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Lyndon factorization of sturmian words
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Abstract

We express any general characteristic sturmian word as a unique in�nite non-increasing product
of Lyndon words. Using this identity, we give a new !-division for characteristic sturmian words.
We also give a short proof of a result by Berstel and de Luca (Sturmian words, Lyndon words
and trees, Theoret. Comput. Sci. 178 (1997) 171–203.); more precisely, we show that the set of
factors of sturmian words that qualify as Lyndon words is the set of primitive Christo�el words.
c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In�nite sturmian words appear through many chapters of the litterature: number the-
ory, combinatorics of dynamical systems, combinatorics on words, as well as theoretical
computer science. These (right) in�nite words have both geometrical and combinatorial
characterizations (cf. [15,1,7] or [3]). The present paper proposes to look at character-
istic sturmian words, using Lyndon factorization of in�nite words.
Lyndon words are minimal representatives of primitive conjugacy classes (w.r.t. the

lexicographical order); equivalently they are strictly smaller than their non-empty proper
right factors. The Lyndon factorization theorem [5] asserts that any word can be ex-
pressed as a non-increasing product of Lyndon words. A beautiful algorithm by Duval
[8], exploiting the combinatorics of Lyndon words, computes this factorization in linear
time. Siromoney et al. [17] introduced in�nite Lyndon words and gave a generalization
of Lyndon’s theorem: any right in�nite word may be expressed as a non-increasing
product of Lyndon words (�nite or in�nite) (cf. Theorem 2.5).
The results of the present paper con�rm Siromoney’s factorization theorem as

a useful tool for studying right in�nite words. The usefulness of this technique of
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investigation was also mentionned in [12]. We �rst recall in Section 2 the basic facts
we need about Lyndon words. Section 3 contains our central result: we give the
explicit computation of the factorization of any characteristic sturmian word s as a
non-increasing product of �nite Lyndon words (Theorem 3.3):

s=
∏

n¿0
[(a �s2n+1)c2n−1as2n �s2n+1]c2n+1

in terms of exponents (cn)n¿0 intimately linked to the word s.
In the last section, we show how one can use this information on s and give two

applications. First, we prove that the factorization of s gives an !-division for it.
Second, we give a short proof of a recent result by Berstel and de Luca [3]: we show
that the set of factors of sturmian words that qualify as Lyndon words is equal to the
set of primitive Christo�el words (cf. De�nition 4.3).

2. Lyndon words, �nite and in�nite

The basic de�nitions and notations we use are those usual in theoretical computer
science (see [10]). We denote by A= {a; b} the two letter alphabet and suppose it is
totally ordered by a¡b. This order is naturally extended to the set of all words A∗

lexicographically.

2.1. Finite Lyndon words

Let us go through basic facts about Lyndon words; for details, the reader is referred
to [10, Chapter. 5.1]. All the results concerning Lyndon words (�nite or in�nite) we
state here hold true over an arbitrary alphabet. Recall that a word w ∈ A∗ is a Lyndon
word if it is strictly smaller than any of its non-empty proper right factors (w.r.t. the
lexicographical order ¡). An equivalent de�nition may be given in terms of conjuga-
tion of words (cf. [10]): any Lyndon word is primitive and minimal in its conjugacy
class. Recall that w ∈ A+ is primitive if it is not a proper power of another word u, that
is, w=un implies n=1 and w=u. For example, with A={a; b}, the word aababb is a
Lyndon word, with conjugacy class {aababb; ababba; babbaa; abbaab; bbaaba; baabab}.
Remark that, in particular, letters are Lyndon words.
Denote by L the set of Lyndon words over A. Any Lyndon word w ∈ L of length

¿2 may be expressed as a product of two Lyndon words, w = uv, with u; v ∈ L and
u¡v. This factorization may not be unique; indeed, we have aababb= (a)(ababb) =
(aab)(abb) = (aabab)(b). Let v be the longest right factor of w that quali�es as a
Lyndon word. Then w = uv, and we have u ∈ L and u¡uv¡v. This factorization of
w is called its right standard factorization. Given a Lyndon word w ∈ L \ A, we will
write w = w′w′′ to denote the left and right factors of its right standard factorization.
We may similarly de�ne the left standard factorization of a Lyndon word, by taking
u of maximal length.
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Proposition 2.1. Let u; v ∈ L be such that u¡v and suppose u has right standard
factorization u=u′u′′. Then the factorization uv is right standard if and only if u′′¿v.
Similarly; suppose v has left standard factorization v=v′v′′. Then the factorization

uv is left standard if and only if v′6u.

