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Abstract

Data originating from biomedical experiments has provided machine learning researchers with an important source of motiva-

tion for developing and evaluating new algorithms. A new wave of algorithmic development has been initiated with the publication

of gene expression data derived from microarrays. Microarray data analysis is particularly challenging given the large number of

measurements (typically in the order of thousands) that are reported for relatively few samples (typically in the order of dozens).

Many data sets are now available on the web. It is important that machine learning researchers understand how data are obtained

and which assumptions are necessary in the analysis. Microarray data have the potential to cause significant impact in machine

learning research, not just as a rich and realistic source of cases for testing new algorithms, as has been the UCI machine learning

repository in the past decades, but also as a main motivation for their development. In this article, we briefly review the biology

underlying microarrays, the process of obtaining gene expression measurements, and the rationale behind the common types of

analyses involved in a microarray experiment. We outline the main challenges and reiterate critical considerations regarding the con-

struction of supervised learning models that use this type of data. The goal of this article is to familiarize machine learning research-

ers with data originated from gene expression microarrays.

� 2004 Elevier Inc. All rights reserved.
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1. Introduction

Understanding the inter-cellular and intra-cellular

processes underlying many diseases is essential for
improving the capacity to diagnose and treat patients.

Unraveling the complexity underlying these biological

processes is expected to provide novel predictive tools

to enable, for example, the sub-classification of diseases
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and eventual identification of proper therapeutic drug

targets. The potential for further characterization of reg-

ulatory networks and pathways controlling the cellular

homeostasis that are altered in diseases has been seen
as one of the main promises of global analyses of gene

expression profiles. Microarrays that measure the

expression of thousands of genes simultaneously have

been perceived by many as a first step towards this ambi-

tious goal [1–4].

Biomedical researchers are trying to discover rela-

tionships between genes and disease or developmental

stages, as well as relationships among genes. For
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example, an application of microarrays can be used for

discovery of novel biomarkers for cancer, which can

provide more accurate diagnosis and monitoring tools

for early detection of a particular subtype of disease or

assessment of effectiveness of a particular treatment pro-

tocol. Since microarray experiments have been growing
in terms of usage across laboratories, the amount of

data is rapidly growing, thus creating an environment

for new computational strategies.

1.1. A new type of data

The availability of public repositories of data that are

suitable for machine learning research is extremely
important to the field of biomedical informatics. The

UCI machine learning repository (http://www.ics.uci.

edu/~mlearn/MLRepository.html), which contains clini-

cal and biological datasets, has allowed a large number

of researchers to demonstrate the performance of new

statistical and machine learning algorithms in the past

two decades. New centralized (http://www.ncbi.nlm.

nih.gov/geo/) and decentralized sources of biomedical
data (mostly from supplemental data in journals or

researchers� web sites) have started to accumulate since

the advent of high-throughput measurement technolo-

gies such as gene expression microarrays. This new

and free source of data is receiving increasing attention

from researchers in the machine learning community,

and the number of publications is increasing at a rapid

pace. The distributed collection of data has an impor-
tant role as a rich source for testing new algorithms

for pattern recognition, and it also serves as an impor-

tant motivation for their development, as it presents

important challenges to the direct application of existing

algorithms. As in other domains, to properly employ

machine learning models to these data, it is imperative

that the researcher understands their potential and lim-

itations. The goal of this article is to review certain as-
pects of gene expression microarray measurements,

describe common analytical approaches, and familiarize

machine learning researchers with data generated by

these technologies.

1.2. Measuring gene expression

Until about a decade ago, the ability to identify and
analyze gene expression patterns has been technically

limited to a handful of genes per study. These traditional

methods include Northern blot and real-time PCR [5–8],

which, although fruitful and still in use for biological

validation experiments, have limitations in terms of

the number of gene expression patterns that can be ana-

lyzed in practice. This limitation has been overcome by

the development of several high-throughput technolo-
gies that allow more comprehensive coverage of genes,

although the measurement for each gene is usually less
accurate than that resulting from low-throughput tech-

nologies. Some of the methods include differential dis-

play [9], serial analysis of gene expression (SAGE)

[10], and massive parallel signature sequencing (MPSS)

