condition (M4). We call two
extensions and E’ weakly equivalent or a weak equivalence if the diagram
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0 a E L 0
’ l (18)
! pr
0 a E L 0

commutes. Similarly one defines strong equivalence as a diagram with thé& magt’
being a strong morphism. Thatis automatically an isomorphism of linear spaces follows
from the 5-lemma.

Definition 15. The set of weak equivalence classes of extensiorislof a is denoted by
E(L,q).

Remark 16. In the case of Lie algebras, or generally, color Lie algebras, weak and strong
extensions coincide since weak and strong morphisms do.

First we observe that, for central extensions, the same calculation leading up to (11) also
shows that

tog(x,y) =wg(s(x) +u(a),s(y) + (b)) orog(y, x) (19)
for any a, b € a. We pick sections: L — E ands’: L — E’ satisfying pro s =id; =

pr o s’ such that (10) holds for' ands. Then there is @’ € Alt2 (L, a; £') associated with
the extensiorg’ of L by a such that

('), s M e =5"(x, )+ 0 g (x, ).
Given a mapyp: E — E’ such that the diagram (18) commutes means in particular that
pr'o ¢ =idy o pr and so pro ¢(s(x)) = x, which gives us that 8 pr'(s’(x) — ¢(s(x))).

Hences’(x) = ¢ o s(x) + ¢’ 0 £(x) for somek-linear& : L — a. Takingx, y € L we have,
using the centrality,

Vog(x,y)=(s"(x), s’ W) g —s'(x, y)pr =@otogx,y) =t 0&((x,y)L)

and sincep ot =1 by (18) we get’ o g’(x,y) =t o g(x,y) — ' 0 E{(x, y) Of

g, y) =g, y) —&{x, y)L, (20)
by the injectivity of/’. We need to check that this is compatible with (11). For brevity we
putu := s(x) + t(a) andv := s(y) + ¢(b). The computation:
Vok{x,y)r="0&owr(x,)(y,x)L =("—pos)owr(x,y)(y,x)L
= (e (s'(x),5'(y) 05" =@ owp(u,v) o5)(y, X)L
= (0p/ (' (x),5' () 05" — wp/ (), p(v)) 0 @ 0 5)(y, x)
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=[Puta:=£(x), b:=&(y)using’ =¢pot, s =pos+1i o0&]
= (0p/(s'(x),5' () 05" —wp/(s'(x), s () opos)(y,x)L
= wp/(s'(x),s'(y) o' 0 §(y, x)L,

in combination with:

Voglx,y)=¢potog(x,y)=gowp(s(x),s(y)otog(y,x)
=wp(pos(x)+i(@),pos(y)+1 (b)) opotog(y, x)
=wp/(s'(x),s'(y) ot 0 g(y, x),

where we have used (19) and that £(x), b = £(y), shows the desired compatibility. We
can viewé (x, y) . as a “2-coboundary” thus motivating the following definition.

Definition 17. The set of all 2-cocycle-like maps modulo 2-coboundary-like maps with
respect to a weak isomorphism is denotecHﬁ(L, a; E).

Remark 18. One can show that (20) reduces to its classical and colored counterparts with
the natural specifications [22].

Now, given two extension& and E’ of L by a, subject to the conditiog’(x, y) =
g(x,y) — &(x,y)L, can we construct a weak equivalence, that is, a weak isomorphism
making (18) commute? Observe that this forces some kind of relation beweemd
wg. We can viewE andE’ asE = s(L) @ «(a) andE’ = s/ (L) & //(a) respectively, since
sequences on the form (9) are split. This means that any elergeBtcan be decomposed
ase =s(l) +1(a) fora c a and/ € L. We define amap:E — E’' by ¢(s(]) + 1(a)) :=
s'(D) + ' (a — £(1)) and assume that condition (M4) is satisfied with respect to this map.
We will show that this is a weak isomorphism of ghl-algebras. That it is surjective is clear.
Suppose that'(l) + (' (a — £(1)) = s'(I) + /(@ — £()). This is equivalent ta’(l — I) +
/(a —a+&( —I)) = 0 and so injectivity follows from the injectivity af ands’. To have
a weak equivalence we must che@lx), ¢(y))gr = ¢{x, y)g but this is easy and left to
the reader. Hence,

Theorem 19. With definitions and notations as above, there is a one-to-one correspondence
between elements &f(L, a) and elements dHaz)(L, a; &).