Corollary 2.2. Let u; v ∈ L. We have uv ∈ L i� u¡v. Consequently; for all p; q¿1;
the word upvq ∈ L is a Lyndon word. Moreover; suppose uv is a right standard
factorization (i.e. u ∈ A or u′′¿v). Then upvq has right standard factorization:

(upvq)′′ = up−1vq

(upvq)′ = u
if p¿2;

(upvq)′′ = v
(upvq)′ = uvq−1

if p= 1:

Corollary 2.3. Let u; v ∈ L be such that u¡v and suppose that the factorization uv
is right standard. Then left and right standard factorizations of the Lyndon words
uvq and upv coincide; for any p; q¿1.

The proposition is originally from [5]; for a proof, the reader is refered to [10].
The �rst corollary is from Duval [8]. The case p¿2 follows from u′′¿v¿up−1vq.

The case p= 1 follows by induction on q; indeed, suppose (uvq−1)′′ = v (if q¿2) or
u′′ (if q= 1), then (uvq−1)′′¿v.
Let us prove the last corollary. It su�ces to prove that the right and left standard

factorizations of uvq coincide (the proof for upv is similar). We momentarily denote by
(w)′r ; (w)

′′
r and (w)

′
l; (w)

′′
l the right and left standard factorizations of Lyndon words.

According to Proposition 2.1, the right standard factorization of uvq is (uvq)′′r = v and
(uvq)′r = uv

q−1. One may give a left version of the preceding proposition and �nd that
(upvq)′′l = v; (u

pvq)′l = u
pvq−1 if q¿2 and (upvq)′′l = u

p−1v; (upvq)′l = u if q= 1. From
this it follows that (uvq)′′l = v= (uv

q)′′r , and (uv
q)′l = uv

q−1 = (uvq)′r .
Recall that a word v ∈ A∗ is a factor of a word w if w = uvt, where u; t ∈ A∗.

Proposition 2.4. The left and right standard factorizations of a Lyndon word w co-
incide if and only if w is a unique increasing product w = uv (u¡v) of two Lyndon
words. In that case; if r is a factor of w that quali�es as a Lyndon word; then either
it is equal to w itself; or it is a factor of u or a factor of v.

The �rst statement of the proposition is trivial. The proof of the proposition relies
on a special property of Lyndon words. Suppose xy ∈ L (with x; y non-empty) and
r ∈ L are such that y¡r then (xy)nxr ∈ L, for any n¿0. Suppose that r is a Lyndon
factor of w which overlaps both u and v. Then r = yz with u= xy and v= zt and we
have y¡r since y is a left factor of r. Then, by virtue of the result we just described,
we have xr= uz ∈ L. But that contradicts the fact that u is the longest left factor of w
qualifying as a Lyndon word.



140 G. Melan�con /Discrete Mathematics 210 (2000) 137–149

2.2. In�nite Lyndon words

A right in�nite word s is a sequence of letters (ai)i¿0, written as s = a0a1a2 : : :
Siromoney et al. [17] introduced in�nite Lyndon words as limits of sequences of �nite
Lyndon words. Recall the Lyndon factorization theorem [5]: any non-empty word can
be expressed as a non-increasing product of Lyndon words (cf. [10, Theorem 5.1.5]).
In [17], the authors showed how this theorem may be extended to (right) in�nite words.
Let us state their result:

Theorem 2.5 (Siromoney et al. [17, Theorem 2.4]). Any right in�nite word s may be
uniquely expressed as a non-increasing product of Lyndon words; �nite or in�nite; in
one of the two following forms: either there exists an in�nite non-increasing sequence
of �nite Lyndon words (‘k)k¿0 such that

s=
∏

n¿0
‘n = ‘0‘1 : : : ; (1)

or there exist �nite Lyndon words ‘0; : : : ; ‘m−1 (m¿0) and an in�nite Lyndon word
‘m such that

s= ‘0 : : : ‘m−1‘m; with ‘0¿ · · ·¿‘m−1¿‘m: (2)

