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Abstract

We study linear time-varying operators arising in mobile communication using methods from time–frequency analysis. We
show that a wireless transmission channel can be modeled as pseudodifferential operator Hσ with symbol σ in FL1

w or in

the modulation space M
∞,1
w (also known as weighted Sjöstrand class). It is then demonstrated that Gabor Riesz bases {ϕm,n}

for subspaces of L2(R) approximately diagonalize such pseudodifferential operators in the sense that the associated matrix
[〈Hσ ϕm′,n′ , ϕm,n〉]m,n,m′,n′ belongs to a Wiener-type Banach algebra with exponentially fast off-diagonal decay. We indicate
how our results can be utilized to construct numerically efficient equalizers for multicarrier communication systems in a mobile
environment.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Mobile wireless communication is an extremely rapidly growing sector of the telecommunication industry, which
is underscored by more than a billion cell phone users worldwide predicted for the near future. However the design
of reliable mobile wireless communication systems that can provide high data rates to many users poses a number of
new technical challenges. In this paper we show that pseudodifferential operators and Banach algebras, two concepts
that at first sight seem to have little in common with cellular phones, can in fact provide valuable insight into some
aspects of the design of mobile communication systems.

Transmission over mobile wireless channels is impaired by multipath propagation and Doppler effect [34]. Signal
multipath occurs when the transmitted signal arrives at the receiver via multiple propagation paths with different
delays and different attenuation due to reflections from the ground and surrounding structures. This delay spread
leads to time dispersion. That means the transmission pulses are spread out in time, which can cause intersymbol
interference, i.e., interference between successive (blocks of) data symbols that were originally separated in time.
Furthermore, relative motion between transmitter and receiver as well as moving objects in the channel paths result
in Doppler effect on each of the multipath components. Thus a “pure frequency” located at ω spreads over a finite
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bandwidth [ω − ωmax,ω + ωmax], where ωmax is the maximal Doppler shift to be defined later. These Doppler shifts
can cause interchannel interference, i.e., interference between (blocks of) data symbols that were originally separated
in frequency.

If these channel distortions are left uncompensated at the receiver they will cause high error rates. Equalization is
the process of compensating or reducing intersymbol interference and interchannel interference in the received signal.
Efficient equalization methods play a central role in the design of modern wireless communications systems.

We first analyze wireless transmission channels from the viewpoint of pseudodifferential operator theory. We
will show that the mobile radio channel can be modeled as pseudodifferential operator Hσ whose symbol belongs
to FL1

w(R2) or alternatively to a specific modulation space, also known as weighted Sjöstrand’s class. For such
pseudodifferential operators Hσ we derive an approximate diagonalization via Gabor systems {ϕk,l}k,l∈Z for properly
chosen window ϕ. More specifically, we show that the matrix [〈Hσ ϕk,l, ϕk′,l′ 〉]k,l,k′,l′∈Z belongs to a Wiener-type Ba-
nach algebra of matrices with very fast off-diagonal decay. This approximate diagonalization provides useful insight
into the design of transmission pulses and equalizers for mobile wireless communication systems. Part of the research
presented in this paper has recently already found practical application in the modem design for short radio wave
communications.

Ignited by the influential work of Coifman and Meyer on Calderon–Zygmund operators and wavelets [33] approx-
imate diagonalization of pseudodifferential operators has become an important theme in harmonic analysis [36]. This
research, while intriguing and exciting, has been mainly of theoretical nature. This paper bridges the gap between
theory and practice by showing that recent theoretical work pseudodifferential operators—in particular Sjöstrand’s
seminal work [38,39]—combined with Banach algebra theory and time–frequency analysis has direct application in
the area of telecommunications.

1.1. Basic concepts from time–frequency analysis

We introduce a few tools from time–frequency analysis used throughout this paper. We follow mostly the notation
of the highly recommended book [15] and also refer to this source for more details about the tools presented in this
section.

The Fourier transform of a function f ∈ L2(Rd) is formally defined as

(Ff )(ω) = f̂ (ω) =
∫
Rd

f (t)e−2πiω·t .

Fkf denotes the Fourier transform of f with respect to its kth variable. For instance, for f (x, y) ∈ L2(R2) we
formally define

(F1f )(ω,y) =
∫
R

f (x, y)e−2πixω dx.

Convolution of two functions f,g is denoted by f ∗ g. For x,ω ∈ R we define the translation operator Tx and the
modulation operator Mω by

Txf (t) = f (t − x), Mωf (t) = e2πiωtf (t). (1)

The cross Wigner distribution of two functions f,g ∈ L2(Rd) is defined to be

W(f, g)(t,ω) =
∫
Rd

f

(
t + s

2

)
g

(
t − s

2

)
e−2πiω·s ds. (2)

The cross ambiguity function of f,g ∈ L2(Rd) is

A(f, g)(t,ω) =
∫
Rd

f

(
x + t

2

)
g

(
x − t

2

)
e−2πiω·x dx. (3)

For f = g definitions (2) and (3) reduce to the usual Wigner distribution and ambiguity function of f , respectively.
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Let f ∈ L2(Rd) and g ∈ S(Rd), where S denotes the Schwartz space. The short-time Fourier transform (STFT)
of f with respect to the window g is defined by