Rephrased, the theorem says that there is a one-to-one correspondence between weak
equivalence classes of central extension& dfy an abeliaru and bilinear mapg trans-
forming according to (20) under weak isomorphisms. If we are seeking strong equivalence
we also have to condition and check the intertwining conditiprsar = ag o ¢ and
¢ o B = BEr o ¢ in addition to condition (M4). One convinces oneself that it is necessary
thatagoé =&oar, fos=fos’andByoé =&o0Br,hos=h os'.



D. Larsson, S.D. Silvestrov / Journal of Algebra 288 (2005) 321-344 339

4.2. Existence of extensions

So far we have shown how the 2-cocycle-like bilinear magshat is, elementg <
AItf)(L, a; £) such that (15) holds) satisfying (20) corresponds in a one-to-one fashion to
weak equivalence classes of extensions. We now address the natural question of existence.
PutE := L & a and choose the canonical sectiarl. — E, x — (x, 0), defining pr and
¢ to be the natural projection and inclusion, respectively, i.e.Eprs L, pr(x,a) = x and
t:a— E, (a) = (0,a). We also definevg by wg((x,a), (y,b)) os =s owr(x,y) and
wg((x,a), (y,b)) ot =towq(a,b) for (x,y) € Dy,, (a,b) € Dy, and((x,a), (y, b)) €
D, . Furthermore we putg (x, a) := (ar(x), f(x, a)) andBg (x, a) := (Br(x), h(x, a)),
with f andh as in the theorem to be stated now.

Theorem 20. Supposd. and a are quasi-hom-Lie algebras withabelian and putt :=
L®a. Then for every bilineag satisfying(15)and every pair of linear mapg, : L& a —
a such that

f(0,a) =ay(a) and h(0,a) =pBq(a) foraeca, (22)

glap(x),ar(y)) =h(ar(x, y)r, f(x, y)L. g(x, ), (22)
() wp@o. 6a)o(togar®). (y.2)L)

(5@, (76). (2,0)
+eoh((x, (v, 2)L)L, 8(x, (¥,2)1))) =0, (23)

for x,y,z € L and((z, ), (x,a)), ((x,a), (y,b)), ((y,b), (z,¢)) € Dy, the linear direct
sumE with morphismsyg, B, wg given above and product given bk, a), (v, b)) g :=
({x,y)L, g(x, y)) is a quasi-hom-Lie algebra central extension/oby a.

Proof. First note that the definition of the bracket can be written in the usual form
(s(x), s(»)E =s{x,y) +1og(x,y). This gives
((x,a), (v, D))e = ({x, y)L, g(x, y)) = s(x, y) +1og(x,y)
=sowr(x,y)(y,x)L + wp(s(x),s(y)) otog(y,x)
=wp(s(x),s(y) os(y, x)r +wp(s(x),s(y)) orog(y, x)
=wg(s(x), s(y) o (s(y,x) +tog(y,x))

which amounts td(x, a), (v, b)) g = wg(s(x), s(Y)((y, b), (x, a))g. Thatag satisfies the
B-twisting condition follows from
(ap(x,a),ap(y, b)) g = ((arL(x), f(x,a)), (aL(y), f(y. D)) E
= ((aL(X), ar(Y))L, glar(x), aL(y))),
Beoap{(x,a),(y,b))g = Beoap({x,y)L, g(x,y))
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zﬂE((XLQC, y)Lv f((x’ y)Lv g(x1 y)))
= (IBL oar(x, y>L,h(OlL<x, y)L7 f((xv y>L7 g(xs y))))

using (22). The condition for the ghl-Jacobi identity to hold is obtained by adding

