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Abstract

This paper introduces the notion of a quasi-hom-Lie algebra, or simply, a qhl-algebra, whi
natural generalization of hom-Lie algebras introduced in a previous paper [J.T. Hartwig, D. La
S.D. Silvestrov, Deformations of Lie algebras usingσ -derivations, math.QA/0408064]. Quasi-hom
Lie algebras include also as special cases (color) Lie algebras and superalgebras, and can b
deformations of these by maps, twisting the Jacobi identity and skew-symmetry. The natura
for these quasi-hom-Lie algebras is generalizations-deformations of the Witt algebrad of derivations
on the Laurent polynomialsC[t, t−1]. We also develop a theory of central extensions for qhl-alge
which can be used to deform and generalize the Virasoro algebra by centrally extending the de
Witt type algebras constructed here. In addition, we give a number of other interesting exam
quasi-hom-Lie algebras, among them a deformation of the loop algebra.
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1. Introduction

The classical Witt and Virasoro algebras are ubiquitous in mathematics and theo
physics, the latter algebra being the unique one-dimensional central extension of t
mer [2,8,9,11–13,19,23]. Considering the origin of the Witt algebra this is not surpr
the Witt algebrad is the infinite-dimensional Lie algebra of complexified polynomial v
tor fields on the unit circleS1. It can also be defined asd = C ⊗ Vect(S1) = ⊕

n∈Z
C · dn,

wheredn = −tn+1d/dt is a linear basis ford, and the Lie product being defined on the g
eratorsdn as〈dn, dm〉 = (n − m)dn+m and extended linearly to the wholed. This means
in particular that anyf̂ ∈ d can be written asf̂ = f · d/dt with f ∈ C[t, t−1], the alge-
bra of Laurent polynomials, and henced can be viewed as the (complex) Lie algebra
derivations onC[t, t−1]. When the usual derivation operator is replaced by its differe
discretization or deformation, the underlying algebra is also in general deformed, a
description and understanding of the properties of the new algebra becomes a pro
key importance.

To put the present article into the right perspective and to see where we are c
from we briefly recall the constructions from [14]. In that paper we considered defo
tions ofd usingσ -derivations, that is, linear mapsD satisfying a generalized Leibniz ru
D(ab) = Dab + σ(a)Db. As we mentioned above the Witt algebrad can be viewed as th
Lie algebra of derivations onC[t, t−1]. This observation was in fact our starting point
[14] in constructing deformations of the Witt algebra. Instead of just considering ord
derivations onC[t, t−1] we consideredσ -derivations. In fact, we did something even mo
general as we considered unital commutative associativeC-algebrasA and aσ -derivation
∆ onA. Forming the cyclic leftA-moduleA ·∆, a left submodule of theA-moduleDσ (A)

of all σ -derivations onA, we equippedA · ∆ with a bracket multiplication〈·,·〉σ such that
it satisfied skew-symmetry and a generalized Jacobi identity with six terms

�
x,y,z

(〈σ(x), 〈y, z〉σ 〉σ + δ · 〈x, 〈y, z〉σ 〉σ
) = 0, (1)

where�x,y,z denotes cyclic summation with respect tox, y, z and whereδ ∈ A. In the
case whenA is a unique factorization domain (UFD) we showed that the wholeA-module
Dσ (A) is cyclic and can thus be generated by a single element∆. SinceC[t, t−1] is a UFD
this result applies in particular to theσ -derivations on the Laurent polynomialsC[t, t−1],
and so we may regardDσ (C[t, t−1]) as a deformation ofd = Did(C[t, t−1]). As a result
we have a Jacobi-like identity (1) onDσ (C[t, t−1]).

Furthermore, in [14] we concentrated mainly on the case whenδ ∈ C \ {0} and so the
Jacobi-like identity (1) simplified to the Jacobi-like identity with three terms

�
x,y,z

〈(ς + id)(x), 〈y, z〉ς 〉ς = 0,

where ς = σ̄ /δ is 1/δ-scaled version of̄σ :A · ∆ → A · ∆, acting on this left mod
ule as σ̄ (a · ∆) = σ(a) · ∆. Motivated by this we called algebras with a three-te
deformed Jacobi identity of this formhom-Lie algebras. Using that any non-zero alge

bra C-endomorphismσ on C[t, t−1] must be on the formσ(t) = qts for s ∈ Z and
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, con-
q ∈ C \ {0}, we obtained aZ-parametric family of deformations which, whens = 1,
reduces to aq-deformation of the Witt algebra and becomingd whenq = 1. This deforma-
tion is closely related to theq-deformations of the Witt algebra introduced and studie
[1,3–7,20,21,26–28]. However, our defining commutation relations in this case look s
what different, as we obtained them, not from some conditions aiming to resolve sp
cally the case ofq-deformations, but rather by choosingC[t, t−1] as an example of the un
derlying coefficient algebra and specifyingσ to be the automorphismσq :f (t) �→ f (qt) in
our general construction forσ -derivations. By simply choosing a different coefficient alg
bra or basicσ -derivation one can construct many other analogues and deformations
Witt algebra. The important feature of our approach is that, as in the non-deformed ca
deformations and analogues of the Witt algebra obtained by various choices of the u
ing coefficient algebra, of the endomorphismσ and of the basicσ -derivation, are precisel
the natural algebraic structures for the differential and integral type calculi and geo
based on the corresponding classes of generalized derivation and difference type op

We remarked in the beginning that the Witt algebrad has a unique (up to isomorphism
one-dimensional central extension, namely the Virasoro algebra. In [14] we deve
for the class of hom-Lie algebras, a theory of central extensions, providing cohom
cal type conditions, useful for showing the existence of central extensions as well
their construction. For natural reasons we required that the central extension of a
Lie algebra is also a hom-Lie algebra, i.e., that we extend within the category of ho
algebras. In particular, the standard theory of central extensions of Lie algebras be
a natural special case of the theory for hom-Lie algebras when no non-identity tw
is present. This implies that in the specific examples of deformation families of Wit
Virasoro type algebras constructed within the framework of [14], the corresponding
deformed Witt and Virasoro type Lie algebras are included as the algebras corresp
to those specific values of deformation parameters which remove the non-trivial tw
We rounded up [14], putting the central extension theory to the test applying it fo
construction of a hom-Lie algebra central extension of theq-deformed Witt algebra pro
ducing aq-deformation of the Virasoro Lie algebra. Forq = 1 one indeed recovers th
usual Virasoro Lie algebra as is expected from our general approach.

A number of examples of deformed algebras constructed in [14] do not satisfy the
term Jacobi-like identity of hom-Lie algebras, but obey instead twisted six-term Jacob
identities of the form (1). These examples are recalled for the reader’s convenience
other examples in Section 3. Moreover, there exists also many examples where
symmetry is twisted as well. Taking the Jacobi identity (1) as a stepping-stone we intr
in this paper a further generalization of hom-Lie algebras by twisting, not only the J
identity, but also the skew-symmetry and the homomorphismσ itself (replaced byα in
this paper). In addition, we let go the assumption thatδ is an element ofA and assume
instead that it is a linear mapβ onA. We call these algebrasquasi-hom-Lie algebrasor in
short justqhl-algebras(see Definition 1). In this way we obtain a class of algebras w
not only includes hom-Lie algebras but also color Lie algebras, Lie superalgebras a
algebras as well as other more exotic types of algebras, which then can be viewed a
of deformation of Lie algebras in some larger category.

