Extending homeomorphisms from punctured surfaces to handlebodies

Alessia Cattabriga ${ }^{\mathrm{a}, *}$, Michele Mulazzani ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
${ }^{\mathrm{b}}$ Department of Mathematics, C.I.R.A.M., University of Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy

Received 26 March 2007; received in revised form 13 December 2007; accepted 14 December 2007

Abstract

Let H_{g} be a genus g handlebody and $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ be the group of the isotopy classes of orientation preserving homeomorphisms of $\mathrm{T}_{g}=\partial \mathrm{H}_{g}$, fixing a given set of $2 n$ points. In this paper we find a finite set of generators for $\mathcal{E}_{2 n}^{g}$, the subgroup of $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ consisting of the isotopy classes of homeomorphisms of T_{g} admitting an extension to the handlebody and keeping fixed the union of n disjoint properly embedded trivial arcs. This result generalizes a previous one obtained by the authors for $n=1$. The subgroup $\mathcal{E}_{2 n}^{g}$ turns out to be important for the study of knots and links in closed 3-manifolds via (g, n)-decompositions. In fact, the links represented by the isotopy classes belonging to the same left cosets of $\mathcal{E}_{2 n}^{g}$ in $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ are equivalent. © 2007 Elsevier B.V. All rights reserved.

MSC: primary 20F38; secondary 57M25
Keywords: (g, b)-decompositions of knots and links; Mapping class groups; Extending homeomorphisms; Handlebodies

1. Introduction and preliminaries

Let H_{g} be an oriented handlebody of genus $g \geqslant 0$ and $\partial \mathrm{H}_{g}=\mathrm{T}_{g}$. Consider a system of n disjoint properly embedded trivial arcs ${ }^{1} \mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ in H_{g} and let $P_{i 1}, P_{i 2}$ be the endpoints of the arc A_{i}, for $i=1, \ldots, n$. We denote with $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ (respectively $\mathrm{MCG}_{n}\left(\mathrm{H}_{g}\right)$), the group of the isotopy classes of orientation preserving homeomorphisms of T_{g} (respectively H_{g}) fixing the set $\mathcal{P}_{n}=\left\{P_{i 1}, P_{i 2} \mid i=1, \ldots, n\right\}$ (respectively $A_{1} \cup \cdots \cup A_{n}$). The group $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ is widely studied and different finite presentations of it are known (see [10,15]). In this article we are interested in studying the subgroup $\mathcal{E}_{2 n}^{g}$ of $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$, which is the image of the homomorphism $\mathrm{MCG}_{n}\left(\mathrm{H}_{g}\right) \rightarrow \mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ induced by restriction. In other words, an element $f \in \mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ belongs to $\mathcal{E}_{2 n}^{g}$ if it admits an extension to H_{g} fixing $A_{1} \cup \cdots \cup A_{n}$. If $h \in \mathcal{E}_{2 n}^{g}$ we still denote with h an extension of it. The case $n=0$ is

[^0]studied in [18], while in [4] we study the case $n=1$. Moreover, in [13], the case $g=0$ is investigated. In this paper we find a finite set of generators for $\mathcal{E}_{2 n}^{g}$ and describe their extension to H_{g}, for each $n \geqslant 1$ and $g \geqslant 0$.

The main motivation for studying such subgroups lies in their importance in the representation of knots and links via (g, n)-decompositions. The notion of (g, n)-decomposition for links in orientable closed connected 3-manifolds, given by Doll in [7], extends the one of bridge (or plat) decomposition for links in \mathbf{S}^{3}. Roughly speaking, a (g, n) decomposition of a link $L \subset M$ is the data of a Heegaard surface of genus g in M which cuts the link into two set of n disjoint trivial arcs (the underpasses and the overpasses). It is easy to see that each link admits a (g, n)-decomposition, for suitable g and n with $g \geqslant g_{M}$ and $n \geqslant n_{L}$, where g_{M} denotes the Heegaard genus of M and n_{L} is the number of components of L.

The use of $(g, 1)$-decompositions of knots is revealed to be very fruitful in order to study different topics. For example the strongly-cyclic branched coverings of knots in 3-manifolds are analyzed in [6], while the Alexander polynomial of knots in rational homology spheres is investigated in [14]. The case of knots admitting (1, 1)-decompositions has been widely studied (see for example [2,3,5,8,9,12,17]). In [11], the Heegaard Floer homology of (1,1)-knots is computed, while in [16], the geometry of such knots is determined in terms of the distance of the curve complex associated with their (1, 1)-decompositions.

In Section 2 we give the definition of (g, n)-decomposition of links and describe its connections with $\mathcal{E}_{2 n}^{g}$. In Section 3 we discuss the genus zero case, while the general case is analyzed in Section 4.

Now we briefly recall the definition of spin of a point along a curve (see [1]). Let P be a point on T_{g} and c be a simple closed oriented curve on T_{g}, containing P. Consider a neighborhood N of c, parametrized by coordinates $(y, \theta) \in[-1,1] \times \mathbf{S}^{1}$, where c is defined by $y=0$ and P is the point of coordinates $(0,0)$. The spin of P about c is the homeomorphism $s_{P, c}$ of T_{g} obtained extending with the identity the map defined on N by $(y, \theta) \mapsto\left(y, \theta+\theta^{\prime}\right)$ where

$$
\theta^{\prime}= \begin{cases}2 \pi(2 y+1) & \text { if }-1 \leqslant y \leqslant-1 / 2 \\ 0 & \text { if }-1 / 2 \leqslant y \leqslant 1 / 2 \\ -2 \pi(2 y-1) & \text { if } 1 / 2 \leqslant y \leqslant 1\end{cases}
$$

If we denote with t_{δ} the right-handed Dehn twist along the simple closed curve δ, then $s_{P, c}=t_{c_{1}}^{-1} t_{c_{2}}$, where c_{1} and c_{2} are the curves corresponding to $y=-3 / 4$ and $y=3 / 4$, respectively.

2. (g, n)-decompositions of links

In this section we recall the notion of (g, n)-decompositions of links and describe the connection with $\mathcal{E}_{2 n}^{g}$. A (g, n)-decomposition for a link L in an orientable closed connected 3-manifold M is the data

$$
(M, L)=\left(\mathrm{H}_{g}, A_{1} \cup \cdots \cup A_{n}\right) \cup_{\phi}\left(\overline{\mathrm{H}}_{g}, \bar{A}_{1} \cup \cdots \cup \bar{A}_{n}\right)
$$

where $\mathrm{H}_{g}, \overline{\mathrm{H}}_{g}$ are two oriented handlebodies of genus $g, \mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}, \overline{\mathcal{A}}=\left\{\bar{A}_{1}, \ldots, \bar{A}_{n}\right\}$ are two systems of n properly embedded trivial arcs in H_{g} and $\overline{\mathrm{H}}_{g}$ respectively, and $\phi:\left(\partial \mathrm{H}_{g}, \partial A_{1} \cup \cdots \cup \partial A_{n}\right) \rightarrow\left(\partial \overline{\mathrm{H}}_{g}, \partial \bar{A}_{1} \cup \cdots \cup \partial \bar{A}_{n}\right)$ is an attaching (orientation preserving) homeomorphism (see Fig. 1).