[11]. Other high-throughput methods, though still in

their infancy, can measure protein expression levels:
protein microarrays [12], and mass spectrometric analy-

sis [13]. The goal of DNA microarray technologies is to

measure the level of expression for large sets of genes, in

a global fashion. Although less precise than traditional

low-throughput methods, the information gained from

measuring the expression of thousands of genes simulta-

neously is considered significant, particularly in explor-

atory phases of research. These technologies are based
on the measurement of messenger RNA (mRNA),

which is described in the context of its biological role

in Section 2. Some common issues in measuring gene

expression are pervasive across these techniques. For

example, it is not the case that the amount of mRNA

produced is always directly proportional to a known

function that is important in disease processes such as

translation into protein or regulation of another gene
[13]. However, the analyses of gene expression patterns

usually equate the amount of mRNA detected for a cer-

tain gene with its functional status.

There are two common microarray platforms for

investigating gene expression: complementary DNA

(cDNA) and oligonucleotide microarrays [14,15]. They

differ in experimental protocols, lengths of probes, num-

ber of tissues measured per array thus implying chal-
lenges in the integration and comparison of data sets

from different platforms [16]. Once issues with standard-

ization are resolved and new algorithms for their

analyses are developed, the range of applications of

microarrays will be potentially vast. They have been used

to study expression profiles of genes in areas of develop-

ment [17], the study of progression of a disease [18], sur-

vival [19], and response to various drug compounds [20].
2. The biology behind gene expression microarray mea-

surements

Genomics is a broad category describing the develop-

ment and application of genetic information that has the

potential to lead to qualitative changes in the way in
which biomedical research is conducted in terms of diag-

nostics, risk assessment, therapeutics, and health care

outcome. The post- era has brought with it the promise

of change in the way basic experiments are conducted,

enabling biomedical researchers to examine biological

systems more comprehensively. Since the inception of

the human genome project (HPG) about a decade ago,

the 3.2 billion base pairs that make up the genome have
been sequenced to near perfection. The human genome

is believed to have between 30,000 and 40,000 genes
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(i.e., ‘‘coding’’ regions of DNA that are important in the

assembly of proteins or regulation of other regions) [21],

each composed of hundreds to thousands of nucleotides

of four types: adenine (A), cytosine (C), thymine (T),

and guanine (G). The sequence information of our gen-
Fig. 1. Transcription of DNA to mRNA and translation of mRNA to prote

DNA sequences, through mRNA that carries the genetic information (trans

(translation).

Fig. 2. Overview of a microarray experiment: procedure used in gene express

extraction from a tissue biopsy and quality control of the samples is follow

acquisition, and analysis. Biological verification of the results can be perform
ome serves as the basis for development of DNA micro-

arrays. However, knowledge of the sequence of

nucleotides in a gene does not directly lead to knowledge

regarding the level of expression of that gene (i.e.,

whether the gene is up-, down-, or neutrally regulated)
in. Activities of the cell are controlled by instructions contained in the

cription) from the cell to the cytoplasm, where proteins are produced

ion profiling for target identification and biological validation. mRNA

ed by labeling of a probe(s), hybridization onto a microarray, data

ed using a variety of approaches, such as immunohistochemistry.
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in a particular environmental or developmental condi-

tion. Although all cells in the body possess the same

DNA, gene expression varies according to developmen-

tal stage, tissue, age, and environmental conditions. In

the study of health and disease, the goal of microarray

analysis is to characterize certain gene expression ‘‘pro-
files’’ in which the levels of expression of particular sets

of genes are highly associated.

Gene expression is an intermediate step before the

assembly of proteins from their building blocks, the ami-

no acids. When a gene is expressed, messenger RNA

(mRNA) is produced (‘‘transcribed’’) from the gene�s
DNA sequence, and it serves as a template to guide

the synthesis of a protein, allowing particular amino
acids to be systematically incorporated into a protein

(Fig. 1). The mRNA transcript is a complement of a cor-

responding part of the DNA coding region. The purpose

of a gene expression microarray is to measure how much

mRNA corresponding to a particular gene is present in

the cell(s) or tissue of interest.

In general, a microarray (or chip) is composed of

thousands of DNA sequences (probes), corresponding
to segments of genes that are placed in specific arrange-

ment, typically on a glass slide or a silicon microchip.