The present paper is organized into two clearly distinguishable parts. The first

sisting of Sections 2 and 3 concerns the definition of qhl-algebras and some more or
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less elaborated examples of such. The second part, Section 4, is devoted to the (
extension theory of qhl-algebras. Let us first comment some on the first part. In
tion 3 we give, based on observations and results from [14], examples of qhl-alg
generalizations-deformations or analogues of the classical Witt algebrad, in addition to
showing how the notion of a qhl-algebra also encompasses Lie algebras and supera
and, more generally, color Lie algebras by introducing gradings on the underlying
space and by suitable choices of deformation maps. We also remark that we can
generalized color Lie algebras by admitting the twistsα andβ. As another, new, examp
of qhl-algebras we offer a deformed version of the loop algebra. Section 4 is devo
the development of a central extension theory for qhl-algebras generalizing the the
(color) Lie algebras and hom-Lie algebras. We give necessary and sufficient con
for having a central extension and compare these results to the ones given in the e
literature, for example [14] for hom-Lie algebras and [29,30] for color Lie algebras.
last example we consider central extensions of deformed loop qhl-algebras in Secti

2. Definitions and notations

Throughout this paper we letk be a field of characteristic zero and letLk(L) denote the
linear space ofk-linear maps of thek-linear spaceL.

Definition 1. A quasi-hom-Lie algebra (qhl-algebra) is a tuple(L, 〈·,·〉L,α,β,ω) where

• L is ak-linear space,
• 〈·,·〉L :L × L → L is a bilinear map called a product or a bracket inL,
• α,β :L → L, are linear maps,
• ω :Dω → Lk(L) is a map with domain of definitionDω ⊆ L × L,

such that the following conditions hold:

• (β-twisting) The mapα is aβ-twisted algebra homomorphism, that is,

〈α(x),α(y)〉L = β ◦ α〈x, y〉L, for all x, y ∈ L;

• (ω-symmetry) The product satisfies a generalized skew-symmetry condition

〈x, y〉L = ω(x, y)〈y, x〉L, for all (x, y) ∈ Dω;

• (qhl-Jacobi identity) The bracket satisfies a generalized Jacobi identity

�
x,y,z

{
ω(z, x)

(〈α(x), 〈y, z〉L〉L + β〈x, 〈y, z〉L〉L
)} = 0,
for all (z, x), (x, y), (y, z) ∈ Dω.
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Note that ifα = idL thenβ = id|〈L,L〉 on 〈L,L〉 ⊆ L. To avoid writing all the maps
〈·,·〉L, αL,βL andωL when presenting a quasi-hom-Lie algebra(L, 〈·,·〉L,αL,βL,ωL) we
simply writeL, remembering that there are maps implicitly present.

Quasi-hom-Lie algebras form a category with morphisms (called strong morph
linear mapsφ :L → L′ satisfying:

(M1) φ(〈x, y〉L) = 〈φ(x),φ(y)〉L′ ,
(M2) φ ◦ α = α′ ◦ φ,
(M3) φ ◦ β = β ′ ◦ φ

in addition to:

(M4) φ ◦ ωL(x, y) = ωL′(φ(x),φ(y)) ◦ φ.

A weak quasi-hom-Lie algebra morphism is a linear mapL → L′ such that just con
dition (M1) holds. Note that (M4) is automatic on〈L,L〉L if (x, y) ∈ DωL

. In a similar
fashion one can prove thatβL ◦ αL ◦ ωL(x, y) = ωL(αL(x),αL(y)) ◦ βL ◦ αL, on 〈L,L〉L
if (x, y) ∈ DωL

, following from theβ-twisting and theω-symmetry. It is clear what w
mean by weak and strong isomorphisms. By a short exact sequence of qhl-algebra, E

andL, we mean a commutative diagram

0 a

αa

ι
E

pr

αE

L

αL

0

0 a
ι

E
pr

L 0

0 a
ι

βa

E
pr

βE

L

βL

0

(2)

with exact rows and whereι and pr are strong morphisms. It is obviously a triviality
extend the above to arbitrary exact sequences of qhl-algebras.

Definition 2. A short exact sequence as (2) is a quasi-hom-Lie algebra extension ofL by a,
or by a slight abuse of language, we say thatE is an extension ofL by a.

3. Examples

Example 3. By takingβ to be the identity idL andω = −idL we get the hom-Lie algebra
discussed in a previous paper [14]. We recall the definition for the reader’s conven
A hom-Lie algebra is a non-associative algebraL equipped with an algebra endomorphis
α :L → L and with bracket multiplication〈·,·〉α such that
• 〈x, y〉α = −〈y, x〉α (skew-symmetry),
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• �x,y,z〈(α + idL)(x), 〈y, z〉α〉α = 0 (α-deformed Jacobi identity)

for all x, y, z ∈ L. Specializing further, we get a Lie algebra by takingα equal to the
identity idL.

A Γ -graded algebra, withΓ an abelian group, is aΓ -gradedk-linear spaceV =⊕
γ∈Γ Vγ with bilinear multiplication∗ respecting the grading in the sense thatVγ1 ∗Vγ2 ⊆

Vγ1+γ2. The elementsvγ ∈ Vγ are called homogeneous of degreeγ .

Example 4. Lie algebras are covered by a more general notion, namely the colo
algebras (orΓ -gradedε-Lie algebras). HereΓ is any abelian group and the color L
algebraL with bracket〈·,·〉 decomposes asL = ⊕

γ∈Γ Lγ where〈Lγ1,Lγ2〉 ⊆ Lγ1+γ2,
for γ1, γ2 ∈ Γ . In addition, the “color structure” includes a mapε :Γ × Γ → k, called a
commutation factor, satisfying

• ε(γx, γy)ε(γy, γx) = 1,
• ε(γx + γy, γz) = ε(γx, γz)ε(γy, γz), andε(γx, γy + γz) = ε(γx, γy)ε(γx, γz),

for γx, γy, γz ∈ Γ . The color skew-symmetry and Jacobi condition are now stated, wit
aid of ε, as

• 〈x, y〉 = −ε(γx, γy)〈y, x〉,
• ε(γz, γx)〈x, 〈y, z〉〉 + ε(γx, γy)〈y, 〈z, x〉〉 + ε(γy, γz)〈z, 〈x, y〉〉 = 0

for x ∈ Lγx , y ∈ Lγy andz ∈ Lγz . Color Lie algebras are examples of qhl-algebras. T
can be seen by gradingL in the definition of qhl-algebrasL = ⊕

γ∈Γ Lγ , and putting
α = β = idL andω(x, y)v = −ε(γx, γy)v for v ∈ L, where(x, y) ∈ Dω = (

⋃
γ∈Γ Lγ ) ×

(
⋃

γ∈Γ Lγ ) andγx, γy ∈ Γ are the graded degrees ofx andy. Theω-symmetry and the
qhl-Jacobi identity give the respective identities in the definition of a color Lie algebra
Lie superalgebras are obtained whenΓ = Z2 = Z/2Z andε(γx, γy) = (−1)γxγy , where
γxγy is the product inZ2.

SinceαL = βL = idL for (color) Lie algebras, there is only one notion of morphi
in this case, namely the usual (color) Lie algebra homomorphism. By not restrictinαL

to be the identity in Example 4 we can define color hom-Lie algebras, and similarly
βL �= idL, color qhl-algebras.

Example 5. The loop algebrǎg of a Lie algebrag is defined to be the set of (Lauren
polynomial mapsf :S1 → g, whereS1 is the unit circle, with multiplication defined b
〈f,g〉(x) = 〈f (x), g(x)〉g, for x ∈ X. It is not difficult to see thaťg = g ⊗ C[t, t−1] with
bilinear multiplication given by
〈f ⊗ tn, g ⊗ tm〉ǧ = 〈f,g〉g ⊗ tn+m.
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Loop algebras are important in physics, especially in conformal field theories and
string theory [8,9,11,12].