A link admitting a (g, n)-decomposition will be called a (g, n)-link. It is easy to see that L admits a $\left(g_{M}, n\right)$ decomposition, for a suitable n, where g_{M} denotes the Heegaard genus of M. Indeed, given a Heegaard surface S of genus g_{M} for M, there exists an immersion of L in S with a finite number of singular points which are double points. So, by a slight modification of this immersion near each double point, we are able to embed L in S, except for a finite trivial set of arcs. Moreover, if n_{L} denotes the number of components of L, by choosing a sufficiently large g, it is always possible to find a $\left(g, n_{L}\right)$-decomposition of L, since if $n>n_{L}$ a (g, n)-decomposition determines a ($g+1, n-1$)-decomposition (see Fig. 2).

Let $L \subset M$ be a (g, n)-link with (g, n)-decomposition $(M, L)=\left(\mathrm{H}_{g}, A_{1} \cup \cdots \cup A_{n}\right) \cup_{\phi}\left(\overline{\mathrm{H}}_{g}, \bar{A}_{1} \cup \cdots \cup \bar{A}_{n}\right)$ and let $\Upsilon: \overline{\mathrm{H}}_{g} \rightarrow \mathrm{H}_{g}$ be a fixed (orientation preserving) homeomorphism such that $\Upsilon\left(\bar{A}_{i}\right)=A_{i}$, for $i=1, \ldots$, n, then $\varphi=\Upsilon_{\mid \partial \bar{H}_{g}} \phi$ is an orientation preserving homeomorphism of $\left(\partial \mathrm{H}_{g}, \partial A_{1} \cup \cdots \cup \partial A_{n}\right)$.

Moreover, since two isotopic attaching homeomorphisms produce equivalent (g, n)-links, we have a natural surjective map from $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$, the mapping class group of the $2 n$-punctured surface of genus g, to the class $\mathcal{L}_{g, n}$ of all (g, n)-links

$$
\Theta_{g, n}: \mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right) \rightarrow \mathcal{L}_{g, n}
$$

Fig. 1. A (g, n)-decomposition.

Fig. 2. From a (2, 3)-decomposition to a (3, 2)-decomposition.
sending $\varphi \in \operatorname{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ to the link $L_{\varphi} \in \mathcal{L}_{g, n}$, associated to the attaching homeomorphism $\Upsilon_{\mid \partial H_{g}}^{-1} \varphi$. Unfortunately $\Theta_{g, n}$ is far away from being injective. Indeed, if we denote with $\mathcal{E}_{2 n}^{g}$ the subgroup of $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ consisting of the elements that admit an extension to H_{g}, fixing $A_{1} \cup \cdots \cup A_{n}$ as a set, then for each $\varepsilon \in \mathcal{E}_{2 n}^{g}$, the link L_{ε} is the n component trivial link in the connected sum of g copies of $\mathbf{S}^{2} \times \mathbf{S}^{1}$. Moreover, for each $\varphi \in \mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$, the links $L_{\varphi \varepsilon}$ and L_{φ} are equivalent. So we can restrict ourselves to considering the surjective map

$$
\Theta_{g, n}^{\prime}: \mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right) / \mathcal{E}_{2 n}^{g} \rightarrow \mathcal{L}_{g, n},
$$

where $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right) / \mathcal{E}_{2 n}^{g}$ denotes the set of left cosets of $\mathcal{E}_{2 n}^{g}$ in $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$. So, in this contest, it is important to obtain information about $\mathcal{E}_{2 n}^{g}$. In this paper we find a finite set of generators for this group. In order to do this, let us describe some elements of $\mathcal{E}_{2 n}^{g}$.
Intervals: For $i=1, \ldots, n$, let D_{i} be a trivializing disc for A_{i}. Consider a regular neighborhood N of D_{i} such that $D_{j} \cap N=\emptyset$ for $j \neq i$ and parametrize it by $N \cong \mathbf{D}^{2} \times[0,1]$ as in Fig. 3. For $i=1, \ldots, n$, we denote with ι_{i} the homeomorphism of H_{g} obtained extending by the identity the one defined on N by $(\rho, \theta, t) \mapsto\left(\rho, \theta+\theta^{\prime}, t\right)$ where

$$
\theta^{\prime}= \begin{cases}\pi & \text { if } 0 \leqslant \rho, t \leqslant 1 / 2, \tag{1}\\ 2 \pi(1-\rho) & \text { if } 1 / 2 \leqslant \rho \leqslant 1,0 \leqslant t \leqslant 1 / 2, \\ 2 \pi(1-t) & \text { if } 0 \leqslant \rho \leqslant 1 / 2,1 / 2 \leqslant t \leqslant 1, \\ 4 \pi(1-t)(1-\rho) & \text { if } 1 / 2 \leqslant \rho, t \leqslant 1 .\end{cases}
$$

By definition, ι_{i} exchanges the endpoints of the arc A_{i} and fixes pointwise the other arcs.

Fig. 3.

Fig. 4.

Exchanging two arcs: Consider a regular neighborhood N of $D_{i} \cup B \cup D_{i+1}$, where B is a band connecting D_{i} and D_{i+1}, such that $D_{j} \cap N=\emptyset$, for $j \neq i, i+1$, and parametrize it by $N \cong \mathbf{D}^{2} \times[0,1]$ as in Fig. 4. For $i=1, \ldots, n-1$, we denote with $\bar{\lambda}_{i}$ the homeomorphism of H_{g} defined as in (1) on N and as the identity outside N. Set $\lambda_{i}=\iota_{i+1}^{-1} \iota_{i}^{-1} \bar{\lambda}_{i}$ exchanges the arcs A_{i} and A_{i+1} and fixes pointwise the other arcs.

Moreover, let $\mathrm{PMCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ be the subgroup of $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ consisting of the isotopy classes of the homeomorphisms of T_{g} pointwise fixing the punctures and set $\overline{\mathcal{E}}_{2 n}^{g}=\mathrm{PMCG}_{2 n}\left(\mathrm{~T}_{g}\right) \cap \mathcal{E}_{2 n}^{g}$. The next proposition shows that $\mathcal{E}_{2 n}^{g}$ is generated by $\iota_{1}, \lambda_{i}, i=1, \ldots, n-1$, and a set of generators for $\overline{\mathcal{E}}_{2 n}^{g}$.