Vgf (s,ω) =
∫
Rd

f (t)g(s − t)e−2πiωt dt, (s,ω) ∈ R2d . (4)

A simple calculation shows that

Vgf (s,ω) = (f̂ ∗ M−s ĝ
∗)(ω). (5)

We assume for convenience that ‖g‖2 = 1 in which case Vg becomes a unitary transform.
A Gabor system consists of functions of the form

ϕk,l(t) = e2πilbtϕ(t − ka), (k, l) ∈ Z × Z, (6)

where ϕ ∈ L2(R) is a given window, and a, b > 0 are the time- and frequency-shift parameters [15]. We denote this
system by (ϕ, a, b). The associated analysis operator or coefficient operator C :L2(R) 	→ �2(Z × Z) is defined as

Cf = {〈f,ϕk,l〉
}
(k,l)∈Z×Z

. (7)

C is also known as Gabor transform and is obviously just an STFT that has been sampled at the time–frequency lattice
aZ × bZ. The adjoint C∗, which is also known as synthesis operator, can be expressed as

C∗{ck,l}(k,l)∈Z×Z =
∑
k,l

ck,lϕk,l for {ck,l}k,l∈Z×Z ∈ �2(Z × Z). (8)

We define a weight function w on Rd as a continuous, non-negative, even function which is submultiplicative, i.e.,
w(s + t) � w(s)w(t) for all s, t ∈ Rd . We say that w satisfies the Gelfand–Raikov–Shilov (GRS) condition [14], if

lim
n→∞w(nt)

1
n = 1 for all t ∈ Rd . (9)

A tempered distribution f ∈ S ′(Rd) belongs to the modulation space M
p,q
w (Rd) if

‖f ‖M
p,q
w

:=
( ∫

Rd

( ∫
Rd

∣∣Vgf (t,ω)
∣∣pw(t,ω)p dt

)q/p

dω

)1/q

(10)

is finite, cf. [9]. Here w is some weight function on R2d . It can be shown that the norm is independent of the choice of
g ∈ S(Rd), see [9,15]. For weight functions of at most polynomial growth M

p,q
w is a subspace of S ′(Rd), otherwise

it is a subspace of ultra-distributions. We refer the reader to Chapter 11.4 in [15] for the necessary adjustments for the
latter case.

Furthermore we will make use of Wiener amalgam spaces [15]. A measurable function F on R2d belongs to the
amalgam space W(L

p,q
w ) if the sequence of local supreme

ak,n = ess sup
x,ω∈[0,1]d

∣∣F(x + k,ω + n)
∣∣ = ‖F · T(k,n)χ[0,1]2d ‖∞

belongs to �
p,q
w , where w is some weight function. The norm on W(L

p,q
w ) is ‖F‖W(L

p,q
w ) = ‖{ak,n}k,n∈Z‖�

p,q
w

. Amal-
gam spaces are convenient when dealing with sampling of functions [1] and it is exactly this property which we will
utilize.

We also introduce a matrix algebra called the Baskakov–Sjöstrand algebra.

Definition 1.1. Let A = [Ai,j ]i,j∈I×I be a matrix, where I is some index set. Let w be a weight function, which
satisfies the GRS condition. The Baskakov–Sjöstrand matrix algebra Mw consists of all matrices A for which

‖A‖Mw
:=

∑
k∈I

sup
i−j=k

|Ai,j |w(k) < ∞. (11)
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It is easy to verify that∑
k∈I

sup
i−j=k

|Ai,j |w(k) = inf
a∈�1

w(I)

{|Ai,j | � a(i − j), i, j ∈ I
}
. (12)

We will make use of the following result which was derived by Baskakov in [3] and for the case w = 1 independently
by Sjöstrand [39].

Theorem 1.2. Let A = [Ai,j ]i,j∈I be a matrix that is invertible on �2(I) and let A ∈ Mw . If w satisfies the GRS-
condition (9) then A−1 ∈Mw .

2. Mobile wireless channels: multipath propagation and Doppler effect

The presence of reflecting objects and scatterers in the wireless channel results in multiple versions of the trans-
mitted signal that arrive at the receiving antenna with different delays, different spatial orientations and different
amplitudes [34]. Multipath propagation leads to time dispersion, since the transmission pulses are spread out in time.
This delay spread can cause intersymbol interference (ISI), i.e., interference between successive (blocks of) data
symbols. Furthermore, relative motion between transmitter and receiver results in Doppler spread due to different
Doppler shifts on each of the multipath components. This Doppler spread causes frequency dispersion, which can
lead to interchannel interference (ICI), i.e., interference between transmission pulses that were originally confined to
disjoint frequency intervals. ISI is usually much more pronounced than ICI. However with the current development
of mobile communication systems with larger and larger bandwidth, Doppler effect will become more severe, as it
increases with frequency. Doppler spread is also of considerable concern in underwater communications and satellite
communications.

Let us briefly consider the simple case of a linear time-invariant communication channel H , as it is arising, e.g., in
wired or fixed wireless (i.e., the location of transmitter and receiver is fixed) communication systems. In this case H

can be expressed as

y(t) = (Hx)(t) = (h ∗ x)(t) =
+∞∫

−∞
h(t − s)x(s)ds, (13)

where h is the impulse response between transmitter and receiver, i.e., h(t) is the response at time t to a unit pulse
(a δ-distribution) transmitted at time 0. Here x denotes the transmitted signal and the received signal is denoted by y.
In (13) we have ignored additive noise and we will do so throughout the paper, since additive noise has no influence
on the subsequent analysis.