Let g be a qhl-algebra. Then the vector spaceǧ := g ⊗ k[t, t−1] can be considere
as the algebra of Laurent polynomials with coefficients in the qhl-algebrag. Put αǧ :=
αg ⊗ id, βǧ := βg ⊗ id andωǧ := ωg ⊗ id and define a product oňg by 〈x ⊗ tn, y ⊗ tm〉ǧ =
〈x, y〉g ⊗ tn+m. With these definitionšg is a qhl-algebra. The verification of this consists
checking the axioms from Definition 1 of qhl-algebras. Theωǧ-skew symmetry is checke
as follows:

〈x ⊗ tn, y ⊗ tm〉ǧ = 〈x, y〉g ⊗ tn+m = (ωg(x, y)〈y, x〉g) ⊗ tn+m

= (ωg(x, y) ⊗ id)(〈y, x〉g ⊗ tn+m) = ωǧ(x, y)〈y ⊗ tm, x ⊗ tn〉ǧ.

Next we prove theβǧ-twisting ofαǧ. Firstαǧ(x ⊗ tn) = αg(x) ⊗ tn, and so

〈αǧ(x ⊗ tn), αǧ(y ⊗ tm)〉ǧ = 〈αg(x) ⊗ tn, αg(y) ⊗ tm〉ǧ
= 〈αg(x),αg(y)〉g ⊗ tn+m = (βg ◦ αg〈x, y〉g) ⊗ tn+m

= βǧ ◦ (αg〈x, y〉g ⊗ tn+m) = βǧ ◦ αǧ(〈x, y〉g ⊗ tn+m).

The qhl-Jacobi identity lastly, is as follows. The left-hand side is

�ωǧ(z ⊗ t l , x ⊗ tn)
(〈αǧ(x ⊗ tn), 〈y ⊗ tm, z ⊗ t l〉ǧ〉ǧ

+βǧ〈x ⊗ tn, 〈y ⊗ tm, z ⊗ t l〉ǧ〉ǧ
)
,

where the notation� here is used for cyclic summation with respect tox ⊗ tn, y ⊗ tm,
z ⊗ t l . The first term in the parentheses is

〈αǧ(x ⊗ tn), 〈y ⊗ tm, z ⊗ t l〉ǧ〉ǧ = 〈αg(x) ⊗ tn, 〈y ⊗ tm, z ⊗ t l〉ǧ〉ǧ
= 〈αg(x), 〈y, z〉g〉g ⊗ tn+m+l

and the second

βǧ〈x ⊗ tn, 〈y ⊗ tm, z ⊗ t l〉ǧ〉ǧ = βǧ(〈x, 〈y, z〉g〉g ⊗ tn+m+l)

= (βg〈x, 〈y, z〉g〉g) ⊗ tn+m+l .

Adding these terms and then summing up cyclically, using that, according to defin
ωǧ(z ⊗ t l , x ⊗ tn) = ωg(z, x) ⊗ id, we get

�(ωg(z, x) ⊗ id)
(〈αg(x), 〈y, z〉g〉g + βg〈x, 〈y, z〉g〉g

) ⊗ tn+m+l

=
(

ω (z, x)
(〈α (x), 〈y, z〉 〉 + β 〈x, 〈y, z〉 〉 )) ⊗ tn+m+l
�

x,y,z

g g g g g g g
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and the expression in parentheses is zero sinceg is a qhl-algebra.

We now turn to a large and important class of qhl-algebras associated with tw
derivations, providing new classes of deformations of Lie algebras.

3.1. σ -derivations

In this section, we letA denote a commutative, associativek-algebra with unity, and le
Dσ (A) denote the set ofσ -derivations onA, that is, the set of allk-linear mapsD :A →A
satisfying theσ -Leibniz rule

D(ab) = D(a)b + σ(a)D(b).

We now fix a homomorphismσ :A → A, an element∆ ∈ Dσ (A), and an elementδ ∈ A,
assuming that these objects satisfy the following two conditions:

σ(Ann(∆)) ⊆ Ann(∆), (3)

∆(σ(a)) = δσ (∆(a)), for a ∈ A, (4)

where Ann(∆) = {a ∈ A | a · ∆ = 0}. Let A · ∆ = {a · ∆ | a ∈ A} denote the cyclic
A-submodule ofDσ (A) generated by∆ and extendσ to A · ∆ by σ(a · ∆) = σ(a) · ∆.
We have the following theorem, which introduces ak-algebra structure onA · ∆.

Theorem 6 (cf. [14]). If (3) holds then the map〈·,·〉σ defined by setting

〈a · ∆,b · ∆〉σ = (σ (a) · ∆) ◦ (b · ∆) − (σ (b) · ∆) ◦ (a · ∆), for a, b ∈ A, (5)

where ◦ denotes elementwise composition, is a well-definedk-algebra product on the
k-linear spaceA · ∆, and it satisfies the following identities:

〈a · ∆,b · ∆〉σ = (σ (a)∆(b) − σ(b)∆(a)) · ∆, (6)

〈a · ∆,b · ∆〉σ = −〈b · ∆,a · ∆〉σ , (7)

for a, b, c ∈ A. Moreover, if(4) holds, then

�
a,b,c

(〈σ(a) · ∆, 〈b · ∆,c · ∆〉σ 〉σ + δ · 〈a · ∆, 〈b · ∆,c · ∆〉σ 〉σ
) = 0. (8)

The algebraA · ∆ in the theorem is a qhl-algebra withα = σ , β = δ andω = −idA·∆.

Remark 7. Let ∆ be a non-empty family of commutingσ -derivations onA closed under
composition of maps. Then∆ generates a leftA-moduleA ⊗ ∆ via the ruleb(a ⊗ d) =
(ba) ⊗ d , wherea, b ∈ A and d ∈ ∆. We extend anyd ∈ ∆ from A to A ⊗ ∆ by the

rule d(a ⊗ d ′) = d(a) ⊗ d ′ + σ(a) ⊗ dd ′, wheredd ′ denotes (associative) composition
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dd ′(a) = d(d ′(a)). Fora ∈ A andd ∈ ∆ we can identifya ⊗ d anda · d as operators onA
by a ⊗ d(r) = a(d(r)) for r ∈ A. Define a product on monomials ofA⊗ ∆ by

〈a ⊗ d1, b ⊗ d2〉σ := σ(a) ⊗ d1(b ⊗ d2) − σ(b) ⊗ d2(a ⊗ d1),

and extend linearly to the wholeA⊗∆. Then a simple calculation using the commutativ
of A and∆ shows that

〈a ⊗ d1, b ⊗ d2〉σ = (σ (a)d1(b)) ⊗ d2 − (σ (b)d2(a)) ⊗ d1.

Skew-symmetry also follows from this. Note also that ifd1, d2 ∈ ∆ thend1 − d2 ∈ Dσ (A).
If ∆ is maximal with respect to being commutative thend1 − d2 ∈ ∆. We see that part o
the above theorem generalizes to a setting with multipleσ -derivations. However, if ther
is a nice Jacobi-like identity as in the theorem is uncertain at this moment. The
construction parallels the one given in [25] with the difference that [25] consider
construction in a color Lie algebra setting.

Under the assumption thatA is a unique factorization domain there exists∆ ∈ Dσ (A)

such thatDσ (A) = A · ∆, and therefore affords a qhl-algebra structure. For more de
see [14].

We now apply these ideas for the construction of some explicit examples.

3.1.1. Non-linearly deformed Witt algebras
The most general non-zero endomorphismσ on A = k[t, t−1] is one on the form

σ(t) = qts for s ∈ Z andq ∈ k \ {0}. With this σ , the leftA-moduleDσ (A) can be gen-
erated by a single elementD = ηt−k(1 − qts−1)−1(id − σ), for η ∈ k \ {0} andk ∈ Z.
For q = s = 1 we defineD asηt−kd/dt . The elementδ for this D such that (4) holds is
δ = qktk(s−1)

∑s−1
r=0(qts−1)r . Equation (3) is clearly still valid. By puttingdn = −tnD we

see thatDσ (A) = ⊕
n∈Z

k · dn as ak-space. Using Theorem 6,Dσ (A) can be made into
qhl-algebra.