In [18, Theorem 3.7], Varricchio implicitely shows that certain in�nite words ad-
mit a factorization of type (1) over Viennot factorizations (for a de�nition, see [10,
Theorem 5.4.4]; see also Remark 3.6).
In this paper, we compute the explicit Lyndon factorization of characteristic sturmian

words. They all have a factorization of type (1). Since in�nite Lyndon words do not
appear in these factorizations, we do not take time here to de�ne them, and refer the
interested reader to [17]. We look at characteristic sturmian words and show how one
can get information about them out of their factorization (1). In particular, we give a
proof of a recent result by Berstel and de Luca [3].
We close this section by stating a result we will need in Section 4.

Proposition 2.6. Let s be an in�nite word with unique non-increasing factorization
(�nite or in�nite):

s= ‘0‘1‘2 : : : :

A word u ∈ L is a factor of s if and only if it is a factor of one of the ‘i’s.

This is a consequence of a general result on factorizations of the free monoid ac-
cording to which a factor of the form v‘i+1 : : : ‘j−1w (where v and w are right and left
factors of ‘i and ‘j, respectively) factorizes into a non-increasing product of at least
two Lyndon words (see [11]).
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Fig. 1. The �rst letters of the Fibonacci word, with associated slope (−1 +√
5)=2.

3. Factorization of characteristic sturmian words

As Berstel and de Luca [3] point out, in�nite sturmian words may be de�ned
either geometrically or combinatorially. Combinatorially, they may be de�ned as in�-
nite non-ultimately periodic words having a minimal number p(n) of factors of length
n. It can be shown that an in�nite word s is ultimately periodic if there exist an
integer n0 such that p(n0) = n0. Hence, the complexity functions of sturmian words
satisfy p(n) = n+ 1. Hence, sturmian words are two letter words. We refer the reader
to (the bibliography of) [2] for a proof of these elementary facts. Geometrically they
correspond to lines in the planes. More precisely, we draw a half-line having a given
irrationnal slope �¿ 0 (and a y-axis ordinate). Writing a letter a for an intersection
with a vertical segment, and a letter b for an intersection with a horizontal segment,
we get an in�nite word with minimal complexity.
The Fibonacci word is with no doubt the world’s most famous sturmian word.

It is de�ned as the limit of a sequence of �nite words f0 = b; f1 = a and for n¿1;
fn+1 = fnfn−1. Hence, f = abaababaabaababaabab : : : . Note that the length of the
words fn correspond to the Fibonacci sequence of integers; the associated slope of
the Fibonacci word is the golden ratio (see Fig. 1).

3.1. Characteristic sturmian words

Let (cn)n¿0 be any sequence of integers satisfying c0¿0 and cn¿1 for n¿1. De�ne
�nite words s0 = b and s1 = a, and sn+1 = s

cn−1
n sn−1 for n¿1. A result by Rauzy [15]

asserts that the word s=lim sn is in�nite sturmian. For example, if cn=1 for all n¿0,
the word we get is the Fibonacci word. Note that c0 = 0 corresponds to exchanging
a’s with b’s in s. The in�nite word t obtained from s by exchanging a’s and b’s is a
sturmian word with directive sequence (dn)n¿0, where dn = cn+1.
Not all sturmian words are obtained this way. An in�nite sturmian word s obtained

with Rauzy’s process is called a characteristic sturmian word with directive sequence
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Fig. 2. The Stern–Brocot tree.

(cn)n¿0. Characteristic sturmian words correspond to half-lines starting at the origin.
They form an important subclass among all sturmian words; more precisely, one can
show that the set of �nite factors of a given sturmian word only depends on the slope
of the line associated with it. Thus, as far as we are concerned with �nite factors of
sturmian words, we may restrict ourselves to characteristic sturmian words.