(@p(x,a), ((y,b), (z, ) E)E = ((aL(x), f(x,a)), (y.2)L, 8(y, D)) E
= ({er(x), (y, 2)L)L, &L (x), (y,2)L))

to

BE((x,a),((y,D), (z,0))L)L = BE{(x,a), (¥, 2)L. 8y, D)) E
=Be(x,(y, )L, 8(x,{y,2)L))
= (Br{x, (v, 2)L) . h((x, (¥, 2) L)1, &(x, (¥, 2)1)))

composing the result with g ((z, ¢), (x, a)), performing cyclic summation and using that

L is a ghl-algebra. That the diagram (2) has exact rows is obvious from the definition of
and pr. Moreover, using (21), it is easy to show that they are also ghl-algebra morphisms,
thereby proving the theorem.o

Example 21. With the notations and definitions leading up to the above theorem we pick
the canonical sectiomé(x, 0) and the canonical injectiozm'—l>(0, a). Define a bracket
onE by (-, := ("), g(-,-)) for some bilineag : L x L — a. Note that{,-) g is com-
patible with the map. Finding f and% such thatf (0, a) = aq(a) andi(0, a) = Bq(a)
equipsE with the structure of a ghl-algebra. We now make the general ansgié, a) =

0, aq(a) + F())and alsa o h(l,a) = (0, Bo(a) + H(I)), for F, H:L — alinear. A sim-

ple calculation shows thatg andBg can be defined byt g (1, a) = (ap (1), aq(a) + F (1))
andBe(,a) = (BL (), Ba(a) + H(1)). With this one obtains the ghl-Jacobi identity

(D wale.a)(g@r (). (. 2)0) + Ba 0 g(x. (y. D)) + Hix, (y.2)1)1) =0,

where() is shorthand for ; 4) (y.5).(z.c)- IN @ddition we must also have

toglar(x),ar(y) = (0, Bao f(s(x),s(M)E + H oar{x, y)r).

Example 22 (Examplel3 continued. Taking L and a to be hom-Lie algebras, that is
hot|q =idq andh o s|; =0, we get Theorem 7 from [14].

Example 23 (Example14 continued. Consider two color Lie algebras and a with

the same grading group' and the same commutation factar The vector spac& =
D,crEy =D, cr Ly ®ay) =L@ a, is clearly I'-graded. We know from Theorem 9
and the deduction preceding it that we can endow this with a color structure as follows.
From Examples 13 and 14 we see thab (|q = id,, f os|y =0 andh o |, = idg,
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hos|y =0 and so (21) is true. Take:x — (x,0) and define the product of by
((x,a), (y,b))g :=({{x,y)L, g(x,y)) for someg € AIt?(L, a; £). That (23) is satisfied we

saw already in Example 14. Note that (22) becomes tautological. Hence we have a color
central extension oL by a. Now E is a color Lie algebra central extension bfby a.

Note, however, that we have not constructed an explicit extension. What we have done
iS constructing an extension givene AItf(L, a; &) satisfying (15) or rather its colored
restriction. The existence of sughis not guaranteed in general. See Scheunert [29, Propo-
sition 5.1] for a result that emphasizes this. In our setting this proposition implies that
HEZ(L, a; £) = {0} and so there are no non-trivial central extensions. The actual construc-
tion of extensions, qualifying to finding 2-cocycles, is a highly non-trivial task. Specializ-
ing the above to one-dimensional central extensions wthk, we first note thak comes

with a naturall"-grading given byk = @yef K,, whereKg =k, K, = {0}, for y #0.

Then there is a product oB = L & k defined by((x, a), (v,b))g := ({x, y)r, g(x, y)),
whereg : L x L — k is thek-valued 2-cocycle.