Theorem 8 (cf. [14]). The linear space ofσ -derivations onA, Dσ (A), can be equipped
with the skew-symmetric bracket〈·,·〉σ defined on generators by(5) as 〈dn, dm〉σ =
qndnsdm − qmdmsdn and satisfying defining commutation relations

〈dn, dm〉σ = η sign(n − m)

max(n,m)−1∑
l=min(n,m)

qn+m−1−lds(n+m−1)−(k−1)−l(s−1)

for n,m � 0;

〈dn, dm〉σ = η

(−m−1∑
l=0

qn+m+ld(m+l)(s−1)+ns+m−k +
n−1∑
l=0

qm+ld(s−1)l+n+ms−k

)

for n � 0, m < 0;
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〈dn, dm〉σ = η

(
m−1∑
l=0

qn+ld(s−1)l+m+ns−k +
−n−1∑
l=0

qm+n+ld(n+l)(s−1)+n+ms−k

)

for m � 0, n < 0;

〈dn, dm〉σ = η sign(n − m)

max(−n,−m)−1∑
l=min(−n,−m)

qn+m+ld(m+n)s+(s−1)l−k

for n,m < 0.

Furthermore, this bracket satisfies theσ -deformed Jacobi identity

�
n,m,l

(
qn〈dns, 〈dm,dl〉σ 〉σ + qktk(s−1)

s−1∑
r=0

(qts−1)r 〈dn, 〈dm,dl〉σ 〉σ
)

= 0.

Example 9. By specifyingk = 0, η = 1 and s = 1 in the above theorem we get aq-
deformed Witt algebraDσ (A) with skew-symmetric bracket〈·,·〉σ given on generator
dn, dm by qndndm − qmdmdn and commutation relations

qndndm − qmdmdn = ({n}q − {m}q)dn+m,

where{n}q = (qn − 1)/(q − 1) (see [15]). The deformed Jacobi identity is

�
n,m,l

(qn + 1)〈dn, 〈dm,dl〉σ 〉σ = 0.

Note that in this caseD is nothing but (t times) the Jacksonq-derivative acting onA
and also that we get a hom-Lie algebra withδ = 1 andα(dn) = qndn associated to th
q-deformed Heisenberg algebra [15]. Notice also that by takingq = 1 (i.e., σ = id) we
retain the classical Witt algebrad = Did.

3.1.2. σ -derivations onk[z±1
1 , . . . , z±1

n ]
Now, we letA denote the Laurent polynomials inn variables,k[z±1

1 , . . . , z±1
n ] and let

boldface letters denoteZ-vectors, e.g.,k = (k1, . . . , kn) with ki ∈ Z for 1 � i � n. Also,
we let

σ(zi) = qzi
z
Si,1
1 · · · zSi,n

n ,

for 1 � i � n, qzi
∈ k \ {0} and an integern × n-matrix [Si,j ]. We choose an eleme

D ∈ Dσ (A) given by

D = Qz
−G1
1 · · · z−Gn

n (id − σ),

for Q ∈ k \ {0} and(G1, . . . ,Gn) ∈ Z
n. This element generates a cyclicA-submodule of
Dσ (A). In addition, we introduce the following notations:
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δi := S1,iG1 + S2,iG2 + · · · + (Si,i − 1)Gi + · · · + Sn,iGn, for 1� i � n,

αr(k) :=
n∑

i=1

Si,rki, dk := −z
k1
1 · · · zkn

n D,

τ ′
i := αi(k) + li − Gi, τ ′′

i := αi(l) + ki − Gi.

Using Theorem 6, thek-subvector space ofDσ (A) spanned bydk can be endowed with
skew-symmetric bracket defined on generators as

〈dk, dl〉σ = qk1
z1

· · ·qkn
zn

dα1(k),...,αn(k)dl − ql1
z1

· · ·qln
zn

dα1(l),...,αn(l)dk

and satisfying relations

〈dk, dl〉σ = Qql1
z1

· · ·qln
zn

dτ ′′
1 ,...,τ ′′

n
− Qqk1

z1
· · ·qkn

zn
dτ ′

1,...,τ
′
n
.

The bracket satisfies theσ -deformed Jacobi identity

�
k,l,h

(
qk1
z1

· · ·qkn
zn

〈dα1(k),...,αn(k), 〈dl, dh〉σ 〉σ + qG1
z1

· · ·qGn
zn

z
δ1
1 · · · zδn

n 〈dk, 〈dl, dh〉σ 〉σ
) = 0.

More details on these deformations can be found in [14].

4. Extensions

Throughout this section we use that exact sequences of linear spaces

0 a
ι

E
pr

L

s

0 (9)

split in the sense that there is ak-linear maps :L → E called a section such that pr◦ s =
idL. Note that the condition pr◦ s = idL means that thek-linear sections is injective
and soL ∼= s(L) (as linear spaces). This, together with the exactness, lets us dedu
E ∼= s(L) ⊕ ι(a) as linear spaces. Hence a basis ofE can be chosen such that anye ∈ E

can be decomposed ase = s(l) + ι(a) for a ∈ a and l ∈ L, that is, we considerι(a) and
s(L) as subspaces ofE.

Let us from now on assume thatL,a andE from (9) are qhl-algebras, and that we ha
a sections :L → E such thatωE , ωL are intertwined withs, meaning that

ωE(s(x) + ι(a), s(y) + ι(b)) ◦ s = s ◦ ωL(x, y), (10)

if (x, y) ∈ DωL
and(s(x) + ι(a), s(y) + ι(b)) ∈ DωE

. In particular we have,
ωE(s(x), s(y)) ◦ s = s ◦ ωL(x, y)
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if a and b are taken to be zero. By definition of a section pr◦ s = idL, and since pr
is a homomorphism of algebras we have 0= pr ◦ (〈s(x), s(y)〉E − s〈x, y〉L) yielding
〈s(x), s(y)〉E = s〈x, y〉L + ι ◦ g(x, y), whereg :L × L → a is a 2-cocycle-likek-bilinear
map which depends in a crucial way on the sections. Thusg is a measure of the de
viation of s from satisfying condition (M1). Furthermore,g has to satisfy a generalize
skew-symmetry condition onDωL

by (10):

ι ◦ g(x, y) = 〈s(x), s(y)〉E − s〈x, y〉L
= ωE(s(x), s(y))〈s(y), s(x)〉E − s ◦ ωL(x, y)〈y, x〉L
= ωE(s(x), s(y))(〈s(y), s(x)〉E − s〈y, x〉L)

= ωE(s(x), s(y)) ◦ ι ◦ g(y, x) (11)

for (x, y) ∈ DωL
such that(s(x), s(y)) ∈ DωE

.

Definition 10. Denote the set of all mapsL × L → a satisfying (11) by Alt2ω(L,a;E), the
ω-alternatingk-bilinear maps associated with the extension (9), which we denote byE to
keep notation short.

Remark 11. For Lie algebrasωE(s(x), s(y)) is just multiplication by−1 and thus by
linearity and injectivity of the mapι, the condition (11) reduces tog(x, y) = −g(y, x),

which is the classical skew-symmetry, independent on the extension.

By the commutativity of the boxes in (2) we haveαL ◦ pr = pr ◦ αE which means tha
pr◦ (αE − s ◦ αL ◦ pr) = 0 and so

αE = s ◦ αL ◦ pr+ ι ◦ f, (12)

wheref :E → a is ak-linear map. By a similar argument we get

βE = s ◦ βL ◦ pr+ ι ◦ h, (13)

for a k-linearh :E → a. Obviously, bothf andh depends on the section chosen. To s
plify notation we do not indicate explicitly this dependence in what follows.

Since anye ∈ E ande′ ∈ E can be decomposed ase = s(x) + ι(a) ande′ = s(y) + ι(b)

with x, y ∈ L anda, b ∈ a, we have

〈e, e′〉E = 〈s(x) + ι(a), s(y) + ι(b)〉E
= 〈ι(a), ι(b)〉E + 〈s(x), ι(b)〉E + 〈ι(a), s(y)〉E + 〈s(x), s(y)〉E.