Remark 3.1. In their paper, Berstel and de Luca [3] describe the Stern–Brocot tree
and the numerous and beautiful results they give show (among many things) how
its structure links the directive sequence (cn)n¿0 of s, and the slope � associated
with s. We collect here some observations borrowed from their paper, that may help
us to get a better understanding of the results in the last section. The Stern–Brocot
tree is an in�nite rooted planar binary tree, with the reduced fraction 1

1 at its root
(Fig. 2). The reduced fraction sitting at a node is (p′ + p′′)=(q′ + q′′), where p′=q′

and p′′=q′′ are the reduced fraction sitting at the nearest right and left ancestor of the
node, respectively. This tree contains every positive rational in its reduced form exactly
once. The left–right path one has to follow to go from the root to a given rational
p=q may be coded as a unique word of the form Ra0La1 : : : Ran where each exponent is
strictly positive with the exception that a0¿0. These exponents a0, a1; : : : ; an correspond
to the (�nite) continued fraction of p=q. This extends to irrational numbers as well.
Indeed, an irrationnal number � viewed as the limit of a sequence of rational numbers
corresponds to an in�nite left–right path in the tree, thus to an in�nite word Ra0La1 : : : ,
the exponents corresponding this time to the (in�nite) continued fraction for �. The
link with characteristic sturmian word is natural: the sequence of exponents (an)n¿0
coincides exactly with the directive sequence for the characteristic sturmian word with
associated slope �.
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For more details on this, and on in�nite sturmian words in general, the reader may
consult [15,1,7,3] and a recent survey by Berstel [2].

3.2. The factorization

We �rst compute the factorization of the Fibonacci word. The computation of the
factorization in the more general case of a characteristic sturmian word follows the
same line.

Proposition 3.2 (cf. [12, Proposition 11]). The factorization of the Fibonacci
word f is of type (1) and is given by the sequence of words (‘k)k¿0 with ‘0 =ab and
‘k+1=’(‘k); where ’ : {a; b}∗ → {a; b}∗ is the homomorphism de�ned by ’(a)=aab
and ’(b) = ab. Moreover; we have |‘k |= F2k+2 (where Fk denotes the kth Fibonacci
number; with F0 = F1 = 1).

Thus the factorization of f is

f = (ab)(aabab)(aabaababaabab) : : : :

Proof. Every word f2n+1 ends with the letter a; denote by �w the word obtained from
w by deleting the a at its end (if possible). One shows by induction that the words
‘n= af2n �f2n+1 are Lyndon words. Corollary 2.2 then implies ‘

′
n = a �f2n+1 and it follows

that the sequence (‘n)n¿0 is strictly decreasing. It is straightforward to compute f =∏
n¿0 ‘n, after observing that

f = f1f0f1f2f3 : : : : (3)

The second part of the statement is a consequence of the fact that we have ‘0=ab and
‘k+1 = ‘′k‘

2
k (as shows the preceding induction). The result then follows from the fact

that the homomorphism ’ respects standard factorization, i.e. ’(‘′k‘
′′
k ) = ’(‘

′
k)’(‘

′′
k ).

The equality |‘k |= F2k+2 is easy.
In [14], it is proved that the words (‘n)n¿0 form a pre�x code. This follows easily

from ‘k+1 = ‘′k‘
2
k ; indeed, this implies that ‘i is a su�x of ‘j if i¡ j. The property

then follows from the fact that no word may be both a pre�x and a su�x of a given
Lyndon word. Eq. (3) was also observed in [14].

We now turn to the general case of a characteristic sturmian word with directive
sequence (cn)n¿0. Note that s2n+1 ends with an a. Our central result is:

Theorem 3.3. Let s be a characteristic sturmian word with directive sequence (cn)n¿0.
Set ‘n = (a �s2n+1)c2n−1as2n �s2n+1; where it is understood that ‘0 = b if c0 = 0.
Then the words (‘n)n¿0 form a strictly decreasing sequence of Lyndon words and

the unique factorization of s as a non-increasing product of Lyndon words is

s=
∏

n¿0
‘c2n+1n : (4)
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Lemma 3.4. The words a �s2n+1; as2n �s2n+1 are Lyndon words. Furthermore; one has
(as2n �s2n+1)′ = a �s2n+1. Consequently; the words (a �s2n+1)c2n−1as2n �s2n+1 form a strictly
decreasing sequence of Lyndon words.