Considering, as usual, a baseband communication system [34], i.e.,

x̂(ω) ∈ [−Ω,Ω] for some Ω > 0,

we can express (13) equivalently as

y(t) =
+∞∫

−∞
ĥ(ω)x̂(ω)e2πiωt dω, (14)

where ĥ(ω) is also known as the transfer function of the channel. Thus multipath propagation has the effect of
attenuating different frequency components of the transmitted signal differently, which is also referred to as frequency-
selective fading. Equation (14) makes it easy—at least in theory—to remove the frequency-selective fading effect of
the channel via deconvolution. If ĥ(ω) �= 0 we can write

ŷ(ω)

ĥ(ω)
= x̂(ω). (15)

This also explains the term equalization, since the goal is to make the product of the “equalizer” g(ω) := 1/ĥ(ω) with
ĥ(ω) equal to 1 for ω ∈ [−Ω,Ω].
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If either transmitter or receiver is moving the relative location of reflectors in the transmission path is varying with
time and so is the impulse response h. The input–output relation of a general mobile radio channel can be represented
by the linear time-varying system [22]

y(t) = (Hx)(t) =
+∞∫

−∞
ht (s)x(t − s)ds, (16)

where ht is the impulse response at time t . In contrast to a time-invariant system where h0 = ht for all t , the impulse
response is now modeled by a time-dependent family of functions (tempered distributions) ht . By interpreting ht as
function of two variables, i.e., ht (s) = h(t, s) and renaming variables, we can rewrite (16) as

(Hx)(t) =
+∞∫

−∞
h(t, t − s)x(s)ds. (17)

Formula (17) is the analog of (13) with h(t) replaced by the time-varying impulse response h(t, s). We now consider
the analog of (14). Introducing the notation σ = F2h, i.e.,

σ(t,ω) =
+∞∫

−∞
h(t, s)e−2πiωs ds, (18)

we obtain

(Hx)(t) =
+∞∫

−∞
σ(t,ω)x̂(ω)e2πiωt dω. (19)

Here σ can be interpreted as time-varying transfer function. In this formulation the operator H = Hσ becomes a
pseudodifferential operator with Kohn–Nirenberg symbol σ . The mapping σ 	→ Hσ is usually called the Kohn–
Nirenberg correspondence. The representation (19) was first introduced and analyzed by Zadeh [47]. We write
Hσ ∈ Op(S) if σ ∈ S for some function space S.

Alternatively we can write [13,15]

Hσ x =
∫ ∫

σ̂ (η,u)MηT−ux dudη. (20)

The function σ̂ is called the spreading function in communications engineering [22], since it describes how much
the transmitted signal x gets “spread out” in time and frequency due to delay spread and Doppler spread and we will
adopt this terminology (even though σ̂ may often be a distribution).

Clearly, for the identity operator Hσ = Id we have σ̂ = δ0,0 and σ ≡ 1. If Hσ is a time-invariant channel then
σ̂ (η,u) = δηh0(u) and σ = 1⊗ ĥ0. These special cases already show that—unlike common engineering practice—we
have to allow (ultra-)distributional symbols to model radio channels rigorously and with sufficient generality.

3. Mobile wireless channels and pseudodifferential operators

In the study of pseudodifferential operators one usually proceeds by analyzing properties of the pseudodifferential
operator based on certain growth or smoothness conditions of its symbol σ . In the following we want to identify an
appropriate symbol class for those pseudodifferential operators that arise in wireless communications. Therefore we
will study the effects of multipath and Doppler spread in more detail.

While in ideal free space propagation the signal energy drops quadratically with traveled distance, in realistic
mobile environments the signal power loss is more severe. A classical model that quantifies the phenomenon of
multipath propagation yields an exponentially decaying power delay profile for the impulse response [22]. That is, for
fixed t there exist constants a, c > 0 such that∣∣h(t, s)

∣∣ � ce−a|s|. (21)
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This exponential decay profile can be easily understood by observing that every time the signal is reflected from an
object only a certain percentage, say 100r% (with 0 � r � 1) of the signal energy is in fact reflected and the remaining
100(1 − r)% of the energy are absorbed. After n reflections (assuming for simplicity the same energy loss in each
bounce) the signal energy is reduced to 100rn% of its original energy.2

Now let us consider the Doppler effect. Recall that the Doppler shift ωd is given by

ωd = v

λ
cos θ, (22)

where v is the velocity v of the object, θ is the angle between the direction of the moving object and the direction of
arrival of the radio wave, and λ is the wave length. Doppler shift will be positive or negative depending on whether the
mobile receiver is moving toward or away from the base station. Due to multipath propagation we observe different
Doppler shifts on each of the multipath components. A widely used model due to Jakes [22] predicts a U-shaped
“Doppler spectrum,” however in reality significant deviations from this model have been observed. We refrain from
a definition of the term “Doppler spectrum” and an analysis of its shape, since for our purposes we only need the
following observation. In a baseband communication model equation (22) implies that the spreading function σ̂ (η,u)

is always compactly supported in [−ωmax,ωmax] with respect to η, where ωmax = v
λ

denotes the maximal Doppler
shift. Let I denote the coordinate reflection operator If (x, y) = f (−x, y). By combining the support condition on σ̂

with (21) and using the relation

σ̂ = F1Ih (23)

we conclude that the symbol σ of a mobile wireless channel Hσ satisfies

σ̂ (η,u) = 0 if |η| > ωmax and
∣∣σ̂ (η,u)

∣∣ � ce−a|u| for some c, a > 0. (24)

While this property is not new to engineers (usually stated under the restriction to Hilbert–Schmidt operators), it may
be less familiar among mathematicians. Therefore and because it is essential for the following considerations we have
included the derivations that have lead us to (24).