With 〈s(x), s(y)〉E = s〈x, y〉L + ι ◦ g(x, y) we can re-write this, noting that by definitio

ι is a morphism of algebras:
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〈e, e′〉E = ι〈a, b〉a + 〈s(x), ι(b)〉E + 〈ι(a), s(y)〉E + s〈x, y〉L + ι ◦ g(x, y)

= s〈x, y〉L + (
ι〈a, b〉a + 〈s(x), ι(b)〉E + 〈ι(a), s(y)〉E + ι ◦ g(x, y)

)
,

where the expression in parentheses is inι(a) since ι(a) is an ideal inE by the ex-
actness. The extension is called inessential ifg ≡ 0, which is equivalent to viewingL
as a subalgebra ofE. We consider only central extensions, i.e., extensions satis
ι(a) ⊆ Z(E) := {e ∈ E | 〈e,E〉E = 0}, wherea is abelian, that is〈a,a〉a = 0. This means
in particular, by expanding, that〈e, e′〉E = s〈x, y〉L + ι ◦ g(x, y).

Theorem 12. Suppose(L,αL,βL,ωL) and(a, αa, βa,ωa) are qhl-algebras witha abelian
and that(E,αE,βE,ωE) is a central extension of(L,αL,βL,ωL) by(a, αa, βa,ωa). Then
for any sections :L → E, satisfying(10), there is anω-alternating bilinearg :L ×L → a

and linear mapsf,h :E → a such thatf ◦ ι = αa, h ◦ ι = βa and the following relations
hold

g(αL(x),αL(y)) = h ◦ (
s ◦ αL〈x, y〉L + ι ◦ f 〈s(x), s(y)〉E

)
, (14)

�ωE(s(z) + ι(c), s(x) + ι(a)) ◦ (
ι ◦ g(αL(x), 〈y, z〉L)

+ ι ◦ h〈s(x), s〈y, z〉L〉E
) = 0, (15)

for all pairs (x, a), (y, b), (z, c) ∈ L × a such that(s(z) + ι(c), s(x) + ι(a)), (s(x) +
ι(a), s(y) + ι(b)), (s(y) + ι(b), s(z) + ι(c)) ∈ DωE

, and where� denotes the cyclic sum
mation�(x,a),(y,b),(z,c). Moreover, Eq.(15) is independent of the choice of sections and
functionh, under the additional assumptions that only sectionss, s′ satisfying(10) and
ωE ’s such thatωE(s′(x) + ι(a), s′(y) + ι(b)) ◦ ι = ωE(s(x) + ι(a), s(y) + ι(b)) ◦ ι, are
considered.

This last condition is fulfilled, for instance when we, in addition to (10), dem
ωE(s(x) + ι(a), s(y) + ι(b)) ◦ ι = ι ◦ ωa(ι(a), ι(b)) for all sectionss.

Proof. To simplify notation we putu := s(x) + ι(a), v := s(y) + ι(b), w := s(z) + ι(c).
Whenevers is replaced withs̃, for instance, we change accordingly in the substitut
e.g.,ũ := s̃(x) + ι(a). First,

〈αE(s(x)), 〈s(y), s(z)〉E〉E = 〈αE(s(x)), s〈y, z〉L + ι ◦ g(y, z)〉E
= 〈s(αL(x)) + ι ◦ f (s(x)), s〈y, z〉L + ι ◦ g(y, z)〉E
= 〈s(αL(x)), s〈y, z〉L〉E
= s〈αL(x), 〈y, z〉L〉L + ι ◦ g(αL(x), 〈y, z〉L).

In a similar fashion we see that
βE〈s(x), 〈s(y), s(z)〉E〉E = βE ◦ s〈x, 〈y, z〉L〉L + βE ◦ ι ◦ g(x, 〈y, z〉L).
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Observing that by exactnessβE ◦ ι ◦ g = ι ◦ h ◦ ι ◦ g, we can re-write the above as

βE ◦ s〈x, 〈y, z〉L〉L + βE ◦ ι ◦ g(x, 〈y, z〉L)

= s ◦ βL〈x, 〈y, z〉L〉L + ι ◦ h ◦ s〈x, 〈y, z〉L〉L + ι ◦ h ◦ ι ◦ g(x, 〈y, z〉L)

= s ◦ βL〈x, 〈y, z〉L〉L + ι ◦ h ◦ (s〈x, 〈y, z〉L〉L + ι ◦ g(x, 〈y, z〉L)).

Note thats〈x, 〈y, z〉L〉L + ι ◦ g(x, 〈y, z〉L) = 〈s(x), s〈y, z〉E〉E . So using this and (10)
follows that (15) is a necessary condition forE to be a qhl-algebra. We now show th
(15) is independent of the choice of sections and the maph. Taking another sectioñs
with pr ◦ s̃ = idL satisfying the intertwining conditionωE(s̃(x) + ι(a), s̃(y) + ι(b)) ◦ s̃ =
s̃ ◦ ωL(x, y), we see that(s̃ − s)(x) = ι ◦ k(x), for some lineark :L → a, and sos̃ =
s + ι ◦ k. Hence, since the extension is central,ι ◦ g̃(x, y) = ι ◦ g(x, y) − ι ◦ k〈x, y〉L. By
the injectivity ofι we getg̃(x, y) = g(x, y) − k〈x, y〉L. Furthermore

ι ◦ (h̃ − h)(x) = (βE − s̃ ◦ βL ◦ pr− βE + s ◦ βL ◦ pr)(x)

= (s − s̃) ◦ βL ◦ pr(x) = −ι ◦ k ◦ βL ◦ pr(x)

giving sinceι is an injectionh̃ = h − k ◦ βL ◦ pr. We note two things before we proceed

ωE(ũ, ṽ) ◦ s = ωE(s(x) + ι(k(x) + a), s(y) + ι(k(y) + b)) ◦ s = s ◦ ωL(x, y).

From this follows:

ωE(ũ, ṽ) ◦ ι ◦ k = ωE(ũ, ṽ) ◦ (s̃ − s) = ωE(ũ, ṽ) ◦ s̃ − ωE(ũ, ṽ) ◦ s

= s̃ ◦ ωL(x, y) − s ◦ ωL(x, y) = ι ◦ k ◦ ωL(x, y). (16)

Hence,

�ωE(w̃, ũ)
(
ι ◦ g̃(αL(x), 〈y, z〉L) + ι ◦ h̃〈s̃(x), s̃〈y, z〉L〉E

)
=�ωE(w̃, ũ)

(
ι ◦ g(αL(x), 〈y, z〉L) − ι ◦ k〈αL(x), 〈y, z〉L〉L

+ ι ◦ h〈s(x), s〈y, z〉L〉E − ι ◦ k ◦ βL ◦ pr〈s(x), s〈y, z〉L〉E
)

=�ωE(w̃, ũ)
(
ι ◦ g(αL(x), 〈y, z〉L) + ι ◦ h〈s(x), s〈y, z〉L〉E

)
−�ωE(w̃, ũ) ◦ ι ◦ k

(〈αL(x), 〈y, z〉L〉L + βL〈x, 〈y, z〉L〉L
)

=�ωE(w,u) ◦ (
ι ◦ g(αL(x), 〈y, z〉L) + ι ◦ h〈s(x), s〈y, z〉L〉E

)
,

where we have used thatL is a qhl-algebra in addition to (16), and where� is

shorthand for�(x,a),(y,b),(z,c), thereby proving the claimed independence. The left-hand
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side of the equality〈αE(s(x)),αE(s(y))〉E = βE ◦ αE〈s(x), s(y)〉E can be written as
s〈αL(x),αL(y)〉L + ι ◦ g(αL(x),αL(y)) and the right-hand side as

s ◦ βL ◦ αL〈x, y〉L + ι ◦ h ◦ s ◦ αL〈x, y〉L + ι ◦ h ◦ ι ◦ f 〈s(x), s(y)〉E.