Proposition 1. Let $\Sigma_{2 n}$ be the symmetric group on $2 n$ letters and denote with $\Sigma_{2 n}^{\prime}$ the subgroup of $\Sigma_{2 n}$ generated by the transposition (12) and the permutations $(2 i-12 i+1)(2 i 2 i+2)$, for $i=1, \ldots, n-1$. Then the exact sequence $1 \rightarrow \mathrm{PMCG}_{2 n}\left(\mathrm{~T}_{g}\right) \rightarrow \mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right) \rightarrow \Sigma_{2 n} \rightarrow 1$ restricts to an exact sequence $1 \rightarrow \overline{\mathcal{E}}_{2 n}^{g} \rightarrow \mathcal{E}_{2 n}^{g} \rightarrow \Sigma_{2 n}^{\prime} \rightarrow 1$.

Proof. First of all, we recall that the homomorphism $p: \operatorname{MCG}_{2 n}\left(\mathrm{~T}_{g}\right) \rightarrow \Sigma_{2 n}$ is obtained by considering the permutation induced on the punctures by the elements of $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$, where the puncture $P_{i j}$ corresponds to the letter $2 i+j-2$, for $i=1, \ldots, n$ and $j=1,2$. Let $\varepsilon \in \mathcal{E}_{2 n}^{g}$, since the extension of ε induces a permutation of the arcs A_{1}, \ldots, A_{n}, it is easy to see that $p(\varepsilon) \in \Sigma_{2 n}^{\prime}$. Moreover if $p(\varepsilon)=1$ then an extension of it fixes the arcs, so $\varepsilon \in \overline{\mathcal{E}}_{2 n}^{g}$. In order to complete the proof we only need to check the surjectivity of $\mathcal{E}_{2 n}^{g} \rightarrow \Sigma_{2 n}^{\prime}$. This follows by observing that ι_{1} maps on (12) and λ_{i} maps on $(2 i-12 i+1)(2 i 2 i+2)$, for $i=1, \ldots, n-1$.

In the next two sections we will find a finite set of generators for $\overline{\mathcal{E}}_{2 n}^{g}$.

Fig. 5. The spins: $s_{j i}$ with $j<i, s_{j i}$ with $j>i$ and $s_{j j}$.

3. The case of genus zero

We introduce the homeomorphisms whose isotopy classes generate $\overline{\mathcal{E}}_{2 n}^{0}$ and describe their extensions to \mathbf{B}^{3}. For each $i=1, \ldots, n$, we set $A_{i}^{\prime}=D_{i} \cap \partial \mathbf{B}^{3}$, where D_{i} is a trivializing disc for A_{i} (see Fig. 1).
Spin of a puncture: A simple closed oriented curve $c \subset \partial \mathbf{B}^{3}$ containing a puncture $P_{j 2}$ is called admissible if $c \cap A_{i}^{\prime}=$ $\emptyset, i=1, \ldots, n, i \neq j$ and $c \cap A_{j}^{\prime}=P_{j 2}$. A spin $s_{P_{j 2}, c}$ of the puncture $P_{j 2}$ along an admissible curve c can be extended to \mathbf{B}^{3} as follows. We can suppose that a regular neighborhood N of c in $\partial \mathbf{B}^{3}$ does not intersect the arcs A_{i}^{\prime}, for $i \neq j$, and so there exists an embedded ball $\bar{N}=[-1,1] \times \mathbf{D}^{2}$ in \mathbf{B}^{3} such that $[-1,1] \times \partial \mathbf{D}^{2}$ is $N, \bar{N} \cap A_{i}=\emptyset$, for $i \neq j$ and $\bar{N} \cap A_{j}$ is an arc l transversal to the trivial fibration of \bar{N} in discs. We can extend $s_{P_{j 2}, c}$ to \mathbf{B}^{3} by the identity outside \bar{N} and by making the mapping cone from the center of each disc $\{y\} \times \mathbf{D}^{2}$ inside \bar{N}. Obviously such an extension keeps A_{i} fixed for $i \neq j$. Since two trivial properly embedded arcs in a ball with the same endpoints are ambient isotopic by an isotopy fixing the boundary, then $s_{P_{j 2}, c}$ is isotopic to a homeomorphism that keeps l and so A_{j} fixed. Therefore, it admits an extension that keeps all the arcs fixed and, as a consequence, $s_{P_{j 2}, c} \in \overline{\mathcal{E}}_{2 n}^{0}$.

We denote with $s_{j i}$ the spin of the point $P_{j 2}$ about the curve depicted in Fig. 5, for $i, j=1, \ldots, n$.
Remark 2. Note that if $c=c_{1} \cdots c_{k}$ in $\pi_{1}\left(\mathbf{S}^{2}-\left\{P_{j 1}, P_{i 1}, P_{i 2} \mid i=1, \ldots, n, i \neq j\right\}, P_{j 2}\right)$ then $s_{P_{j 2}, c}=s_{P_{j 2}, c_{k}} \cdots s_{P_{j 2}, c_{1}}$ in $\mathrm{PMCG}_{2 n}\left(\mathbf{S}^{2}\right)$. Moreover if c is admissible, then we can take the c_{i} 's in $\pi_{1}\left(\mathbf{S}^{2}-\left(\left\{P_{j 1}\right\} \bigcup_{i \neq j} A_{i}^{\prime}\right), P_{j 2}\right)$ and so $s_{P_{j 2}, c}$ is a product of the $s_{j i}$'s.

Slide of an arc: Consider a simple closed oriented curve $c \subset \mathbf{S}^{2}-\mathcal{P}_{n}$ such that $c \cap A_{j}^{\prime}$ is a single point $P \neq P_{j 1}, P_{j 2}$. The slide $S_{j, c}$ of the arc A_{j} along the curve c is defined as the spin of the point P along the curve c, where we require that the parametrization of the regular neighborhood $N \cong[-1,1] \times \mathbf{S}^{1}$ of c is chosen such that A_{j}^{\prime} is parametrized by $[-1 / 2,1 / 2] \times\{0\}$, and so is kept fixed by $S_{j, c}$. Note that $S_{j, c}$ is isotopic to the product of spins $s_{P_{j 1}, c_{1}} s_{P_{j 2}, c_{2}}$, where c_{1} and c_{2} are the curves parametrized by $\{-1 / 2\} \times \mathbf{S}^{1}$ and $\{1 / 2\} \times \mathbf{S}^{1}$. In order to extend $S_{j, c}$ to the whole ball, let us consider an embedded solid torus $\tilde{N}=[-1,1] \times \mathbf{S}^{1} \times[0,1]$ in \mathbf{B}^{3} such that $N=[-1,1] \times \mathbf{S}^{1} \times\{0\}, \tilde{N} \cap A_{i}=\emptyset$, for $i=1, \ldots, n, i \neq j$, and $\tilde{N} \cap A_{j} \subset[-1,1] \times \mathbf{S}^{1} \times[0,1 / 2]$. Then we can extend $S_{j, c}$ to \mathbf{B}^{3} by the identity outside \tilde{N}, and in \tilde{N} by the map

$$
(y, \theta, t) \mapsto \begin{cases}\left(S_{j, c}(y, \theta), t\right) & \text { if } 0 \leqslant t \leqslant 1 / 2, \\ \left(y, \theta+\theta^{\prime}, t\right) & \text { if } 1 / 2 \leqslant t \leqslant 1,\end{cases}
$$

with

$$
\theta^{\prime}= \begin{cases}-4 \pi(2-2 t)(y+1)+2 \pi & \text { if }-1 \leqslant y \leqslant-1 / 2 \\ 2 \pi(2 t-1) & \text { if }-1 / 2 \leqslant y \leqslant 1 / 2, \\ 4 \pi(2-2 t)(y-1)+2 \pi & \text { if } 1 / 2 \leqslant y \leqslant 1\end{cases}
$$

It is clear that $S_{j, c}$ fixes all the arcs and so belongs to $\overline{\mathcal{E}}_{2 n}^{0}$.
We denote with $S_{j i}$ and $S_{j i}^{\prime}$ the slides of the arc A_{j} along the curves depicted in Fig. 6(a) and (b), respectively, for $i, j=1, \ldots, n, i \neq j$.
(a)

(b)

Fig. 6. Slides $S_{j i}$ and $S_{j i}^{\prime}$.