These quantitative characterizations of multipath propagation and Doppler effect in connection with the representa-
tion (20) have inspired engineers to introduce the class of underspread operators. Since |h(t, s)| decays exponentially
in s, one can argue that σ̂ (η,u) is approximately compactly supported in u. In particular, we may define the maximal
delay spread as the time delay at which the energy of the impulse response stays below a predefined level (such as
the noise level). Together with the compact support of the Doppler spectrum this leads to a spreading function σ̂ (η,u)

that is approximately compactly supported in the interval [−τmax, τmax]×[−ωmax,ωmax]. In case σ̂ is truly compactly
supported with τmax ·ωmax < 1 the operator Hσ is called underspread. In wireless communications one often assumes
that τmax · ωmax � 1. Underspread operators have been analyzed by time–frequency methods in the pioneering work
of Kozek [25–28] and also in [31], however almost exclusively with the restriction to Hilbert–Schmidt operators. This
restriction is quite severe, both from a practical and a theoretical perspective since it excludes the case where Hσ is
invertible and thus one of the most important cases, in particular since the condition τmax · ωmax � 1 includes the
practically relevant case when Hσ is just a small perturbation of the identity. Furthermore, it is easy to see that neither
underspread operators nor pseudodifferential operators whose symbol satisfies (24) form a Banach algebra. While the
Banach algebra property is not a must, it is a quite convenient and powerful property, that often leads to important
structural insight.

Thus, instead of projecting Hσ into a smaller space (such as underspread operators) we will embed Hσ (or rather
its symbol) into somewhat larger spaces and by doing so we will obtain much richer algebraic properties and deeper
analytical insight.

We have the following simple, but useful, observation.

Lemma 3.1. Any operator Hσ whose symbol satisfies (24) belongs to the Banach algebra Op(FL1
w(R2)) where

w(η,u) = e|η|b+|u|b with 0 < b < 1.

2 For narrowband signals it can be assumed that the energy loss is constant across the bandwidth. However this may no longer be true for
signals with large bandwidth as, e.g., in currently developed ultrawideband systems, where the fluctuation in absorbed energy changes slowly with
frequency. This frequency-selective absorption can also be modeled as convolution with a rapidly decaying function and therefore does not change
the overall exponential decay profile.
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Proof. It is trivial to see that Hσ ∈ Op(FL1
w(R2)). It is well known that composition of two operators Hσ ,Hτ corre-

sponds to twisted convolution of their spreading functions [13,15], i.e., Hσ ◦ Hτ = HF−1(σ̂ �τ̂ ), where

(σ̂ �τ̂ )(η,u) =
∫ ∫

R2

σ̂ (η′, u′)τ̂ (η − η′, u − u′)eπi(ηu′−η′u) dη′ du′. (25)

We use (25) and note that twisted convolution is dominated by ordinary convolution ∗. Since (L1
w,∗) forms a Banach

algebra, cf. [35], so does (L1
w, �). �

Above we have chosen b < 1 instead of b = 1, so that σ ∈FL1
w(R2) simultaneously for all σ .

We can also embed Hσ into a somewhat larger space, known as Sjöstrand’s class, a very interesting symbol space
which has recently attracted the attention of harmonic analysts [6,16,39,45]. Sjöstrand’s class can be seen as a member
of the family of modulation spaces. Modulation spaces have been used as symbol classes for pseudodifferential opera-
tors in, e.g., [15,18,21,29,44,45]. By using the modulation space M

p,q
w defined in (10) as symbol class we characterize

the time–frequency contents of the symbol σ via the decay properties of its STFT, i.e., by considering ‖VΨ σ‖L
p,q
w

.

Since the STFT of a symbol σ(t,ω) with (t,ω) ∈ R2 is a function on R4 some care has to be taken in the notation
in order to avoid confusion of the various univariate and bivariate time and frequency variables. To keep our notation
manageable, we will write X := (t,ω) for the “time variable” and Ω := (η,u) for the “frequency variable” in the
definition of the STFT in (4).

The weighted Sjöstrand class is M∞,1
w . Explicitly, Op(M∞,1

w (R2)) is the class of pseudodifferential operators
whose symbol σ satisfies

‖σ‖
M

∞,1
w

=
∫
R2

sup
X∈R2

∣∣VΨ σ(X,Ω)
∣∣w(Ω)dΩ < ∞ (26)

with Ψ ∈ S(R2).
The following theorem provides a link between mobile radio channels and M∞,1

w .