After comparing and using the injectivity ofι, we get

g(αL(x),αL(y)) = h ◦ (s ◦ αL〈x, y〉L + ι ◦ f 〈s(x), s(y)〉E).

Finally f ◦ ι = αa andh ◦ ι = βa follows from (12), (13), the commutativity of (2) and th
injectivity of ι. The proof is complete. �
Example 13. By taking βL = idL, βE = idE , βa = ida and ωL(x, y)vL = −1 · vL for
all x, y, vL ∈ L, ωE(e, e′)vE = −1 · vE for all e, e′, vE ∈ E (we haveDωL

= L × L and
DωE

= E × E here), that is if we consider only hom-Lie algebras, we recover the re
from [14]. To see this consider first (15). The assumption thatβE = idE andβL = idL

implies

ι ◦ h = idE − s ◦ pr, (17)

and hence by exactness

ι ◦ h ◦ (s〈x, 〈y, z〉L〉L + ι ◦ g(x, 〈y, z〉L))

= (idE − s ◦ pr) ◦ (s〈x, 〈y, z〉L〉L + ι ◦ g(x, 〈y, z〉L))

= s〈x, 〈y, z〉L〉L − s〈x, 〈y, z〉L〉L + ι ◦ g(x, 〈y, z〉L) = ι ◦ g(x, 〈y, z〉L).

This means that (15) can be re-written using thatι is an injective qhl-algebra morphism

�
x,y,z

g((idL + αL)(x), 〈y, z〉L) = 0,

obtained in [14]. In the same manner, using (17) and the injectivity ofι, Eq. (14) reduces
to g(αL(x),αL(y)) = f 〈s(x), s(y)〉E .

Note that (17) can be written ash◦ ι|a = ida andh◦ s|L = 0. Indeed, we can decompo
anye ∈ E ase = s(x) + ι(a) and so

ι ◦ h(s(x) + ι(a)) = (idE − s ◦ pr)(s(x) + ι(a)) = 0+ ι(a) = ι(a).

Sinceι is an injection this givesh(s(x) + ι(a)) = ι(a). Restricting even further to (colo
Lie algebras and thus havingαL = αE = id, we have thatf satisfies a similar conditio

f ◦ ι|a = ida andf ◦ s|L = 0.
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Example 14. Consider the following short exact sequence of color Lie algebrasL,E and
a with the sameΓ -grading and commutation factorε

0 a
ι

E
pr

L 0

with ι(a) central inE. This setup is a special case of the construction of Scheuner
Zhang [30] and Scheunert [29], special in the sense that we consider central exte
and not just abelian. We shall show that our construction encompasses the one in
for central extensions. Let us first briefly recall Scheunert and Zhang’s constructio
given in [29]). In their setup the above sequence becomes

0
⊕

γ∈Γ aγ
ι ⊕

γ∈Γ Eγ

pr ⊕
γ∈Γ Lγ 0.

Note that this means thatι and pr are color Lie algebra homomorphisms and this in
implies that they are homogeneous of degree zero. Take a sections :L → E which is ho-
mogeneous of degree zero, that is,s(Lγ ) ⊆ Eγ for all γ ∈ Γ . With this data the Scheuner
Zhang 2-cocycle condition can be expressed as�x,y,z ε(γz, γx)g(x, 〈y, z〉) = 0, for homo-
geneous elementsx, y, z and whereγx, γy, γz are the graded degrees ofx, y, z respectively.

Putting the above in a qhl-algebra setting means lettingω play the role of the commu
tation factorε, whereω is then defined on homogeneous elements,

Dω = Dε =
( ⋃

γ∈Γ

Lγ

)
×

( ⋃
γ∈Γ

Lγ

)
,

and dependent only on the graded degree of these elements. The set Alt2
ε(L,a;E) includes

all g coming from the “defect”-relationι ◦ g(x, y) = 〈s(x), s(y)〉E − s〈x, y〉L, for s a
homogeneous section of degree zero. Hence all suchg’s are also homogeneous of degr
zero. Noting thath ◦ ι|a = ida andh ◦ s|L = 0 from the Example 13, the relation (15) no
becomes,

� ε(w,u) ◦ (
ι ◦ g(αL(x), 〈y, z〉L) + ι ◦ h ◦ (s〈x, 〈y, z〉L〉L + ι ◦ g(x, 〈y, z〉L))

)
= 2� ε(w,u) ◦ ι ◦ g(x, 〈y, z〉L) = 0,

wherew = s(z)+ ι(c), u = s(x)+ ι(a), v = s(y)+ ι(b) and� indicates the cyclic summa
tion�u,v,w. This implies that�x,y,z ε(z, x)g(x, 〈y, z〉L) = 0, for homogeneous element
which is the Scheunert–Zhang 2-cocycle condition for central extensions [29].

4.1. Equivalence between extensions

Let ϕ :E → E′ be a weak qhl-algebra morphism satisfying condition (M4). We call

extensionsE andE′ weakly equivalent or a weak equivalence if the diagram



D. Larsson, S.D. Silvestrov / Journal of Algebra 288 (2005) 321–344 337

ws

trong

1) also

that

we
0 a
ι

E
pr

ϕ

L 0

0 a
ι′

E′ pr′
L 0

(18)

commutes. Similarly one defines strong equivalence as a diagram with the mapE → E′
being a strong morphism. Thatϕ is automatically an isomorphism of linear spaces follo
from the 5-lemma.

Definition 15. The set of weak equivalence classes of extensions ofL by a is denoted by
E(L,a).

Remark 16. In the case of Lie algebras, or generally, color Lie algebras, weak and s
extensions coincide since weak and strong morphisms do.

First we observe that, for central extensions, the same calculation leading up to (1
shows that

ι ◦ g(x, y) = ωE(s(x) + ι(a), s(y) + ι(b)) ◦ ι ◦ g(y, x) (19)

for any a, b ∈ a. We pick sectionss :L → E and s′ :L → E′ satisfying pr◦ s = idL =
pr′ ◦ s′ such that (10) holds fors′ ands. Then there is ag′ ∈ Alt2

ω(L,a;E ′) associated with
the extensionE ′ of L by a such that

〈s′(x), s′(y)〉E′ = s′〈x, y〉L + ι′ ◦ g′(x, y).

Given a mapϕ :E → E′ such that the diagram (18) commutes means in particular
pr′ ◦ ϕ = idL ◦ pr and so pr′ ◦ ϕ(s(x)) = x, which gives us that 0= pr′(s′(x) − ϕ(s(x))).

Hences′(x) = ϕ ◦ s(x) + ι′ ◦ ξ(x) for somek-linearξ :L → a. Takingx, y ∈ L we have,
using the centrality,

ι′ ◦ g′(x, y) = 〈s′(x), s′(y)〉E′ − s′〈x, y〉E′ = ϕ ◦ ι ◦ g(x, y) − ι′ ◦ ξ(〈x, y〉L)

and sinceϕ ◦ ι = ι′ by (18) we getι′ ◦ g′(x, y) = ι′ ◦ g(x, y) − ι′ ◦ ξ 〈x, y〉L or

g′(x, y) = g(x, y) − ξ 〈x, y〉L, (20)

by the injectivity ofι′. We need to check that this is compatible with (11). For brevity
putu := s(x) + ι(a) andv := s(y) + ι(b). The computation:

ι′ ◦ ξ 〈x, y〉L = ι′ ◦ ξ ◦ ωL(x, y)〈y, x〉L = (s′ − ϕ ◦ s) ◦ ωL(x, y)〈y, x〉L
= (

ωE′(s′(x), s′(y)) ◦ s′ − ϕ ◦ ωE(u, v) ◦ s
)〈y, x〉L( )
= ωE′(s′(x), s′(y)) ◦ s′ − ωE′(ϕ(u),ϕ(v)) ◦ ϕ ◦ s 〈y, x〉
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= [Puta := ξ(x), b := ξ(y) usingι′ = ϕ ◦ ι, s′ = ϕ ◦ s + ι′ ◦ ξ ]
= (