Fig. 7.
Lemma 3. The following relation holds $s_{j i}=S_{i j} s_{i i}^{-1}$ for each $i, j=1, \ldots, n$ and $i \neq j$.
Proof. Let $j<i$. Referring to Fig. 7 we have that $s_{j i}=t_{c}^{-1} t_{d}=s_{i i}^{-1} t_{d}$. Moreover, $S_{i j}=s_{P_{i 1}, c_{1}} s_{P_{i 2}, c_{2}}=t_{e}^{-1} t_{f} t_{g}^{-1} t_{d}=$ t_{d}, where the last equality holds since g and f are isotopic curves and t_{e} is trivial. So $s_{j i}=s_{i i}^{-1} S_{i j}$. The proof in the case $j>i$ is completely analogous.

Proposition 4. (See [4].) Consider the homomorphism $j_{g, n, m}: \mathrm{PMCG}_{n}\left(\mathrm{~T}_{g}\right) \rightarrow \mathrm{PMCG}_{m}\left(\mathrm{~T}_{g}\right)$ induced by the inclusion, with $1 \leqslant m<n$ for $g \geqslant 1$ and $3 \leqslant m<n$ for $g=0$. Then ker $j_{g, n, m} \cong \pi_{1}\left(F_{m, n-m}\left(\mathrm{~T}_{g}\right)\right)$, where $F_{m, n-m}\left(\mathrm{~T}_{g}\right)$ denotes the configuration space of $n-m$ points in T_{g} with m punctures.

The next result describes a set of generators for the group $\overline{\mathcal{E}}_{2 n}^{0}$.
Theorem 5. The subgroup $\overline{\mathcal{E}}_{2 n}^{0}$ of $\mathrm{PMCG}_{2 n}\left(\mathbf{S}^{2}\right)$ is generated by spins $s_{j j}$ of $P_{j 2}$ along the simple closed oriented curve depicted in Fig. 5 and slides $S_{j i}, S_{j i}^{\prime}$ of the arc A_{j} along the curves depicted in Fig. 6(a) and (b), respectively, for $i, j=1, \ldots, n, i \neq j$.

Proof. Let $\mathcal{G}_{2 n}^{0}$ be the subgroup of $\overline{\mathcal{E}}_{2 n}^{0}$ generated by the following elements:
(a) spins $s_{P_{j 2}, c}$ of $P_{j 2}$ along admissible curves on $\mathbf{S}^{2}, j=1, \ldots, n$;
(b) slides $S_{j, c}$ of the arc A_{j} along simple closed oriented curves, in $\mathbf{S}^{2}-\mathcal{P}_{n}$ intersecting A_{j}^{\prime} in a single point different from $P_{j 1}$ and $P_{j 2}, j=1, \ldots, n$.

We will prove that $\mathcal{G}_{2 n}^{0}=\overline{\mathcal{E}}_{2 n}^{0}$ by induction on n, and that $\mathcal{G}_{2 n}^{0}$ is generated by $s_{j i}$ with $i, j=1, \ldots, n, i \leqslant j$ and $S_{j i}, S_{j i}^{\prime}$, with $i, j=1, \ldots, n, j \neq i$.

For $n=1$ the group $\overline{\mathcal{E}}_{2}^{0}$ is trivial since $\mathrm{PMCG}_{2}\left(\mathbf{S}^{2}\right)$ is trivial, so there is nothing to prove. In order to prove the inductive step we need the following lemma.

Lemma 6. Given an element $h \in \overline{\mathcal{E}}_{2 n}^{0}$ there exists an element $h^{\prime} \in \mathcal{G}_{2 n}^{0}$ such that $h^{\prime} h\left(A_{n}^{\prime}\right)=A_{n}^{\prime}$.
Proof. Let $\tilde{A}_{0}=h\left(A_{n}^{\prime}\right)$ and $\tilde{D}_{0}=h\left(D_{n}\right)$. Suppose that $\tilde{A}_{0} \cap A_{i}^{\prime}=\emptyset$ for $i=1, \ldots, n-1$. Then the closed curve $c=\tilde{A}_{0} \cup A_{n}^{\prime}$ based on $P_{n 2}$ is homotopic rel $P_{n 2}$ to the product of simple closed curves $c_{1} \cdots c_{k}$ in $\mathbf{S}^{2}-\bigcup_{i=1}^{n-1} A_{i}^{\prime}$ and each c_{j} is a curve of type (a). Moreover $s_{P_{n 2}, c_{k}} \cdots s_{P_{n 2}, c_{1}}\left(\tilde{A}_{0}\right)=A_{n}^{\prime}$, so in this case $h^{\prime}=s_{P_{n 2}, c_{k}} \cdots s_{P_{n 2}, c_{1}}$.

Let $j \in\{1, \ldots, n-1\}$ such that $\tilde{A}_{0} \cap A_{j}^{\prime} \neq \emptyset$. Up to a small deformation we can suppose that D_{j} and \tilde{D}_{0} intersect transversally and so the connected components of the intersection are arcs or circles. Let us consider the circular components. By an innermost argument, it is possible to choose one of them, let us say C, such that the union of the discs bounded by C on D_{j} and \tilde{D}_{0} is a sphere S that intersects $D_{j} \cap \tilde{D}_{0}$ only in C. Obviously S does not contain any of the $\operatorname{arcs} A_{i}$ and then, by an isotopy, the intersection C can be removed. Iterating the procedure we can remove all the circular intersections. Now, let us consider the arcs. Since $h\left(A_{n}\right)=A_{n}$, then $h\left(A_{n}\right) \cap A_{j}=\emptyset$. So the endpoints of the arcs in $D_{j} \cap \tilde{D}_{0}$ are points of $\tilde{A}_{0} \cap A_{j}^{\prime}$. By an innermost argument, there exists an arc B_{0} that determines a disc both in \tilde{D}_{0} and in D_{j}, whose union is a disc \bar{D}_{0}, properly embedded in the ball, that intersects $\tilde{D}_{0} \cap D_{j}$ only in B_{0}. Let Δ_{0} be the connected component of $\mathbf{B}^{3}-\bar{D}_{0}$ that does not contain A_{j}. If none of the A_{i} for $i=1, \ldots, n-1$ is contained in Δ_{0} then, by isotopy, the intersection B_{0} can be removed.