Theorem 3.2. Let Hσ satisfy (24). Then Hσ ∈ Op(M∞,1
w (R2)) where the weight function is given by

w(Ω) = e|Ω|α , with α < 1. (27)

Proof. We have to show that∫
sup
X

∣∣VΨ σ(X,Ω)
∣∣w(Ω)dΩ < ∞, (28)

where Ψ is a function in S(R2) such that∣∣Ψ (X)
∣∣ � c1e

−c2|X|,
∣∣Ψ̂ (Ω)

∣∣ � c3e
−c4|Ω|, (29)

with constants c1, c2, c3, c4 > 0 (e.g., Ψ can be a two-dimensional Gaussian).
By (24), σ̂ (η,u) is compactly supported in η and has exponential decay in u. Thus there exist constants C,α > 0

such that∣∣σ̂ (η,u)
∣∣ � Ce−α(|η|+|u|), (η,u) ∈ R2. (30)

Using (5) we estimate

sup
X

∣∣VΦσ(X,Ω)
∣∣ = sup

X

∣∣(σ̂ ∗ M−XΨ̂ ∗)(Ω)
∣∣ �

(|σ̂ | ∗ |Ψ̂ ∗|)(Ω). (31)

Furthermore∫
R2

(|σ̂ | ∗ |Ψ̂ ∗|)(Ω)w(Ω)dΩ �
∫
R2

∫
R2

∣∣σ̂ (Ω − Γ )
∣∣∣∣Ψ̂ ∗(Γ )

∣∣w(Ω − Γ )w(Γ )dΓ dΩ

�
∫

2

∣∣Ψ̂ ∗(Γ )
∣∣w(Γ )

∫
2

∣∣σ̂ (Ω − Γ )
∣∣w(Ω − Γ )dΩ dΓ < ∞ (32)
R R
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where we have used the submultiplicativity of the weight function, (24) and (29). Finally, (31) and (32) imply (28)
and the proof is complete. �

Sjöstrand has shown that pseudodifferential operators with symbol σ ∈ M∞,1 form a Wiener-type Banach algebra.
Using an entirely different approach consisting of an ingenious combination of time–frequency analysis and Banach
algebra theory Gröchenig [17] was able to extend Sjöstrand’s result to the case M∞,1

w for weight functions w that
satisfy the GRS condition (9). From an abstract point of view it is this Wiener algebra property that paves the way for
numerically efficient equalizers in mobile communications, as described in the next section.

4. Equalization, approximate diagonalization, and Banach algebras

Up to now we have analyzed the mobile radio channel and how it affects the transmission of signals. Now it is
time to have a closer look at the formation of the transmission signal x itself and how the receiver may extract the
transmitted information from the received signal Hσ x.

We consider a multicarrier communication system. This means, simply spoken, that the available transmission
bandwidth is not occupied by a single transmission pulse ϕ, but by a set of transmission pulses {ϕl}N−1

l=0 , where the
index l is usually related to the carrier frequency of ϕl . A typical choice for ϕl is ϕl(t) = ϕ(t)e2πilbt , where ϕ is some
prototype transmission pulse with well-localized Fourier transform, and 0 < b ∈ R is referred to as carrier separation.

Let us assume that {cn}n∈Z are the data symbols to be transmitted. Typically the cn are chosen from some “finite
alphabet” A, such as the pth roots of unity, in which case {cn}n∈Z /∈ �2(Z). However since in practice any transmitted
data stream has finite length, we will assume {cn}n∈Z ∈ �2(Z). We rearrange the data into data blocks of length N ,
{ck,l}N−1

l=0 for k ∈ Z. A data block {ck,l}N−1
l=0 is also called data symbol in engineering jargon (but the term “symbol”

in this context has obviously nothing to do with the “symbol” σ of Hσ ).
Considering a baseband model and using ϕl(t) = ϕ(t)e2πilbt , the signal emitted at the transmitter can be written as

x(t) =
∑
k∈Z

N−1∑
l=0

ck,lϕ(t − ka)e2πilbt , (33)

where 0 < a ∈ R is called symbol period,3 i.e., the time between the transmission of two data symbols {ck,l}N−1
l=0 and

{ck+1,l}N−1
l=0 . It is easy to see that the possibility of recovery the discrete data ck,l requires the set of functions {ϕk,l} to

be linearly independent. We will furthermore assume for convenience that the ϕk,l are mutually orthonormal.
This setup corresponds to a pulse-shaping orthogonal frequency division multiplex system (OFDM) with pulse

shape ϕ, cf. [12,20,27,43]. If we let N → ∞ and consider an infinite number of subcarriers then the set of functions
{ϕk,l}k,l∈Z in (33) corresponds also to a Gabor system (ϕ, a, b) as defined in (6). We know from Gabor theory that
a necessary condition for a Gabor system {ϕk,l}k,l∈Z to be linear independent is that ab � 1 and we will make the
assumption ab � 1 henceforth.