The DNA sequences can be short, as in the case of oli-

gonucleotide arrays, or long, as in the case of cDNA ar-

rays. The principle behind microarrays is that

complementary sequences will bind to each other under

the proper conditions, whereas non-complimentary

sequences will not bind. For example, if the DNA
sequence on an array is 10 nucleotides long, TACCGAA

CTG, the sequence ATGGCTTGAC will ‘‘hybridize’’ to

the probe (�A� nucleotides complement �T� and �C� nucle-
otides complement �G�). Probes are designed to be spe-

cific to a gene. On a microarray, many thousands of

spots are placed onto a grid, each spot containing the

DNA sequence from a particular gene. When a sample

of interest contains many copies of mRNA, many bind-
ings can take place, indicating a gene from which the

mRNA transcribed is highly expressed.

The steps involved in common gene expression

microarray studies are depicted in Fig. 2. The experi-

ments begin with the collection of samples of a certain

tissue (or cell) of interest, and the extraction of mRNA

from these samples. Since mRNA can be easily de-

graded, special attention is required for the collection,
preparation, and storage of these samples. A quality

control step is essential before conducting an experi-

ment, such as running the mRNA samples on an aga-

rose gel. Since mRNA is inherently unstable, cDNA,

which is more stable and easier to work with, is pro-

duced in the laboratory from the mRNA, and represents

an equivalent sequence of nucleotides.1 This cDNA is
1 cDNA derived from the specimens can be used for both cDNA

and oligonucleotide arrays.
labeled with a fluorescent dye and will hybridize (i.e.,

bind specifically with pre-determined sequences of nucle-

otides representative of a certain gene) to sequences that

are immobilized on the microarray. Quantifying the

fluorescence signal intensity allows one to assess the

amount of hybridization. Those sequences that do not
hybridize will be washed away leaving no signal. Images

from the fluorescent probes are read by a scanner and

translated into numerical values. The mRNA abun-

dance in a cell or tissue (or corresponding cDNA that

is made from it in the laboratory) is therefore a proxy

for the measure of gene expression: when certain genes

become ‘‘expressed,’’ many copies of mRNAs corre-

sponding to those genes are produced. These copies will
hybridize with microarray probes that are complemen-

tary (Fig. 3). The major assumption is that the abun-

dance of mRNA corresponding to a certain gene is

positively correlated with the expression of a certain

gene.
3. How to access the data?

Many data sets are publicly available via the internet,

additionally there are hundreds of life sciences databases

reported in the literature [22], which stresses the diffi-

culty to where and how to search information in a fast

and efficient manner [23]. Fig. 4 illustrates common for-

mats for publication of gene expression data from

microarrays. The published data usually constitute a
transformed version of the initial data set, and has usu-

ally been subject to pre-processing in the form of filter-

ing and normalization. Gene expression data derived

from microarrays can be obtained in web supplements

to journal publications or in public repositories. There

are a number of efforts well underway to create public

gene expression databases. Two leading contenders that

have become the de-facto public databases for arrays are
Array Express at the European Bioinformatics Institute

(http://www.ebi.ac.uk/arrayexpress/), and the NCBI�s
Gene Expression Omnibus GEO (http://www.ncbi.nlm.

nih.gov/geo/). Other important sources of microarray

data are the Stanford Microarray Database (http://

genome-www5.stanford.edu/), the DukeMicroarray Cen-

ter database (http://mgm.duke.edu/genome/dna_micro/

work/), and the Whitehead Institute Cancer Genom-
ics database (http://www.broad.mit.edu/cgi-bin/cancer/

datasets.cgi). In this context, it is important that this

information be archived in standardized fashion, which

is usually not the case for many journal supplements and

individual laboratory web sites. This effort towards stan-

dardization has been initiated by the Microarray Gene

Expression Data (MGED www.mged.org) Society,

which has taken the initiative to develop and enforce
guidelines, formats and tools for submission of micro-

array data [24]. This allows researchers to share com-
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Fig. 4. Illustration of different raw data formats that were generated using different extraction software after scanning, GenePix 4.0 for cDNAdata and

MAS 5.0 for Affymetrix GeneChips. In cDNA data (two-dye, two-sample experiment), there are different attributes that are used in the analyses;

intensity, background data for both dyes, and flags for bad spots. In Affymetrix data (one-dye, one sample), one can use the detection calls (absent,

marginal, and, present) and signal intensity for analyses.