Otherwise, let A_{i} be contained in Δ_{0}. Referring to Fig. 8, choose a simple oriented closed curve c on \mathbf{S}^{2} such that $c \cap A_{i}^{\prime}$ is a single point and $c \cap \tilde{A}_{0}$ is a single point in $\Delta_{0} \cap \mathbf{S}^{2}$ (the dashed disc in the top part of the figure represents $\Delta_{0} \cap \mathbf{S}^{2}$). Consider the slide $S_{i, c}$ of the arc A_{i} along the curve c and let $h_{1}=S_{i, c} h$. The figure illustrates the image of \tilde{A}_{0} after the application of the homeomorphism $S_{i, c}$ and, subsequently, of a homeomorphism isotopic to the identity. If we set $\tilde{A}_{1}=S_{i, c}\left(\tilde{A}_{0}\right)=h_{1}\left(A_{n}^{\prime}\right)$ and $\tilde{D}_{1}=S_{i, c}\left(\tilde{D}_{0}\right)=h_{1}\left(D_{n}\right)$, we have that $\tilde{D}_{1} \cap D_{j}$ has the same number of connected components of $\tilde{D}_{0} \cap D_{j}$, and $\tilde{A}_{1} \cap A_{k}^{\prime}=\tilde{A}_{0} \cap A_{k}^{\prime}$, for each $k=1, \ldots, n-1$. Moreover, by the same argument used before, it is possible to find an arc B_{1} that determines a disc both in \tilde{D}_{1} and in D_{j}, whose union is a disc \bar{D}_{1}, properly embedded in the ball, that intersects $\tilde{D}_{1} \cap D_{j}$ only in B_{1}. If we denote with Δ_{1} the connected component of $\mathbf{B}^{3}-\bar{D}_{1}$ that does not contain A_{j} (the dashed disc in the bottom part of the figure represents $\Delta_{1} \cap \mathbf{S}^{2}$) then $\left(\bigcup_{i=1}^{n} A_{i}\right) \cap \Delta_{1}=\left(\bigcup_{i=1}^{n} A_{i}\right) \cap \Delta_{0}-A_{i}$. So, after k-steps and composing h with the opportune slides, we obtain the case of $\left(\bigcup_{i=1}^{n} A_{i}\right) \cap \Delta_{k}=\emptyset$ and so as before we can remove the intersection arc B_{k}. Since the intersections of $\tilde{D}_{i} \cap D_{j}$ are finitely many, we can remove them all and so return to the case in which $\tilde{A}_{k} \cap A_{j}^{\prime}=\emptyset$.

Since during the process we do not increase the number of intersections of \tilde{A}_{k} with the other arcs A_{h}^{\prime} by applying it to the other arcs, we return to the case $\tilde{A}_{i} \cap A_{k}^{\prime}=\emptyset$ for each $k=1, \ldots, n-1$ already considered.

Continuation of the proof of Theorem 5. By the previous lemma it is enough to consider the subgroup $\tilde{\mathcal{E}}_{2 n}^{0}$ of $\overline{\mathcal{E}}_{2 n}^{0}$, consisting of the elements fixing A_{n}^{\prime}. Let $h \in \tilde{\mathcal{E}}_{2 n}^{0}$, by hypothesis $h\left(A_{n}\right)=A_{n}$, so we can assume that h fixes the whole disc D_{n}, as well as a regular neighborhood N of it. By contracting N to the point $P_{n 2}$ we obtain a surjective map i_{1} : $\tilde{\mathcal{E}}_{2 n}^{0} \rightarrow E_{2 n-1}^{0}$, where $E_{2 n-1}^{0}$ is the group of elements of $\mathrm{PMCG}_{2 n-1}\left(\mathbf{S}^{2}\right)$ that extend to the ball \mathbf{B}^{3} fixing A_{1}, \ldots, A_{n-1}. Moreover, the surjective homomorphism $j_{0,2 n-1,2 n-2}: \mathrm{PMCG}_{2 n-1}\left(\mathbf{S}^{2}\right) \rightarrow \mathrm{PMCG}_{2 n-2}\left(\mathbf{S}^{2}\right)$ of Proposition 4 restricts to a surjective homomorphism $i_{2}: E_{2 n-1}^{0} \rightarrow \overline{\mathcal{E}}_{2 n-2}^{0}$. When $n=2$, the kernel of i_{2} is trivial since $\operatorname{PMCG}_{3}\left(\mathbf{S}^{2}\right)=$ $\operatorname{PMCG}_{2}\left(\mathbf{S}^{2}\right)=1$. Otherwise, when $n>2$, by [1, pp. 158-160] and [4], ker i_{2} is generated by $A=\left\{s_{P_{n 2}, \gamma_{i}} \mid i=\right.$ $1, \ldots, 2 n-3\}$, where the loops γ_{i} are generators of $\pi_{1}\left(\mathbf{S}^{2}-\mathcal{P}_{n-1}, P_{n 2}\right)$. By the induction hypothesis, $\mathcal{E}_{2 n-2}^{0}$ is generated by $B=\left\{s_{P_{j 2}, c} \mid c \cap A_{i}^{\prime}=\emptyset, c \cap A_{j}^{\prime}=P_{j 2}, i, j=1, \ldots, n-1, i \neq j\right\}$ and $C=\left\{S_{j, c} \mid c \subset \mathbf{S}^{2}-\mathcal{P}_{n-1}\right.$, $\left.\sharp\left(c \cap A_{j}^{\prime}\right)=1, c \cap A_{j}^{\prime} \neq P_{j 1}, P_{j 2} j=1, \ldots, n-1\right\}$. So a complete set of generators for $\tilde{\mathcal{E}}_{2 n}^{0}$ is given by the generators

Fig. 8.
of $\operatorname{ker} i_{1}$, the lifts of elements in A via i_{1}, and the lifts of elements in B and C via $i_{2} i_{1}$. The kernel of i_{1} is generated by $s_{n n}$ and so it is contained in $\mathcal{G}_{2 n}^{0}$. A spin $s_{P_{n 2}, \gamma_{i}} \in A$ lifts to a slide of the arc A_{n} along a suitable curve, and so belongs to $\mathcal{G}_{2 n}^{0}$. An element $s_{P_{j 2}, c}$ in B lifts to a spin still based on $P_{j 2}$ along the lifting of c. Moreover, since we can suppose that c avoids $P_{n 2}$, its lifting does not intersect A_{n}^{\prime}, and so belongs to $\mathcal{G}_{2 n}^{0}$. In the same way the lifting of each element in C belongs to $\mathcal{G}_{2 n}^{0}$.