The emitted signal passes through the mobile radio channel and arrives at the receiver as y = Hσ x. While the
data ck,l “live” in the discrete world, the signals x and y “live” in the continuous (analog) world. The received
signal y is transformed back into the discrete world by computing the inner product of y with the functions ϕk,l , i.e.,
dk,l := 〈y,ϕk,l〉. Using (33) and (16) we formally compute

dk,l = 〈Hσ x,ϕk,l〉 =
∑
k′,l′

ck,l〈Hσ ϕk′,l′ , ϕk,l〉, (34)

where the interchange of summation and integration is justified under mild smoothness and decay conditions on ϕ

and Hσ . Denoting c := {ck,l}k,l∈Z, d := {dk,l}k,l∈Z and R = [Rk,l,k′,l′ ]k,l,k′,l′∈Z with Rk,l,k′,l′ = 〈Hσ ϕk′,l′ , ϕk,l〉, we
can write (34) as the linear system of equations

Rc = d. (35)

3 In the communications literature symbol period and carrier separation are often denoted by the letters T and F , respectively. However to be
consistent with the standard notation in Gabor analysis we use a, b instead of T ,F .
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Thus the attempt to recover the coefficients ck,l boils down to the solution of (35). A maximum likelihood equalizer
solves min‖Rc − d‖2 (in presence of additive white Gaussian noise) by calculating Rc − d for all possible choices of
c ∈ A, since A has finite, albeit large, cardinality [34]. A minimum mean square error equalizer computes a (regular-
ized) least-squares solution to Rc = d and then picks that element in A which is closest to the least squares solution.
Regardless of which equalization method we use, since R is a potentially very large matrix, our goal is to design the
transmission pulses ϕk,l such that R has a simple (e.g., diagonal, sparse, etc.) structure.

We note that setting up the matrix R requires knowledge of Hσ or rather of the coefficients 〈Hσ ϕk′,l′ , ϕk,l〉. Unlike
time-invariant channels, which can be identified (at least in principle) by sending a δ-impulse and recording the
received impulse response h = h ∗ δ, the identification or estimation of time-varying channels is more involved [32].
In this regard the concept of underspread operators can provide valuable insight [28]. Since a detailed discussion of
channel estimation is beyond the scope of this paper, we will assume that Hσ is known at the receiver.

It is intuitively clear from (34) that the interference of the data symbol ck,l with neighbor symbols will be smaller
with better time–frequency localization of ϕk,l as well as with larger distance between adjacent data symbols in the
time–frequency domain, i.e, the larger a and b. Increasing a and/or b results in reduced spectral efficiency, i.e., in
a reduced number of bits that can be transmitted per Hertz per second. The observation that functions ϕk,l with
good time–frequency localization are “somehow” the right choice in presence of Doppler spread and delay spread
has been made several times in the engineering literature [12,20,27,46]. The following theorems give a rigorous and
constructive confirmation of this observation.

Theorem 4.1. Let ϕ ∈ M1,1
w (R), where the weight w satisfies the GRS-condition (9) and assume that (ϕ, a, b) is an

orthonormal basis for a subspace of L2(R). Define the weight v by v(x, y) = w(y,−x). If Lσ ∈ Op(M∞,1
v (R2)) then

R ∈Mw . Furthermore, if Hσ is invertible on L2(R) and if ran(Hσ C∗) = ran(C∗), where C∗ is as defined in (8), then
R−1 ∈Mw .

Proof. Let the unitary operator U be defined by

(Uσ)∧(ξ, y) = eπiyξ σ̂ (ξ, y) =: τ̂ (ξ, y), (36)

then the Kohn–Nirenberg symbol and the Weyl symbol are related by [15]

HF−1(Ûσ) = Lσ .

Modulation spaces are invariant under the operator in (36) that transforms the Kohn–Nirenberg symbol into the Weyl
symbol, see Theorem 29 in [11], Lemma 2.1 in [18] and also Proposition 2.1 in [39]. Hence

σ ∈ Mp,q
(
R2d

) ⇔ F−1(Ûσ) ∈ Mp,q
(
R2). (37)

Relation (37) can be extended to weighted modulation spaces M
p,q
w . Therefore we can proceed by considering Lσ

instead of Hσ .
We set α = (αx,αξ ), β = (βx,βξ ) with αx,αξ ,βx,βξ ∈ R. There holds∣∣〈Lσ Mβξ Tβx ϕ,Mαξ Tαx ϕ〉∣∣ = ∣∣〈σ,W(Mαξ Tαx ϕ,Mβξ Tβx ϕ)

〉∣∣
=

∣∣∣∣∫ ∫
σ(x, ξ)e

−πi(αx+β ′
x)(αξ −β ′

ξ )
e
−2πix(αξ −β ′

ξ )
e2πiξ(αx−β ′

x)

×W(ϕ,ϕ)

(
x − αx + βx

2
, ξ − αξ + βξ

2

)
dx dξ

∣∣∣∣
= ∣∣(T (αx ,αξ )+(βx ,βξ )

2

ψ · σ )∧(
αξ − βξ ,−(αx − βx)

)∣∣, (38)

where we have introduced the notation ψ := W(ϕ,ϕ) and used Proposition 4.3.2(b), (c) in [15]. Furthermore we use
that

ϕ ∈ M1,1
w (R) ⇔ W(ϕ,ϕ) ∈ M

1,1
1⊗v

(
R2), (39)

which follows easily by extending Proposition 2.5 in [7] from polynomial weights to weights satisfying the GRS
condition. Hence
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∣∣(T (αx ,αξ )+(βx ,βξ )

2

ψ · σ )∧(
αξ − βξ ,−(αx − βx)

)∣∣ = ∣∣(Tα+β
2

ψ · σ )∧(
J (α − β)

)∣∣
=

∣∣∣∣Vψσ

(
α + β

2
,J (α − β)

)∣∣∣∣. (40)