Example 24 (Example9 continued. The classical Witt algebra has a unique one-
dimensional central extension in the category of Lie algebras called the Virasoro algebra
[10]. Wheng is not a root of unity, oug-deformation oo in Example 9, being a hom-Lie
algebra, has a central extensionMin the category of hom-Lie algebras. This is defined

as the algebra with linear badig, | n € Z} U {c} subject to relations

(Virg, ) = (c, Viry) =0,
_a"
6(1+4q™)

(dn,dm) = ({n}q - {m}q)dn+m + Sn+m,0 {m — 1}6[ {m}q {m+ 1}qca

with associated magyir, defined byavir, (d,) = ¢"d, andavir, (€) = c. The Jacobi iden-
tity for Vir, is the same as the one given in Example 9. For the proof of these assertions,
see [14].

It would be of interest to develop a theory for quasi-hom-Lie algebra extensions of
one ghl-algebra by another ghl-algebra, and apply it to get ghl-algebra extensions of the
Virasoro algebra by a Heisenberg algebra [17].

4.3. Central extensions of thie, 8, w)-deformed loop algebra

Form the vector spacg= g ® k - ¢ with a “central element’t and take the section
sig— g, x®1" > (x ®1",0). Define ac-centralizing bilinear produgt,-); on g by

(x®t"+a~c,y®tm+b-c)§:(x,y)g®t"+m+g(x®t",y®tm)~c,

for a 2-cocycle-like bilinear mag: g x g — k. Define, in addition to thisgs(x ® " +
a-0)=as(x®1t")+a-C fgx®1" +a-¢) :=Pzx®1") +a-candwy(x ® 1" +
a-¢y®t"+b-0):=wz(x®1",y®t")+id. By straightforward computations it easy
to check thew-skew symmetry of:-,-) 5 and g-twisting of a3 with the above definitions.
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Also, a necessary condition that a 1-dimensional “central extengiai’g can be given
the structure of a ghl-algebra follows from demanding a ghl-Jacobi identity. This condition
can be written as

g((ag +idg)(x) ®1", (y,2)g ® ") = 0. (24)
(x,n),(y,m),(z,0)

For the full computations see [22].

Now to do this a little more explicit and more in tune with the classical Lie algebra case
[10] we construct the product ana bit differently. Assumevg = wy = wz = —1, that is,
that the product is skew-symmetric, we take-aerivationD onk(r, =11, whereo is the
mapt — gt, for g € k*, the multiplicative group of non-zero elementskof Explicitly we
can take (see Theorem B)= nt ~*(1—¢)~1(id — o) leading toD (") = n{n},t"*. Take
a bilinear formB(-,-) on g and factor the 2-cocycle-like bilinear mgpasg(x ® ", y ®
t"™) = B(x, y) - (D(") - t™)o, where the notatior f)g is the zeroth term in the Laurent
polynomial f or, put differently,s times the residue Rég). The above trick to factor
the 2-cocycle (in the Lie algebra case) Bdimes a “residue” is apparently due to Kac
and Moody from their seminal papers where they introduced what is how known as Kac—
Moody algebras, [18] and [24], respectively. This meansthet”) - 1" )o = n{n};8n4m.k-
Calculating the 2-cocycle-like condition (24) now leads to

(n- {n}q “Onpmi,k) - B((O[g +id)(x), (y, )g) = 0,
(x,n),(y,m),(z,l)

and forey =id, n =1, k = 0 andg = 1 we retrieve the classical 2-cocycle discovered
by Kac and Moody. Notice, however, that in the Lie algebra case it is assume#t that
symmetric andy-invariant, this leading to a nice 2-cocycle identity unlike the one we have
here. What we thus obtained by the preceding factorizatiods @, —1),-deformed, one-
dimensional central extension of the (Lie) loop algebra, where thebscript is meant to
indicate that we have-deformed the derivation on the Laurent polynomial as well as the
underlying algebra.
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