Fig. 3. Microarrays contain thousands of probes that can vary in length (from 25 to over 1000bp) that are affixed onto a solid surface. Microarray

experiments can be broken down to two groups based on their labeling bias, one-dye or two-dye experiments. Essentially in two sample experiments,

two samples are labeled either with a Cy3-dye or a Cy5-dye, producing a ratio unit measurement, whereas in a single-dye experiment, an absolute unit

of measurement is generated.

Fig. 5. (A) Representative example of gene specific PCR for microarray validation. PCR using primers specific for gene pax6 or chx10 was performed

on the cDNA preparations from E15 single retinal progenitor cells (lanes 1, 3, 5, and 7) or controls (lanes 2, 4, 6, and 8). (B) Representative examples of

in situ hybridizations for microarray validation. E15 retinas were either sectioned (B) or dissociated (C) and hybridized with a probe for gene Fgf15.
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mon information and make valid comparisons among

experiments. MGED is an international organization

of scientists involved with gene expression profiles. Their

primary contributions are proposed standards for publi-

cation and data communication. MGED proposed min-

imum information about a microarray experiment
(MIAME) as a potential publication standard [25].

MAGE-ML is a proposed mark-up language for micro-

array experiments (http://www.mged.org/Workgroups/

MAGE/mage-ml.html).

A typical experiment has thousands of genes, few

samples, and minimal information other than gene

expression measurements. Some experiments link clini-

cal data to the information about gene expression in
the arrays, but this information is usually minimal

(e.g., survival days, age, and gender) and rarely pub-

lished, so it is not appropriate to attempt to utilize

the resulting models in the clinical setting. Not all avail-

able microarray data sets are appropriate for machine

learning research. Many experiments contain too few

arrays. Although each array contains information on

thousands of genes, it may not make sense to try to ex-
tract generalizable patterns from this type of experi-

ments. It is important to emphasize that, for most

machine learning applications, the unit of analysis is

not the gene, but rather the array (tissue sample). Just

as it does not make sense to establish phenotypic pat-

terns of disease (e.g., define the profile of laboratory

tests that is related to diabetes) by analyzing the results

for one or two patients with disease and a couple of
healthy subjects, it does not make sense to establish

gene profiles by examining a few arrays. The sample

size has to be sufficiently large for the construction of

generalizable models. Since accruing subjects or obtain-

ing specimens and performing measurements in micro-

arrays is still costly, there is an important limitation

in terms of which data sets can be effectively used for

machine learning research.
Table 1 lists some data sets that have been previously

used in machine learning experiments. The extent to

which patterns can be learned and generalized from

these data sets is variable. The list contains data from

experiments with a relatively large number of cases that

can be used by machine learning researchers who would

like to get familiar with this type of data. Considerable
Table 1

List of some microarray data sets used in machine learning research

Specimen No. of samples No. of ge

Adenocarcinomas 279 9376 com

Breast cancer 117 �25,000

Drosophila melanogaster 66 4028

Prostate cancer 52 �12,600

CNS embryonal tumors 99 6817

Primary tumors 144 16,063

Small round blue cell tumors 63 6567

Lung carcinomas 186 12,600
pre-processing of these data sets is necessary before they

can be used for machine learning research, although pre-

processed versions of these data may often be obtained

upon request.
4. Common modeling techniques and computational

challenges

The advantage of DNA microarrays is that they

allow the study of multiple transcriptional events in a

single chip, which corresponds to one experiment.

Therefore, the values for thousands of variables (genes)

can be simultaneously measured for a particular biolog-
ical sample. The cost of processing each sample,

however, is relatively high, so there are few cases (bio-

logical samples) per study. Significant steps towards

increasing the reliability of measurements have been ta-

ken in the past few years. The main challenge in micro-

array studies resides in proper study design and efficient

and realistic interpretation of the information. There are

several issues that need to be considered for a study,
such as: (i) the type of DNA microarray platform

selected for the experiment (each having different

protocols, sensitivities, and specificities); (ii) mRNA

preparation (such as type of specimen, availability, het-

erogeneity); and (iii) data analysis (pre-processing, unsu-

pervised, and supervised learning). Since each step of a

microarray experiment is subject to different sources of

variability, there is large variance in microarray mea-
surements; it is common practice to have duplicate or

triplicate arrays for the same sample [26]. A major hur-

dle is the extraction of meaningful information from the

large amount of expression data generated from micro-

array studies (large m, small n problem, where m is the

number of variables or gene measurements, and n is

the number of observations from which those measure-

ments are obtained). Other issues that should not be
overlooked when analyzing microarray data are outliers

and missing values.