Let U ∈ L1
w(R2). There holds∣∣(Tα+β
2

ψ · σ )∧(
J (α − β)

)∣∣ � U(α − β) (41)

⇔
∣∣∣∣Vψσ

(
α + β

2
, α − β

)∣∣∣∣ �
(
U ◦J −1)(α − β)

⇔ ∣∣Vψσ(α′, β ′)
∣∣ �

(
U ◦J −1)(β ′). (42)

By definition (26) and (39), relation (42) is equivalent to σ ∈ M∞,1
v . Thus there exists indeed a U ∈ L1

w(R2) such
that (41) holds. Now we sample Vψσ at the time–frequency lattice {(na,mb)}n,m∈Z, i.e., we set (αx,αξ ) = (ka, lb),
(βx,βξ ) = (k′a, l′b), k, k′l, l′ ∈ Z. By combining the continuity of Vψσ for ψ ∈ M

1,1
1⊗v , σ ∈ M∞,1

v with Theo-
rem 12.2.1 and Proposition 11.1.4 in [15] we conclude that there exists u ∈ �1

w(Z2) such that

|Rk,l,k′,l′ | =
∣∣〈Lσ Ml′bTk′aϕ,MlbTkaϕ〉∣∣ � u

(
(ka, lb) − (k′a, l′b)

)
, (43)

and thus R ∈Mw .
Since R = CHσ C∗, L2-invertibility of Hσ combined with the assumption ran(Hσ C∗) = ran(C∗) and the linear

independence of (ψ,a, b) implies that R is invertible on �2(Z2d) and therefore by Theorem 1.2 R−1 ∈ Mw . �
Many variations of Theorem 4.1 are possible. For instance, invertibility of R (which is essential for the ability to

reconstruct the transmitted data at the receiver) does not require that Hσ is invertible on L2(R), the assumption that Hσ

is invertible on ran(C∗) is sufficient. This observation is useful for the following reason. Any practical communication
system has to operate on a specified finite frequency band, B , say. Thus the transmission functions ϕk,l and the (finite)
index set for the frequency index l have to be chosen such that supp(ϕ̂k,l) is essentially contained in B for all l. In this
case it would be sufficient for Lσ to be invertible on the corresponding subspace spanned by {ϕk,l}. On the other hand
the assumption ran(Hσ C∗) = ran(C∗) is in general not easy to verify. Fortunately for the in practice relevant case of
finite-dimensional submatrices of R, one can show under fairly general assumptions on Hσ that these finite matrices
are invertible with probability 1. We will discuss this in more detail elsewhere.

Furthermore, instead of M∞,1
w we could consider a somewhat smaller symbol class (however with less algebraic

structure). As an example we state the following corollary, which follows immediately from Theorem 4.1 and Eqs. (31)
and (32).

Corollary 4.2. Let ϕ ∈ M1,1
w (R) and assume that (ϕ, a, b) is an orthonormal basis for a subspace of L2(R). De-

fine the weight v by v(x, y) = w(y,−x) and assume Hσ ∈ Op(FL1
v(R

2)). Let R = [〈Hσ ϕk′,l′ , ϕk,l〉]k,k′∈Z,|l|,|l′|�N ,
where N ∈ N. If w satisfies the GRS-condition, then R ∈ Mw . If Hσ is invertible on ran({ϕk,l}k,k′∈Z,|l|,l|′|�N) and
ran(Hσ Cast ) = ran(C∗) then R−1 ∈Mw .

To complete the picture we need the following result.

Corollary 4.3. Let w(t) = eα|t |r with 0 < α, r and r < 1. Then there exists a ϕ ∈ M∞,1
w (R) for any a, b ∈ R with

ab > 1 such that (ϕ, a, b) is an orthonormal basis for its closed linear span.

Proof. By Gabor duality theory constructing an orthonormal system (ϕ, a, b) is equivalent to constructing a tight

Gabor frame (ϕ,1/b,1/a), see, e.g., [15]. Furthermore if (g,1/b,1/a) is a Gabor frame then (S− 1
2 g,1/b,1/a) is

a tight Gabor frame, where S denotes the Gabor frame operator. It has been shown in [19] that if g ∈ M1,1
w then

ϕ := S− 1
2 g ∈ M1,1

w as long as the weight satisfies the GRS condition. Finally Gabor frames with g ∈ M1,1
w (R) exist

for any 1/(ab) < 1, for instance let g be a Gaussian [30,37] or a hyperbolic secant [24]. �
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Extending work of Sjöstrand, Gröchenig has shown in [16,17] that

Lσ ∈ Op
(
M∞,1

w

(
R2d

)) ⇔ R ∈Mw. (44)

While Sjöstrand used “hard analysis” in his proof, Gröchenig’s approach is based on classical tools from time–
frequency analysis, which makes the “mathematical forces” behind this important result more transparent.

Taking (44) together with Theorem 4.2 we arrive at the following:

Corollary 4.4. Define the weight v by v(x, y) = w(y,−x) and assume that w satisfies the GRS condition. Then

FL1
w ⊂ M∞,1

v .

Remarks. (i) One can actually prove that the entries of R decay strictly exponentially for Hσ whose symbol’s decay
conditions are given by (24) (i.e., we can set r = 1 in Corollary 4.3). In this case R−1 has also truly exponential decay,
however with a different (in general smaller) exponent and we lose the closedness under inversion of Mw .