ωE′(s′(x), s′(y)) ◦ s′ − ωE′(s′(x), s′(y)) ◦ ϕ ◦ s
)〈y, x〉L

= ωE′(s′(x), s′(y)) ◦ ι′ ◦ ξ 〈y, x〉L,

in combination with:

ι′ ◦ g(x, y) = ϕ ◦ ι ◦ g(x, y) = ϕ ◦ ωE(s(x), s(y)) ◦ ι ◦ g(y, x)

= ωE′(ϕ ◦ s(x) + ι′(a),ϕ ◦ s(y) + ι′(b)) ◦ ϕ ◦ ι ◦ g(y, x)

= ωE′(s′(x), s′(y)) ◦ ι′ ◦ g(y, x),

where we have used (19) and thata = ξ(x), b = ξ(y), shows the desired compatibility. W
can viewξ 〈x, y〉L as a “2-coboundary” thus motivating the following definition.

Definition 17. The set of all 2-cocycle-like maps modulo 2-coboundary-like maps
respect to a weak isomorphism is denoted byH 2

ω(L,a;E).

Remark 18. One can show that (20) reduces to its classical and colored counterpart
the natural specifications [22].

Now, given two extensionsE andE′ of L by a, subject to the conditiong′(x, y) =
g(x, y) − ξ 〈x, y〉L, can we construct a weak equivalence, that is, a weak isomorp
making (18) commute? Observe that this forces some kind of relation betweenωE and
ωE′ . We can viewE andE′ asE = s(L) ⊕ ι(a) andE′ = s′(L) ⊕ ι′(a) respectively, since
sequences on the form (9) are split. This means that any elemente ∈ E can be decompose
ase = s(l) + ι(a) for a ∈ a andl ∈ L. We define a mapϕ :E → E′ by ϕ(s(l) + ι(a)) :=
s′(l) + ι′(a − ξ(l)) and assume that condition (M4) is satisfied with respect to this m
We will show that this is a weak isomorphism of qhl-algebras. That it is surjective is c
Suppose thats′(l) + ι′(a − ξ(l)) = s′(l̃) + ι′(ã − ξ(l̃)). This is equivalent tos′(l − l̃) +
ι′(a − ã + ξ(l − l̃)) = 0 and so injectivity follows from the injectivity ofι′ ands′. To have
a weak equivalence we must check〈ϕ(x),ϕ(y)〉E′ = ϕ〈x, y〉E but this is easy and left t
the reader. Hence,

Theorem 19. With definitions and notations as above, there is a one-to-one correspon
between elements ofE(L,a) and elements ofH 2

ω(L,a;E).

Rephrased, the theorem says that there is a one-to-one correspondence betwe
equivalence classes of central extensions ofL by an abeliana and bilinear mapsg trans-
forming according to (20) under weak isomorphisms. If we are seeking strong equiva
we also have to condition and check the intertwining conditionsϕ ◦ αE = αE′ ◦ ϕ and
ϕ ◦ βE = βE′ ◦ ϕ in addition to condition (M4). One convinces oneself that it is neces

thatαa ◦ ξ = ξ ◦ αL, f ◦ s = f ′ ◦ s′ andβa ◦ ξ = ξ ◦ βL, h ◦ s = h′ ◦ s′.
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4.2. Existence of extensions

So far we have shown how the 2-cocycle-like bilinear mapsg (that is, elementsg ∈
Alt2

ω(L,a;E) such that (15) holds) satisfying (20) corresponds in a one-to-one fash
weak equivalence classes of extensions. We now address the natural question of ex

PutE := L⊕a and choose the canonical sections :L → E, x �→ (x,0), defining pr and
ι to be the natural projection and inclusion, respectively, i.e., pr :E → L, pr(x, a) = x and
ι :a → E, ι(a) = (0, a). We also defineωE by ωE((x, a), (y, b)) ◦ s = s ◦ ωL(x, y) and
ωE((x, a), (y, b)) ◦ ι = ι ◦ ωa(a, b) for (x, y) ∈ DωL

, (a, b) ∈ Dωa
and((x, a), (y, b)) ∈

DωE
. Furthermore we putαE(x, a) := (αL(x), f (x, a)) andβE(x, a) := (βL(x),h(x, a)),

with f andh as in the theorem to be stated now.

Theorem 20. SupposeL anda are quasi-hom-Lie algebras witha abelian and putE :=
L⊕a. Then for every bilinearg satisfying(15)and every pair of linear mapsf,h :L⊕a →
a such that

f (0, a) = αa(a) and h(0, a) = βa(a) for a ∈ a, (21)

g(αL(x),αL(y)) = h
(
αL〈x, y〉L,f (〈x, y〉L,g(x, y))

)
, (22)

�
(x,a),(y,b),(z,c)

ωE((z, c), (x, a)) ◦ (
ι ◦ g(αL(x), 〈y, z〉L)

+ ι ◦ h(〈x, 〈y, z〉L〉L,g(x, 〈y, z〉L))
) = 0, (23)

for x, y, z ∈ L and ((z, c), (x, a)), ((x, a), (y, b)), ((y, b), (z, c)) ∈ DωE
, the linear direct

sumE with morphismsαE , βE , ωE given above and product given by〈(x, a), (y, b)〉E :=
(〈x, y〉L,g(x, y)) is a quasi-hom-Lie algebra central extension ofL bya.

Proof. First note that the definition of the bracket can be written in the usual
〈s(x), s(y)〉E = s〈x, y〉L + ι ◦ g(x, y). This gives

〈(x, a), (y, b)〉E = (〈x, y〉L,g(x, y)) = s〈x, y〉L + ι ◦ g(x, y)

= s ◦ ωL(x, y)〈y, x〉L + ωE(s(x), s(y)) ◦ ι ◦ g(y, x)

= ωE(s(x), s(y)) ◦ s〈y, x〉L + ωE(s(x), s(y)) ◦ ι ◦ g(y, x)

= ωE(s(x), s(y)) ◦ (s〈y, x〉L + ι ◦ g(y, x))

which amounts to〈(x, a), (y, b)〉E = ωE(s(x), s(y))〈(y, b), (x, a)〉E. ThatαE satisfies the
β-twisting condition follows from

〈αE(x, a),αE(y, b)〉E = 〈(αL(x), f (x, a)), (αL(y), f (y, b))〉E
= (〈αL(x),αL(y)〉L,g(αL(x),αL(y))

)
,

βE ◦ αE〈(x, a), (y, b)〉E = βE ◦ αE(〈x, y〉L,g(x, y))
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= βE(αL〈x, y〉L,f (〈x, y〉L,g(x, y)))

= (
βL ◦ αL〈x, y〉L,h

(
αL〈x, y〉L,f (〈x, y〉L,g(x, y))

))
using (22). The condition for the qhl-Jacobi identity to hold is obtained by adding

〈αE(x, a), 〈(y, b), (z, c)〉E〉E = 〈(αL(x), f (x, a)), (〈y, z〉L,g(y, z))〉E
= (〈αL(x), 〈y, z〉L〉L,g(αL(x), 〈y, z〉L))

to

βE〈(x, a), 〈(y, b), (z, c)〉L〉L = βE〈(x, a), (〈y, z〉L,g(y, z))〉E
= βE(〈x, 〈y, z〉L〉L,g(x, 〈y, z〉L))

= (
βL〈x, 〈y, z〉L〉L,h(〈x, 〈y, z〉L〉L,g(x, 〈y, z〉L))