4.1. Pre-processing

In a typical microarray analysis, the initial step is pre-

processing of the data, which includes filtering and
nes Platform Author

mon Affymetrix, cDNA Ramaswamy et al. [63]

cDNA van�t Veer et al. [64]
cDNA Arbeitman et al. [65]

Affymetrix Singh et al. [66]

Affymetrix Pomeroy et al. [67]

Affymetrix Ramaswamy et al. [35]

cDNA Khan et al. [3]

Affymetrix Bhattacharjee et al. [21]
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normalization. Filtering is an approach to reduce the

number of genes for further data analysis. Measure-

ments of genes that represent many copies per cell (high

abundance) tend to be more reliable and more consistent

than measurements that represent genes with low abun-

dance regardless of the microarray technology utilized.
A natural explanation may be that there is inherent

noise in the hybridization and/or signal detection pro-

cesses, which for weak signals of low-abundant tran-

scripts results in lower signal to noise ratio compared

to the stronger signals of high-abundant transcripts.

This effect is seen in one-dye (one sample) platforms,

but in two-dye platforms, from which ratios are calcu-

lated, these effects are amplified and the ratio estimates
are confounded by uncertainty of two numbers rather

than by only one. As a result, it has become common

practice to �filter� out weak signals, for which it is as-

sumed that the signal-to-noise ratio is too low for the

data to be useful. This filtering process includes the iden-

tification and removal of array elements prior to further

analyses. It is important to investigate the amount of

true signal that is being filtered out in this filtering pro-
cess. Future research on microarray analysis should for-

mally address this issue. Some important transcription

factors exhibit low but differentiable levels of expression

under different circumstances. This type of information

may be lost in the filtering process.

After filtering out unreliable observations, many

sources of systematic and experimental variation that

confound the observed gene expression levels still re-
main in the microarray experiments. Normalization is

a method to adjust the means or variances of the varia-

tion in the measured expression intensities. This im-

proves the monitoring of biological differences and

allows the comparison of expression levels across multi-

ple experiments. A review of normalization procedures

is beyond the scope of this article. Readers should refer

to [21,27–29] for details.

4.2. Statistical and machine learning models

In addition to coding well-known algorithms for data

pre-processing and evaluation, new algorithms and ap-

proaches for clustering, classification, and evaluation

are needed. Various mathematical and statistical tools

have been developed to cluster genes by integrating
them with biological pathways or to perform class pre-

dictions that identify expression patterns that correlate

with phenotypic characteristics. The development of

new machine learning models to extract knowledge

(such as relationships between genes and disease and

among genes themselves) [30] from large data sets is very

important in this stage of genomic research. There is a

need to expand the set of models available to research-
ers, allow them to select the adequate models for their

data, investigate new ways to determine the importance
of individual variables and individual observations, and

make it possible to combine models.

Differential expression of genes under various condi-

tions or time points is usually the focus of the analysis.

This type of analysis can be done using one gene at a

time (univariate) or several genes at a time (multivari-
ate). Univariate analysis of gene expression data sets is

sometimes useful and has been utilized in several studies.

Examples of univariate analyses include the inspection

of fold-differences, calculation of p values using methods

analogous to t tests, and ANOVA [31–33]. As our

understanding of biology increases, it becomes evident

that there are many instances in which a combination

of genes, rather than one gene in isolation, may contrib-
ute to the biological process under investigation. There-

fore, it is critical that we analyze gene expression data

using a multivariate approach, even though univariate

analysis may still play a role in filtering genes in the

pre-processing phase [34].

Unsupervised learning is done in order to investigate

which genes behave in a similar manner or which genes

exhibit high covariance. This was a very popular tech-
nique when the number of cases studied was small (for

example, when tissues at a certain developmental stage

or condition were pooled together to be analyzed by a

single array). There are several examples in the literature

on the use of hierarchical clustering, self-organizing

maps, multidimensional scaling, and several clustering

algorithms in gene expression data [35–38]. This explor-

atory analysis technique is a good first step towards
identifying clusters of related genes, but its use for iden-

tifying disease progression markers or clustering cases

into categories of interest is limited. Unsupervised tech-

niques are in many cases inappropriately utilized as a

replacement to supervised techniques (e.g., in studies

in which researchers want to classify cases into known

categories such as benign versus malignant). In this con-

text, the analysis cannot guarantee that the clusters of
interest will result from the data, although this may in-

deed happen. It is worth noticing that distances and

other non-weighted measures of association between ob-

jects can be misleading in the task of forming clusters of

interest. This is especially true when the sample size is

small.