(ii) The canonical tight window ϕ := S− 1
2 g is optimally close to g in the sense that ϕ solves the optimization

problem [23]

min
ϕ

‖g − ϕ‖2 subject to (ϕ,1/b,1/a) is a tight frame for L2(R).

It is an open problem whether S− 1
2 g also minimizes ‖g − γ ‖

M
1,1
w

among all (γ,1/b,1/a) that generate a tight Gabor
frame.

(iii) The statement g ∈ M1,1
w (R) ⇒ S− 1

2 g ∈ M1,1
w in [19] also includes the very difficult “irrational case” ab ∈ R\Q.

Gröchenig and Leinert have proven their result by using advanced methods from symmetric Banach algebra theory.
The Baskakov–Sjöstrand algebra allows a drastic simplification of their proof. This can be seen by observing that the
matrix representing a certain discrete twisted convolution arising in [19] is dominated by an “ordinary” convolution
matrix, as it appears inside the parentheses on the right-hand side of (12), and the applying Theorem 1.2.

(iv) Further results on decay properties of dual and tight Gabor frames can be found in, e.g., [5,10,15,42]. Refer-
ence [42] seems to be the first paper in which the GRS-condition has been used in connection with time–frequency
analysis and Gabor frames. Efficient numerical methods to compute ϕ can be easily derived from the algorithms
in [23,41], see also [43].

Since the entries of R decay exponentially fast off the diagonal, we can compute the matrix–vector multiplication
Rc as well as the solution to the linear system of equations Rd = c in (35) numerically efficiently via sparse matrix
techniques. Moreover, since R−1 can also be approximated by a sparse matrix, the computation of a data coefficient
dk,l = ∑

k′,l′ R
−1
k,l,k′,l′ck′,l′ involves only a few non-zero coefficients. In engineering terms this corresponds to the

desired case of an equalizer with only a few taps.
Let us compare this situation to current OFDM systems, which essentially use ϕ(t) = χ[0,c] with τmax < c < a and

b = 1/a, where τmax is the maximal effective delay spread and χ denotes the indicator function. The choice τmax < c

corresponds to inserting a guard interval between two adjacent data symbols, cf. [12]. While this approach works well
in fixed wireless communications and is a key ingredient of several industry standards in wireless communications,
it also has a few serious drawbacks. This approach is very sensible to Doppler spread, which is not avoidable in
mobile wireless communications (even though Doppler spread is significantly smaller than delay spread). We note
that ϕ̂(ω) = sincc(ω). While properly spaced sinc-functions are mutually orthogonal, already a small perturbation can
result in severe interference between adjacent sinc-functions and thus can cause significant interchannel interference.
In this case |Rk,l,k′,l′ | = O(|(k, l) − (k′, l′)|)−1 and R is far from being sparse. Furthermore the slow decay of the
sinc-function makes the OFDM receiver vulnerable to frequency offset.

Ideally we would like to construct an OFDM system (ϕ, a, b) that satisfies the following three requirements simul-
taneously: (i) R = Id on �2(Z2) if Hσ = Id on L2(R); (ii) ϕ ∈ M1,1

w ; (iii) ab = 1, since this choice maximizes the
spectral efficiency. As we know from the Balian–Low theorem [4,8] these three conditions cannot be satisfied simul-
taneously. Hence we relax condition (iii) and allow ab > 1, which is essentially also done in current OFDM systems
that employ a guard interval or cyclic prefix for fixed wireless communications. This loss in spectral efficiency is usu-
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ally an acceptable price to pay to mitigate ISI/ICI as long as ab is not too large.4 Time–frequency analysis provides a
fairly complete and rigorous framework for pulse-shape design for OFDM for mobile wireless communications.

Another case where the time–frequency localization of pulses is important is to combat “out-of-band leakage” for
wired or wireless communications. There the time-localization of the transmission pulses is used as usual to combat
intersymbol interference. However the frequency localization is not used to mitigate Doppler spread, but to avoid
the “leakage” of the carrier functions ϕk,l located close to the boundary of the assigned transmission bandwidth into
frequency bands reserved for other users or other applications. Usually this is done by either simply not using those
carrier functions that are close to the boundaries of the assigned bandwidth (which results in loss of data rates) or by
applying some additional filtering (which destroys the orthogonality of the pulses). The methods presented here and
in [43] yield a more efficient way to deal with this problem. Indeed, some of the theoretical and numerical methods
discussed here and in [43] have already been used in the design of recent modems for short-radio wave communication
systems, in which the author was involved.

5. Final remarks

In the representation (20) the Doppler effect manifests itself as frequency shift via the modulation operator Mη. This
model is accurate for narrowband signals, but for wideband signals a more adequate approach consists of modeling
the Doppler effect via a dilation operator Ds , cf. [40]. While the compact support condition of the spreading function
holds nevertheless true in this case, it seems more appropriate to replace (20) by the operator

(Hax)(t) =
∫ ∫

a(u, s)DsTux(t)ds du, (45)

see [2]. One would intuitively expect that wavelets will approximately diagonalize such operators. We plan to address
this and related questions in our future research.

While finishing the write-up of this manuscript the author received a preprint of K. Gröchenig in which results
related to Theorem 4.1 were obtained [16], see also (44).
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