Now we find a finite set of generators for $\mathcal{G}_{2 n}^{0}$. From Remark 2 and Lemma 3, it follows that elements of type (a) are generated by $s_{j j}$ and $S_{j i}$ for $i, j=1, \ldots, n, i \neq j$. Note that a slide S of the arc A_{j} fixes A_{j}^{\prime}. Consider the analogue of the map i_{1} obtained by contracting a regular neighborhood of A_{j}^{\prime} to $P_{j 2}$. The kernel of the map is $s_{j j}$, while the image of S is a spin s based on $P_{j 2}$ along a curve in $\mathbf{S}^{2}-\left\{P_{j 1}, P_{i 1}, P_{i 2} \mid i=1, \ldots, n, i \neq j\right\}$. Since s decomposes into a product of spins along a set of curves whose homotopy classes generate $\pi_{1}\left(\mathbf{S}^{2}-\left\{P_{j 1}, P_{i 1}, P_{i 2} \mid\right.\right.$ $i=1, \ldots, n, i \neq j\}, P_{j 2}$) and the lifting of each spin is one of the $S_{j i}$'s or the $S_{j i}^{\prime}$'s, then S is a product of the $S_{j i}$'s and $S_{j i}^{\prime}$'s.

Fig. 9. A model for H_{g}.
Corollary 7. The subgroup $\mathcal{E}_{2 n}^{0}$ of $\mathrm{MCG}_{2 n}\left(\mathbf{S}^{2}\right)$ is generated by $\iota_{1}, \lambda_{k}, s_{11}, S_{12}, S_{12}^{\prime}$, for $k=1, \ldots, n-1$.
Proof. By Theorem 5 and Proposition 1 the group $\mathcal{E}_{2 n}^{0}$ is generated by $\iota_{1}, \lambda_{k}, s_{j j}, S_{j i}, S_{j i}^{\prime}$, for $j, i=1 \ldots, n, i \neq j$ and $k=1, \ldots, n-1$. Set $\Lambda_{i}=\lambda_{1}^{-1} \cdots \lambda_{i-1}^{-1}$, then the statement follows from the relations $s_{i i}=\Lambda_{i}^{-1} s_{11} \Lambda_{i}, S_{j i}=$ $\left(\lambda_{1} \Lambda_{i} \Lambda_{j}\right)^{-1} S_{12} \lambda_{1} \Lambda_{i} \Lambda_{j}$ if $j<i$ and $S_{j i}=\left(\Lambda_{j} \Lambda_{i}\right)^{-1} S_{12} \Lambda_{j} \Lambda_{i}$ if $j>i$.

We note that the sets of generators obtained for $\mathcal{E}_{2 n}^{0}$ and $\overline{\mathcal{E}}_{2 n}^{0}$ is considerably smaller than the ones obtained in [13].

4. The general case

We are now ready to analyze the general case. We introduce the homeomorphisms whose isotopy classes generate $\overline{\mathcal{E}}_{2 n}^{g}$ and describe their extension to H_{g}.
Semitwist of a handle: Let T_{i} be the 2 -cell depicted in Fig. 9 for $i=1, \ldots, g$. Then T_{i} cuts away from H_{g} a solid torus K_{i}, containing the i th handle V_{i}. We denote with ω_{i} the homeomorphism of H_{g} which is a counterclockwise rotation of π radians of K_{i} along T_{i} on K_{i} and the identity outside a regular neighborhood of K_{i}, for $i=1, \ldots, g$. As usual, we still denote with ω_{i} its restriction to T_{g}. Note that ω_{i}^{2} is isotopic to the Dehn twist along ∂T_{i}.
Twist of a meridian disk: Referring to Fig. 9, let $\beta_{i}=\partial B_{i}$, for $i=1, \ldots, g$. We denote with τ_{i} the right-handed Dehn twist along β_{i}. Note that τ_{i} admits an extension to H_{g}, whose effect is to give a complete twist to the i th meridian disk B_{i}.

Exchanging two handles: Let C_{i} be the properly embedded 2-cell, depicted in Fig. 10, for $i=1, \ldots, g-1$. Then C_{i} cuts away from H_{g} a handlebody K_{i}^{\prime} of genus two, containing the i th and the $(i+1)$ st handles. Let $\bar{\rho}_{i}$ be the homeomorphism of H_{g} which exchanges V_{i} and V_{i+1} by a counterclockwise rotation of π radians along C_{i} and is the identity outside a regular neighborhood of K_{i}^{\prime}. We set $\rho_{i}=\omega_{i}^{-1} \omega_{i+1}^{-1} \bar{\rho}_{i}$ for $i=1, \ldots, g-1$. Moreover, for $i<j$ we set $\rho_{i j}=\rho_{i} \rho_{i+1} \cdots \rho_{j-2} \rho_{j-1} \rho_{j-2}^{-1} \cdots \rho_{i+1}^{-1} \rho_{i}^{-1}$. Obviously $\rho_{i j}$ exchanges the i th handle with the j th handle and keeps fixed the other handles.
Slides of a meridian disc: Referring to Fig. 9, let Z_{i} and Z_{i}^{\prime} be the centers of the properly embedded meridian discs B_{i} and B_{i}^{\prime} in H_{g}, respectively. Moreover, denote with H_{g}^{i} the genus $(g-1)$ handlebody obtained by removing the i th handle V_{i} from H_{g}. A simple closed oriented curve e on $\partial \mathrm{H}_{g}^{i}-\mathcal{P}_{n}$ containing Z_{i}, with $B_{i}^{\prime} \cap e=\emptyset$, will be called an i-loop. If we require that in the parametrization of a regular neighborhood $N \cong[-1,1] \times \mathbf{S}^{1}$ of e the disk B_{i} is contained in $[-1 / 2,1 / 2] \times \mathbf{S}^{1}$ and $B_{i}^{\prime} \cap N=\emptyset$, then the spin of Z_{i} along e keeps B_{i} and B_{i}^{\prime} fixed, and so can be

Fig. 10. Exchanging two handles.

Fig. 11. The loops $e_{i j}, g_{i j}, f_{i k}, l_{i k}$, on H_{g}^{i}.
extended to V_{i} by the identity and to H_{g}^{i} in the same way as the extension of a slide of an arc (see p. 614). We call this homeomorphism of H_{g}, as well as its restriction to T_{g}, a slide of B_{i} along the i th loop e and denote it with $\sigma_{i, e}$. In a completely analogous way we can define an i^{\prime}-loop e^{\prime} and a slide of B_{i}^{\prime} along e^{\prime} and denote it with $\sigma_{i^{\prime}, e^{\prime}}^{\prime}$. Note that $\sigma_{i^{\prime}, e^{\prime}}^{\prime}=\omega_{i}^{-1} \sigma_{i, e} \omega_{i}$, where $e=\omega_{i}\left(e^{\prime}\right)$. We set $\theta_{i j}=\sigma_{i, e_{i j}}, \eta_{i j}=\sigma_{i, g_{i j}}, \xi_{i k}=\sigma_{i, f_{i k}}, \zeta_{i k}=\sigma_{i, l_{i k}}$, where $e_{i j}, g_{i j}, f_{i k}, l_{i k}$ are the oriented curves depicted in Fig. 11, with $i, j=1, \ldots, g, i \neq j$, and $k=1, \ldots, n$.