We proceed by induction. We have a �s1 =a and as0 �s1 =ab. Now compute, for n¿0:

as2n+2 �s2n+3

=a(sc2n2n+1s2n)(s
c2n+1
2n+2 �s2n+1)

=a( �s2n+1(a �s2n+1)c2n−1as2n)( �s2n+1(a �s2n+1)c2n−1as2n)c2n+1 �s2n+1
=a �s2n+1(a �s2n+1)c2n−1as2n �s2n+1[(a �s2n+1)c2n−1as2n �s2n+1]c2n+1

=(a �s2n+1) [(a �s2n+1)c2n−1as2n �s2n+1]c2n+1+1 (5)

and

a �s2n+3

=a(sc2n+12n+2 �s2n+1)

=a( �s2n+1(a �s2n+1)c2n−1as2n)c2n+1 �s2n+1
=a �s2n+1[(a �s2n+1)c2n−1as2n �s2n+1)c2n+1−1](a �s2n+1)c2n−1as2n �s2n+1
=(a �s2n+1)[(a �s2n+1)c2n−1as2n �s2n+1]c2n+1 : (6)

We conclude at once, that as2n+2 �s2n+3 and a �s2n+3 are Lyndon words, and that a �s2n+3 =
(as2n+2 �s2n+3)′ by virtue of Corollary 2.2. The sequence of Lyndon words (‘n)n¿0 is
strictly decreasing since (a �s2n+1)c2n−1as2n �s2n+1 is a right factor of as2n+2 �s2n+3.

Proof of Theorem 3.3. First we write an identity, analog to (3):

s= sck−2

k sk−1s
ck−1−1
k+1 sks

ck−1
k+2 sk+1 · · ·

= sk+1s
ck−1−1
k+1 sks

ck−1
k+2 sk+1 · · ·

= sck−1

k+1 sks
ck−1
k+2 sk+1 · · · :

Second, we compute

asc2n−12n+1 s2ns
c2n+1−1
2n+2 s2n+1 = [(a �s2n+1)c2n−1as2n �s2n+1]c2n+1a

= ‘c2n+1n a:

From this it follows, when c0¿ 0, that

s= sc01 s0s
c1−1
2 s1s

c2−1
3 s2s

c3−1
4 s3 · · ·

= (asc0−11 s0s
c1−1
2 s1)(s

c2−1
3 s2s

c3−1
4 s3) · · ·

= (‘c10 a)(s
c2−1
3 s2s

c3−1
4 s3) · · ·= ‘c10 (asc2−13 s2s

c3−1
4 s3) · · ·

=
∏

n¿0
‘c2n+1n :
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In the case c0 = 0, we must be careful. Note that s2 = s
c0
1 s0 = s0 = b and compute

s= sc01 s0s
c1−1
2 s1s

c2−1
3 s2s

c3−1
4 s3s

c4−1
5 s4s

c5−1
6 s5 · · ·

= sc12 s1s
c2−1
3 s2s

c3−1
4 s3s

c4−1
5 s4s

c5−1
6 s5 · · ·

= sc12 (as
c2−1
3 s2s

c3−1
4 s3)(s

c4−1
5 s4s

c5−1
6 s5) · · ·

= bc1 (‘c11 a)(s
c4−1
5 s4s

c5−1
6 s5) · · ·

= bc1‘c31 (as
c4−1
5 s4s

c5−1
6 s5) · · ·

=
∏

n¿0
‘c2n+1n :

Observe that our notation for ‘0 is in accordance with the usual notation a−1v corre-
sponding to the deletion of a ∈ A at the beginning of v ∈ A∗ (if possible). Indeed, we
then compute (a �s1)c2n−1as0 �s1 =a−1(ab) = b.

Remark 3.5. Note that we assumed a¡b. It is natural to ask whether we get a di�er-
ent factorization if we choose a¿b instead. In most cases, we would get a completely
di�erent result. In our case, the formula we get for s with directive sequence (cn)n¿0
with c0¿ 0 (resp. c0 = 0) when a¡b is the same as for s′ with directive sequence
(c′n)n¿0 with c

′
0 = 0 and c

′
n+1 = cn (resp. c

′
n = cn+1) when a¿b (except that a’s and

b’s have to be exchanged in all Lyndon words ‘n).