)
composing the result withωE((z, c), (x, a)), performing cyclic summation and using th
L is a qhl-algebra. That the diagram (2) has exact rows is obvious from the definitioι
and pr. Moreover, using (21), it is easy to show that they are also qhl-algebra morp
thereby proving the theorem.�
Example 21. With the notations and definitions leading up to the above theorem we
the canonical sectionx

s�→(x,0) and the canonical injectiona
ι�→(0, a). Define a bracke

on E by 〈·,·〉E := (〈·,·〉L,g(·,·)) for some bilinearg :L × L → a. Note that〈·,·〉E is com-
patible with the maps. Findingf andh such thatf (0, a) = αa(a) andh(0, a) = βa(a)

equipsE with the structure of a qhl-algebra. We now make the general ansatzι ◦ f (l, a) =
(0, αa(a) + F(l)) and alsoι ◦ h(l, a) = (0, βa(a)+ H(l)), for F,H :L → a linear. A sim-
ple calculation shows thatαE andβE can be defined byαE(l, a) = (αL(l), αa(a) + F(l))

andβE(l, a) = (βL(l), βa(a) + H(l)). With this one obtains the qhl-Jacobi identity

�ωa(c, a)
(
g(αL(x), 〈y, z〉L) + βa ◦ g(x, 〈y, z〉L) + H 〈x, 〈y, z〉L〉L

) = 0,

where� is shorthand for�(x,a),(y,b),(z,c). In addition we must also have

ι ◦ g(αL(x),αL(y)) = (
0, βa ◦ f 〈s(x), s(y)〉E + H ◦ αL〈x, y〉L

)
.

Example 22 (Example13 continued). Taking L and a to be hom-Lie algebras, that
h ◦ ι|a = ida andh ◦ s|L = 0, we get Theorem 7 from [14].

Example 23 (Example14 continued). Consider two color Lie algebrasL and a with
the same grading groupΓ and the same commutation factorε. The vector spaceE =⊕

γ∈Γ Eγ = ⊕
γ∈Γ (Lγ ⊕ aγ ) = L ⊕ a, is clearlyΓ -graded. We know from Theorem

and the deduction preceding it that we can endow this with a color structure as fo

From Examples 13 and 14 we see thatf ◦ ι|a = ida, f ◦ s|L = 0 andh ◦ ι|a = ida,
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h ◦ s|L = 0 and so (21) is true. Takes :x �→ (x,0) and define the product onE by
〈(x, a), (y, b)〉E := (〈x, y〉L,g(x, y)) for someg ∈ Alt2

ε(L,a;E). That (23) is satisfied w
saw already in Example 14. Note that (22) becomes tautological. Hence we have
central extension ofL by a. Now E is a color Lie algebra central extension ofL by a.
Note, however, that we have not constructed an explicit extension. What we have
is constructing an extension giveng ∈ Alt2

ε(L,a;E) satisfying (15) or rather its colore
restriction. The existence of suchg is not guaranteed in general. See Scheunert [29, Pr
sition 5.1] for a result that emphasizes this. In our setting this proposition implies
H 2

ε (L,a;E) = {0} and so there are no non-trivial central extensions. The actual con
tion of extensions, qualifying to finding 2-cocycles, is a highly non-trivial task. Speci
ing the above to one-dimensional central extensions witha = k, we first note thatk comes
with a naturalΓ -grading given byk = ⊕

γ∈Γ Kγ , whereK0 = k, Kγ = {0}, for γ �= 0.
Then there is a product onE = L ⊕ k defined by〈(x, a), (y, b)〉E := (〈x, y〉L,g(x, y)),
whereg : L × L → k is thek-valued 2-cocycle.

Example 24 (Example9 continued). The classical Witt algebrad has a unique one
dimensional central extension in the category of Lie algebras called the Virasoro a
[10]. Whenq is not a root of unity, ourq-deformation ofd in Example 9, being a hom-Li
algebra, has a central extension Virq in the category of hom-Lie algebras. This is defin
as the algebra with linear basis{dn | n ∈ Z} ∪ {c} subject to relations

〈Virq, c〉 = 〈c,Virq〉 = 0,

〈dn, dm〉 = ({n}q − {m}q)dn+m + δn+m,0
q−m

6(1+ qm)
{m − 1}q{m}q{m + 1}qc,

with associated mapαVirq defined byαVirq (dn) = qndn andαVirq (c) = c. The Jacobi iden
tity for Vir q is the same as the one given in Example 9. For the proof of these asse
see [14].

It would be of interest to develop a theory for quasi-hom-Lie algebra extensio
one qhl-algebra by another qhl-algebra, and apply it to get qhl-algebra extensions
Virasoro algebra by a Heisenberg algebra [17].

4.3. Central extensions of the(α,β,ω)-deformed loop algebra

Form the vector spacêg = ǧ ⊕ k · c with a “central element”c and take the sectio
s : ǧ → ĝ, x ⊗ tn �→ (x ⊗ tn,0). Define ac-centralizing bilinear product〈·,·〉ĝ on ĝ by

〈x ⊗ tn + a · c, y ⊗ tm + b · c〉ĝ = 〈x, y〉g ⊗ tn+m + g(x ⊗ tn, y ⊗ tm) · c,

for a 2-cocycle-like bilinear mapg : ǧ × ǧ → k. Define, in addition to this,αĝ(x ⊗ tn +
a · c) := αǧ(x ⊗ tn) + a · c, βĝ(x ⊗ tn + a · c) := βǧ(x ⊗ tn) + a · c andωĝ(x ⊗ tn +
a · c, y ⊗ tm + b · c) := ωǧ(x ⊗ tn, y ⊗ tm) + id. By straightforward computations it ea

to check theω-skew symmetry of〈·,·〉ĝ andβ-twisting of αĝ with the above definitions.
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Also, a necessary condition that a 1-dimensional “central extension”ĝ of ǧ can be given
the structure of a qhl-algebra follows from demanding a qhl-Jacobi identity. This con
can be written as

�
(x,n),(y,m),(z,l)

g((αg + idg)(x) ⊗ tn, 〈y, z〉g ⊗ tm+l) = 0. (24)

For the full computations see [22].
Now to do this a little more explicit and more in tune with the classical Lie algebra

[10] we construct the product on̂g a bit differently. Assumeωg = ωǧ = ωĝ = −1, that is,
that the product is skew-symmetric, we take aσ -derivationD on k[t, t−1], whereσ is the
mapt �→ qt , for q ∈ k

∗, the multiplicative group of non-zero elements ofk.1 Explicitly we
can take (see Theorem 8)D = ηt−k(1− q)−1(id −σ) leading toD(tn) = η{n}q tn−k. Take
a bilinear formB(·,·) on g and factor the 2-cocycle-like bilinear mapg asg(x ⊗ tn, y ⊗
tm) = B(x, y) · (D(tn) · tm)0, where the notation(f )0 is the zeroth term in the Lauren
polynomial f or, put differently,t times the residue Res(f ). The above trick to facto
the 2-cocycle (in the Lie algebra case) asB times a “residue” is apparently due to K
and Moody from their seminal papers where they introduced what is now known as
Moody algebras, [18] and [24], respectively. This means that(D(tn) · tm)0 = η{n}qδn+m,k.

Calculating the 2-cocycle-like condition (24) now leads to

�
(x,n),(y,m),(z,l)

(η · {n}q · δn+m+l,k) · B((αg + id)(x), 〈y, z〉g) = 0,

and forαg = id, η = 1, k = 0 andq = 1 we retrieve the classical 2-cocycle discove
by Kac and Moody. Notice, however, that in the Lie algebra case it is assumed thaB is
symmetric andg-invariant, this leading to a nice 2-cocycle identity unlike the one we h
here. What we thus obtained by the preceding factorization is a(α,β,−1)q -deformed, one
dimensional central extension of the (Lie) loop algebra, where theq-subscript is meant to
indicate that we haveq-deformed the derivation on the Laurent polynomial as well as
underlying algebra.
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