As larger experiments involving microarrays are

being published, there is an increasing number of publi-
cations reporting the analysis of microarray data using

supervised classification algorithms, such as support

vector machines [39], artificial neural networks [3],

regression [40], and various types of rule-induction algo-

rithms [41]. Tools to support classification algorithms

that work with a high ratio of variables/cases are still

rare. The problem with using conventional statistical

multivariate techniques, such as discriminant analysis
and regression, is that they do not work when the num-

ber of variables exceeds the number of cases, which so
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far has been the case in all microarray experiments.

Therefore, techniques for reducing the number of vari-

ables that are directly used in the models have been uti-

lized. Some of these, such as principal components

analysis, are unsupervised in nature, and therefore do

not guarantee that the reduction is done in a way that
optimizes the predictive model. Furthermore, they

merely ‘‘compress’’ the variables and the resulting com-

ponents do not have any particular meaning. Utilizing

partial least squares partially resolves the first issue (as

it is a supervised variable ‘‘compression’’ technique),

but still does not allow direct identification of important

variables (genes), which is the goal of many analyses. In

order to do this, variable selection algorithms are
needed.

Identifying which genes contribute the most for the

estimate in a particular predictive model can be done

via variable selection methods. A number of variable

selection techniques exist and some have been used in

the bioinformatics literature. Some algorithms, such as

forward stepwise selection of variables, utilize a gradient

descent approach, with or without a stochastic compo-
nent, making them more or less susceptible for stopping

after reaching non-optimal solutions (i.e., local minima).

Some authors indicate that this greedy approach can

perform as well as more complex ones in a number of

data sets [42]. Other algorithms, such as those based

on evolutionary techniques (such as genetic algorithms)

can rarely be used without a significant pre-selection of

variables, given time constraints. Discovering new para-
digms for variable selection in predictive models is crit-

ical for defining few genetic markers for disease

progression in models derived from microarray data.

Hence the increasing number of research articles that

deal with variable selection for microarray data analysis

[31].

Variable selection techniques can be divided into

those that perform the selection using a purely univari-
ate approach, and those that are multivariate. Purely

univariate techniques have been used in the bioinformat-

ics literature [43,44], but multivariate techniques are just

beginning to be investigated. For example, the Good-

man–Kruskal association index was used in the context

of partitions to select biomarkers for malignancy in [45].

New methods for variable selection are needed. Pub-

lished work in this area includes variations of genetic
algorithms to promote en bloc selection of variables,

which were shown to result in variable selections that

outperform classic sequential forward, backward, or

stepwise selection procedures [46]. In microarray analy-

sis, data sets consist of thousands of variables, and often

no more than dozens of cases. Related to the variable

selection problem is that of overfitting, which has been

investigated in the context of remedial strategies such
as bootstrapping [47–49], cross-validation (including

jackknife) [50,51], shrinkage, and other methods [52].
Some machine learning researchers overlook the

importance of conducting proper evaluation of models,

especially the issue of overfitting. The ‘‘curse of dimen-

sionality’’ is well illustrated in microarray data, and

researchers who are testing new algorithms may get a

false impression that their models will generalize well
to new data just because they can perfectly fit the train-

ing data.

As in similar problems, to attenuate the problem of

overfitting, without increasing the cost of the experi-

ment, two approaches can be potentially useful:

1. Resampling of training cases, such that test cases are

not used for building a model. No new information is
added with this strategy, but a better assessment of

the generalizability of the model is achieved this

way. Techniques such as cross-validation and boot-

strap can be used and are discussed in [53]. Given that

the number of cases in a particular category may be

small, it is advisable to create cross-validation parti-

tions by randomly sampling cases from each category

in a way that the proportion of cases remains the
same in each partition. A large number of bootstrap

samples and related models can be generated by ran-

domly sampling the arrays with replacement. Non-

sampled cases can be used for testing of each model.

2. Decrease in the number of variables. Variable selec-

tion methods are used for this purpose, as discussed

before.