This is explained by an invariance property satis�ed by the Lyndon factors of stur-
mian words: this set of words is invariant under the transformation exchanging a’s
with b’s and then taking mirror images (cf. [3, Corollary 3.1]; see Section 4).

Remark 3.6. The Lyndon factorization is part of a larger family of factorization called
Viennot factorizations (for a de�nition, see [10, Chapter 5.4]). Fortunately, it is possible
to show a complete analog of Theorem 2.5 for Viennot factorizations [12,13]. It is
remarkable that the factorization we computed in Theorem 3.3 gives the factorization
of the characteristic sturmian word s over any Viennot factorization. This is mainly
due to the very special properties of Christo�el primitive words.

Remark 3.7. Proposition 3.2 raises a natural question. When is the sequence (‘n)n¿0
morphic? More precisely, is it possible to give a morphism ’ : {a; b}∗ → {a; b}∗ and
a word ‘0 ∈ L such that ‘n+1 =’(‘n)? This question has a positive answer in the case
where the directive sequence is constant. For instance, if cn = 2 for all n¿0, then we
may set ‘0 = aabb and use the morphism mapping a 7→ aaabaab and b 7→ aab.

A characteristic sturmian word may be itself morphic. That is, it may be the limit
limn’n(a) of a (non-erasing) morphism (satisfying ’(a) ∈ aA∗). It is known that this
is essentially equivalent to the fact that its directive sequence is periodic. Unfortunately,
even when a characteristic sturmian word s has a periodic directive sequence, it seems
that the sequence (‘n)n¿0 is not always morphic, although it is possible to describe
patterns in the factorization.
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4. Applications

4.1. !-division of in�nite words

Recall that a �nite word is m-divided if it can be expressed as w=x1 : : : xm, such that
for all permutation � ∈ �m (� 6= id), we have w¿x�(1) : : : x�(m) (for a given total order
on A∗). This de�nition can be extended to in�nite words by asking for a factorization
s= x1x2 : : : into �nite words xi ∈ A∗, to give rise to m-divided �nite words xi : : : xi+m−1
for all i¿1 and m¿2.

Corollary 4.1. Let s be a characteristic sturmian word. Then the factorization of s;
s=

∏
n¿0 xn with xn = ‘

c2n+1
n is an !-division for s (w.r.t. the lexicographical order).

De Luca [6] showed that sturmian words are !-divided words using a di�erent
factorization. Corollary 4.1 is a consequence of Theorem 3.3 together with a result
by Reutenauer [16] according to which the decreasing factorization of a �nite word
w=‘n11 : : : ‘

nm
m into distinct Lyndon words is an m-division of that word. This !-division,

in the particular case of the Fibonacci word, also appears in a work by Pirillo [14].
In [12, Proposition 15], we give a more general result according to which any in�nite
word having a non-ultimately periodic factorization of type (1), is !-divided. Compare
with [18, Theorem 3.7].

4.2. Lyndon factors of sturmian words

Using Theorem 3.3 we give a short proof of a result by Berstel and de Luca [3].
We say that a �nite word v ∈ A∗ is a factor of an in�nite word s if s = uvt (where
u ∈ A∗ is �nite, and t is in�nite). Denote by St the set of factors of sturmian words;
thus St = {v ∈ A∗: ∃ a sturmian word s such that v is a factor of s}. Recall that St
coincides with the set of factors of all characteristic sturmian words (cf. Section 3).
Let L ∩ St denote the factors of sturmian words that qualify as Lyndon words.

Corollary 4.2. The set L ∩ St of factors of sturmian words that qualify as Lyndon
words is equal to the set CP of primitive Christo�el words.

We recall the de�nition of primitive Christo�el words. Associate with any word
w ∈ {a; b}∗ a path in the discrete plane Z × Z , starting at the origin: to a letter a
corresponds a horizontal segment (i; j) → (i + 1; j) and to a letter b corresponds a
vertical segment (i; j)→ (i; j + 1) (see Fig. 3).