Remark 8. By [18, Lemma 3.6] if the i-loop e is homotopic to the product of i-loops $e_{1} \cdots e_{n}$ on $\partial \mathrm{H}_{g}^{i}-\left(\mathcal{P}_{n} \cup\left\{Z_{i}^{\prime}\right\}\right)$ rel Z_{i}, then $\sigma_{i, e}$ is isotopic to $\sigma_{i, e_{n}} \cdots \sigma_{i, e_{1}}$ modulo τ_{i}. Since the loops $e_{i j}, g_{i j}, f_{i k}, l_{i k}$, for $k=1, \ldots, n$ and $j=1, \ldots g$, with $i \neq j$, are a free set of generators for $\pi_{1}\left(\partial \mathrm{H}_{g}^{i}-\left(\mathcal{P}_{n} \cup\left\{Z_{i}^{\prime}\right\}\right), Z_{i}\right)$, then $\theta_{i j}, \eta_{i j}, \xi_{i k}, \zeta_{i k}, \tau_{i}$, with $k=1, \ldots, n$, $j=1, \ldots, g$ and $i \neq j$, generate all the slides of the i th meridian disc B_{i}.

Now we are ready to describe a finite set of generators for $\overline{\mathcal{E}}_{2 n}^{g}$. In the following statement, the maps $s_{k k}, S_{k l}, S_{k l}^{\prime}$ are the ones introduced in Section 3, where the defining curves (see Figs. 5 and 6) are contained in a disc embedded in $\partial \mathrm{H}_{g}-\partial\left(V_{1} \cup \cdots \cup V_{g}\right)$.

Theorem 9. The subgroup $\overline{\mathcal{E}}_{2 n}^{g}$ of $\mathrm{PMCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ is generated by $\tau_{1}, \omega_{1}, \rho_{i}, \theta_{12}, \eta_{12}, \xi_{1 k}, \zeta_{1 k}, s_{k k}, S_{k l}$, $S_{k l}^{\prime}$, with $i=1, \ldots, g$ and $k, l=1, \ldots, n, l \neq k$.

Proof. Let $\mathcal{G}_{2 n}^{g}$ be the subgroup of $\mathrm{PMCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ generated by $\tau_{i}, \omega_{i}, \rho_{i}, \rho_{i m}, \theta_{i j}, \eta_{i j}, \xi_{i k}, \zeta_{i k}, \sigma_{i, e}, \sigma_{i, e^{\prime}}^{\prime}, s_{k h}, S_{k l}, S_{k l}^{\prime}$, where e is an i-loop, e^{\prime} is an i^{\prime}-loop, $i, j=1, \ldots, g, i \neq j, i<m$ and $k, h, l=1, \ldots, n, h \leqslant k, l \neq k$.

We will prove that $\mathcal{G}_{2 n}^{g}=\overline{\mathcal{E}}_{2 n}^{g}$, by induction on g, and that $\mathcal{G}_{2 n}^{g}$ is generated by $\tau_{1}, \omega_{1}, \rho_{i}, \theta_{12}, \eta_{12}, \xi_{1 k}, \zeta_{1 k}, s_{k h}, S_{k l}$, $S_{k l}^{\prime}$, with $i=1, \ldots, g$ and $k, h, l=1, \ldots n, h \leqslant k, l \neq k$.

The case $g=0$ is proved in Theorem 5.
Now we prove the inductive step. Let $g>0$ and denote with $\tilde{\mathcal{E}}_{2 n}^{g}$ the subgroup of $\overline{\mathcal{E}}_{2 n}^{g}$ consisting of the isotopy classes of the homeomorphisms that are the identity on the boundary of the g th handle V_{g}. By the same arguments as for the proof of [18, Lemma 4.4], we have that, for each $h \in \overline{\mathcal{E}}_{2 n}^{g}$, there exists an element $h^{\prime} \in \mathcal{G}_{2 n}^{g}$ such that $h^{\prime} h$ is the identity on a meridian disk of the g th handle and so, up to isotopy, on all the handle. Therefore $h^{\prime} h \in \tilde{\mathcal{E}}_{2 n}^{g}$ and so it is enough to show that $\tilde{\mathcal{E}}_{2 n}^{g} \subseteq \mathcal{G}_{2 n}^{g}$.

Let $f: \mathrm{T}_{g} \rightarrow \mathrm{~T}_{g}$ be a homeomorphism fixing ∂V_{g} pointwise and whose isotopy class belongs to $\tilde{\mathcal{E}}_{2 n}^{g}$. By cutting out the g th handle, and capping the resulting holes with the two disks B_{g} and B_{g}^{\prime}, we can identify f with a homeomorphism f^{\prime} of T_{g-1}, such that $f_{\left.\right|_{B_{g} \cup B_{g}^{\prime}} ^{\prime}}^{\prime}=\mathrm{Id}$ and $f^{\prime}=f$ on $\mathrm{T}_{g-1}-\left(B_{g} \cup B_{g}^{\prime}\right)$. Moreover, by shrinking B_{g} and B_{g}^{\prime} to their centers Z_{g} and Z_{g}^{\prime}, the map f^{\prime} becomes a map \tilde{f} of T_{g-1} fixing Z_{g} and Z_{g}^{\prime}. In order to simplify the notation, we set $P_{2 n+1}=Z_{g}$ and $P_{2 n+2}=Z_{g}^{\prime}$. Obviously, \tilde{f} extends to H_{g-1} fixing $A_{1} \cup \cdots \cup A_{n}$ pointwise. So we obtain a surjective map $i_{1}: \tilde{\mathcal{E}}_{2 n}^{g} \rightarrow E_{2 n+2}^{g-1}$, where $E_{2 n+2}^{g-1}$ is the subgroup of $\mathrm{PMCG}_{2 n+2}\left(\mathrm{~T}_{g-1}\right)$ consisting of the elements which extend to the handlebody fixing $A_{1} \cup \cdots \cup A_{n}$ pointwise. Moreover, the surjective homomorphism $j_{g-1,2 n+2,2 n}: \mathrm{PMCG}_{2 n+2}\left(\mathrm{~T}_{g-1}\right) \rightarrow \mathrm{PMCG}_{2 n}\left(\mathrm{~T}_{g-1}\right)$ of Proposition 4 restricts to a surjective homomorphism $i_{2}: E_{2 n+2}^{g-1} \rightarrow \overline{\mathcal{E}}_{2 n}^{g-1}$. So, a set of generators of $\tilde{\mathcal{E}}_{2 n}^{g}$ is given by the generators of ker i_{1}, the lift of the generators of ker i_{2} via i_{1} and the lift of the generators of $\overline{\mathcal{E}}_{2 n}^{g-1}$ via $i_{2} i_{1}$. The kernel of i_{1} is generated by τ_{g}, and so belongs to $\mathcal{G}_{2 n}^{g}$. By [1, pp. 158-160] and [4] $\operatorname{ker} i_{2}$ is generated by spins of Z_{g} and Z_{g}^{\prime} about appropriate loops not containing \mathcal{P}_{n}, lifting to slides of B_{g} and B_{g}^{\prime} on T_{g}, which are elements of $\mathcal{G}_{2 n}^{g}$. Moreover, by the induction hypothesis $\overline{\mathcal{E}}_{2 n}^{g-1}=\mathcal{G}_{2 n}^{g-1}$. Since we can suppose that the generators of $\mathcal{G}_{2 n}^{g-1}$ keep Z_{g} and Z_{g}^{\prime} fixed, they lift to elements of $\mathcal{G}_{2 n}^{g}$.