A topic of ultimate importance for the mathematical

validation of results is the choice of evaluation indices.

Unsupervised learning models produce results that are

difficult to interpret and evaluate objectively. For clus-

tering models, the most acceptable strategy is to devel-

op clusters according to several different objective

functions (e.g., maximization of the inter-cluster

Euclidean distances over intra-cluster distances) and
evaluate the resulting clusters according to [1] measures

of cluster concordance, and [2] known properties of the

objects (e.g., functional classification) [54,55]. For clas-

sification problems, regions under the ROC curve

[56,57] and standard confidence intervals can be used

to assess discrimination ability of the models even in

multi-categorical cases [58]. When new supervised

learning algorithms are being tested, it is important
to compare their results with those deriving from estab-

lished methodologies such as regression. When different

models are compared on the same data, adjustments to

the confidence interval need to be made to account for

the correlation of results. This results in narrower con-

fidence intervals and improved potential to detect dif-

ferences in performance. Calculating confidence

intervals without adjusting for correlations is more
conservative and hence less likely to demonstrate

differences.
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5. Biological validation of results

After a comprehensive data analysis, the list or clus-

ter of genes that have been identified as linked to a par-

ticular condition or developmental process requires

further investigation to determine its biological signifi-
cance. It is imperative for biomedical investigators to as-

sess the false-positive rate and conduct independent

biological validations to confirm the results generated

computationally. The most commonly used techniques

to verify gene expression data include Northern blots

and PCR-based approaches (both quantitative and

semi-quantitative) (Fig. 5A). The advantages of these

methods are twofold. First, these methods can be per-
formed quantitatively. Secondly, Northern blot and

PCR can be used to screen through a large number of

candidates relatively rapidly. Other methods of valida-

tion include in situ hybridization (Fig. 5B) and immuno-

histochemistry. These approaches offer the extra benefit

of showing exactly where in a particular tissue the

candidate genes are expressed [59,60]. However, tradi-

tionally these methods are neither quantitative nor
high-throughput. Recently, however, several studies

have demonstrated that in situ hybridizations can be

used to screen a large number of candidate genes [17]

and, in some cases, this can be performed in a quantita-

tive manner (Fig. 5C) [17,61].

A candidate gene-by-gene validation approach,

which involves experiments with a few potentially

important genes, is a viable and successful method.
This approach is not appropriate to provide a more

comprehensive understanding of the larger process of

biological networks and pathways. Often, the same sig-

naling molecules or transcription factors are commonly

expressed in multiple tissues or stages. Studies suggest

that the same gene can play distinct developmental

roles in these circumstances, being significant in one

tissue but unessential or redundant in another. More-
over, the function of any gene is often context depen-

dent. For example, the ability of a signaling molecule

to activate a specific differentiation pathway largely de-

pends on the target cell�s competence to receive and

interpret the signal and its ability to utilize an existing

signal transduction system that, in the presence of

appropriate co-factors and nuclear transport assem-

blage, will activate or down-regulate downstream
genes. In short, the functional importance of any gene

depends on the presence or absence of products of

many other genes. If, as some studies suggest, binary

and more complex combinations of signaling molecules

are needed to control certain biological processes, then

this problem is magnified many-fold. Here again, a lar-

ger scale genomic approach coupled with sophisticated

analyses could be potentially useful for elucidating the
molecular network behind particular biological phe-

nomena. This can be illustrated by using tools that
integrate both microarray results and resources from

private and public databases to generated networks/

pathways that can assist our understanding in how

these genes and/or proteins interact with each other

as seen in [62].
6. Conclusion

In conclusion, new sources of data such as those de-

rived from gene expression microarrays offer new chal-

lenges for the development and evaluation of statistical

and machine learning algorithms. The large number of

variables per observation can give researchers a false
impression of having ‘‘lots of data’’ that are useful for

machine learning research. In fact, most of the current

data sets contain few observations, hence the main chal-

lenge is to select a small set of variables that are represen-

tative of the data, and build models that are potentially

generalizable to a new set of cases. Careful internal and

biological validation allows quantitative assessment of

the potential for generalization of the machine learning
models derived from the data. It is important to note that

generalization will depend on a series of other issues as

well, such as: microarray platform, reference sample,

manipulation of the samples, normalization procedures,

and intrinsic noise in the measurements.
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