De�nition 4.3. A primitive Christo�el word is a word such that its path is below the
line segment joining the end points of the path, and such that the region thus formed
does not contain points with integer coordinates. By convention, letters are primitive
Christo�el words.
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Fig. 3. The word abababb ∈ CP with associated slope 4
3 .

Fig. 4. The Christo�el tree.

These words play a central role in algorithmic number theory (see [4]). Primitive
Christo�el words are easily obtained: draw a line segment with rational slope m=p=q
(in reduced form) joining two points in Z × Z . The unique primitive Christo�el words
corresponding to the given line segment is obtained by forming the unique path crossing
the points (i; bi∗p=qc) (i=1; : : : ; p+q). One can show that primitive Christo�el words
are Lyndon words and that the standard factorization of a primitive Christo�el word
corresponds to its unique factorization into a product of two primitive Christo�el words.
Moreover, a primitive Christo�el word is intimately linked to the slope m of the line
segment joining the end points of its path: it is maximal amongst all Lyndon words
having an associated line segment with slope m (see [4,9]). Christo�el primitive words
may be generated using a recursive process.
Again, the following observations are borrowed from [3]. This recursive process is

a tree process and we may build an in�nite rooted planar binary tree having at its
root the primitive Christo�el word ab (with standard factorization (a)(b)). Suppose the
primitive Christo�el word w attached to a node has standard factorization w = w′w′′;
then the primitive Christo�el words attached to the left and right sons of this nodes are
w′w and ww′′, respectively (see Fig. 4). This tree contains every primitive Christo�el
word exactly once. Moreover, the unique rational corresponding to a given primitive
Christo�el word sits at the corresponding node in the Stern–Brocot tree, as the reader
may check.
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Lemma 4.4. Let s be a characteristic sturmian word with directive sequence (cn)n¿0;
factorizing as in Eq. (4); and let w ∈ L be a Lyndon word. If w is a factor of s then
it is equal to ‘n; as2n �s2n+1 or to a �s2n+1; for some n¿0.

Proof. This is a consequence of Proposition 2.4, according to which w is either equal
to or is a factor of one of ‘n, for some n¿0. Suppose w is a proper factor of ‘n.
Observe that ‘n = (a �s2n+1)c2n−1as2n �s2n+1 and ‘+ n′ = a �s2n+1 = (as2n �s2n+1)′ (by Lemma
3.4), so that by Corollary 2.3 the left and right factorization ‘n coincide. This implies,
using Proposition 2.4, that w is a factor of a �s2n+1 or a factor of as2n �s2n+1. Eqs. (5) and
(6) show that these may be expressed in terms of ‘n−1 and ‘′n−1. An easy induction
concludes the proof.

Proof of Corollary 4.2. We �rst show that the Lyndon words ‘n, as2n �s2n+1 and a �s2n+1
are primitive Christo�el words. Observe that if w is a primitive Christo�el word, then
for any p; q¿1, (w′)pw and w(w′′)q are Christo�el words. In the Christo�el tree, one
goes from w to either one of these by following a left or right extreme path of length
p or q. Hence, the result follows from an easy induction using Eqs. (5) and (6) and
‘n = (a �s2n+1)c2n−1as2n �s2n+1.
Let w ∈ CP be any Christo�el primitive word. As suggested by the Christo�el tree,

there exists a unique sequence of integers a0; a1; : : : ; an such that w is obtained by
forming the sequence of words:

u0 = a; v0 = b; ui+1 = uiv
�2i
i ; vi+1 = u

�2i+1
i+1 vi:

Each word ui or vj is a primitive Christo�el word and w is either un or vn (according
to the parity of n). Now, suppose a0 6= 0. Let (cn)n¿0 be any directive sequence
satisfying c0 = 0; c1 = a0; : : : ; cn+1 = an. One computes ui = a �s2i+1, and vj = ‘j. The
case a0 = 0 is similar. This shows that the primitive Christo�el word w is a Lyndon
factor of a characteristic sturmian word s. Lemma 4.4 helps us conclude that the set
L∩St of Lyndon factors of sturmian words is exactly the set CP of primitive Christo�el
words.
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