Now we prove that $\tau_{1}, \omega_{1}, \rho_{i}, \theta_{12}, \eta_{12}, \xi_{1 k}, \zeta_{1 k}, s_{k h}, S_{k l}, S_{k l}^{\prime}$, with $i=1, \ldots, g$ and $k, h, l=1, \ldots n, h \leqslant k, l \neq k$ generate $\mathcal{G}_{2 n}^{g}$. By Remark 8, and since, as already observed, $\sigma_{i^{\prime}, e^{\prime}}^{\prime}=\omega_{i}^{-1} \sigma_{i, e} \omega_{i}$, where $e=\omega_{i}\left(e^{\prime}\right)$, then the elements $\theta_{i j}, \eta_{i j}, \xi_{i k}, \zeta_{i k}, \tau_{i}, \omega_{i}$ for $k=1, \ldots, n$ and $i, j=1, \ldots, g$, with $i \neq j$, generate all the slides $\sigma_{i, e}$ and $\sigma_{i^{\prime}, e}^{\prime}$. Moreover we have $\theta_{i j}=\rho_{j i}^{-1} \omega_{i}^{-2} \theta_{j i} \omega_{i}^{2} \rho_{j i}$ if $i>j$ and $\theta_{i j}=\rho_{1 i} \rho_{2 j} \theta_{12} \rho_{2 j}^{-1} \rho_{1 i}^{-1}$, if $i<j$. The same relations hold for the other slides of a meridian disk. To end the proof it is enough to observe that $\tau_{i}=\rho_{1 i} \tau_{1} \rho_{1 i}^{-1}, \omega_{i}=\rho_{1 i} \omega_{1} \rho_{1 i}^{-1}$ and that, by definition, $\rho_{i j}$ is a product of ρ_{i} 's.

As a consequence of this theorem and Proposition 1 we obtain the following result.
Theorem 10. The subgroup $\mathcal{E}_{2 n}^{g}$ of $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ is generated by $\iota_{1}, \lambda_{k}, \tau_{1}, \omega_{1}, \rho_{i}, \theta_{12}, \eta_{12}, \xi_{1 k}, \zeta_{1 k}, s_{11}, S_{12}$, S_{12}^{\prime}, with $i=1, \ldots, g, k=1, \ldots, n-1$.

References

[1] J.S. Birman, Braids, Links, and Mapping Class Groups, Princeton Univ. Press, Princeton, NJ, 1974.
[2] A. Cattabriga, M. Mulazzani, Strongly-cyclic branched coverings of (1, 1)-knots and cyclic presentations of groups, Math. Proc. Cambridge Philos. Soc. 135 (2003) 137-146.
[3] A. Cattabriga, M. Mulazzani, (1, 1)-knots via the mapping class group of the twice punctured torus, Adv. Geom. 4 (2004) 263-277.
[4] A. Cattabriga, M. Mulazzani, Extending homeomorphisms from 2-punctured surfaces to handlebodies, Kobe J. Math. 24 (2007) 11-20.
[5] D.H. Choi, K.H. Ko, Parametrizations of 1-bridge torus knots, J. Knot Theory Ramifications 12 (2003) 463-491.
[6] P. Cristofori, M. Mulazzani, A. Vesnin, Strongly-cyclic branched coverings of knots via ($\mathrm{g}, 1$)-decompositions, math.GT/0402393, Acta Math. Hungar. 116 (2007) 163-176.
[7] H. Doll, A generalized bridge number for links in 3-manifold, Math. Ann. 294 (1992) 701-717.
[8] M. Eudave-Muñoz, Incompressible surfaces and (1, 1)-knots, J. Knot Theory Ramifications 15 (2006) 935-948.
[9] H. Goda, C. Hayashi, H.-J. Song, A criterion for satellite 1-genus 1-bridge knots, Proc. Amer. Math. Soc. 132 (2004) 3449-3456.
[10] S. Gervais, A finite presentation of the mapping class group of a punctured surface, Topology 40 (2001) 703-725.
[11] H. Goda, H. Matsuda, T. Morifuji, Knot Floer homology of (1, 1)-knots, Geom. Dedicata 112 (2005) 197-214.
[12] C. Hayashi, 1-genus 1-bridge splittings for knots, Osaka J. Math. 41 (2004) 371-426.
[13] H.M. Hayashi, Generators for two groups related to the braid group, Pacific J. Math. 59 (1975) 475-486.
[14] Y. Koda, Strongly-cyclic branched coverings and the Alexander polynomial of knots in rational homology spheres, Math. Proc. Cambridge Philos. Soc. 142 (2007) 259-268.
[15] C. Labruère, L. Paris, Presentations of the punctured mapping class groups in terms of Artin groups, Algeb. Geom. Topol. 1 (2001) 73-114.
[16] T. Saito, Genus one 1-bridge knots as viewed from the curve complex, Osaka J. Math. 41 (2004) 427-454.
[17] M. Sakuma, The topology, geometry and algebra of unknotting tunnels. Knot theory and its applications, Chaos Solitons Fractals 9 (1998) 739-748.
[18] S. Suzuki, On homeomorphisms of a 3-dimensional handlebody, Canad. J. Math. 29 (1977) 111-124.

[^0]: * Corresponding author.

 E-mail addresses: cattabri@dm.unibo.it (A. Cattabriga), mulazza@dm.unibo.it (M. Mulazzani).
 ${ }^{1}$ A set of mutually disjoint arcs $\left\{A_{1}, \ldots, A_{n}\right\}$ properly embedded in a handlebody H_{g} is trivial if there exist n mutually disjoint embedded discs, called trivializing discs, $D_{1}, \ldots, D_{n} \subset \mathrm{H}_{g}$ such that $A_{i} \cap D_{i}=A_{i} \cap \partial D_{i}=A_{i}, A_{i} \cap D_{j}=\emptyset$ and $\partial D_{i}-A_{i} \subset \partial \mathrm{H}_{g}$ for all $i, j=1, \ldots, n$ and $i \neq j$.

