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Abstract

Wepresent simple and efficient algorithms for computing the gcd and cubic residuosity in the ring
of EisensteirintegersZ[¢], i.e. the integes extended witly, a complex pinitive third root of unity.
The algorithms are similar and may be seen as gégatians of the binaryriteger gcd and derived
Jacobi symbol algorithms. Our algorithms take tidé?) for n-bit input. For the cubic residuosity
problem this is an improvement from the known results based on the Euclidean algorithm, and taking
time O(n - M(n)), whereM (n) denoesthe complexity of multiplyingn-bit integers. For the gcd
problem our algorithm is simpler and faster than an earlier algorithm of compléxitg). Thenew
algoiithms have applications in practical primality tests and the implementation of cryptographic
protocols.
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1. Introduction

The Eisenstein integerg[¢] = {a+ bz | a, b € Z}, are the ing of integes extended
with a complex primitive third root of unity, i.e; is root of x2 + x + 1. Since the ring
Z[¢] is aunique factorisation domain, a greatest common divisor (gcd) of two numbers
is well defined (up to multilication by a unit). The gcd of two numbers may be found
using the classic Euclidean algorithm, sin€g;] is a Euclidean domain, i.e. there is a
normN(-) : Z[¢]\ {0} — N such that fora, b € Z[¢] \ {0} there isg, r € Z[¢] suchthat
a=gb+r withr =0orN(r) < N(b).

When a gd algorithm is directly based on the Euclidean property, it requires a
subroutine for division with remainder. For integers there is a very efficient alternative
in the form of thebinary gcd, that only requires addition/subtraction and division by two;
seeStein(1967). A corresponding Jacobi symbol algorithm has been analysed as well by
Shallit and Sorensof1993.

It turns out that there are natural germations of these binary algorithms over the
integers to algorithms over the Eisensteitegersfor computing the gcd and the cubic
residuosity symbol. The role of 2 is taken by the number 4, which is a pime of norm
3inZ[Z].

We pregent and analyse these new algorithms. It turns out that they both have
bit complexity O(n?), which is an improvement over the earlier algorithms given by
Scheidler and Williamg1995, Williams (1986 and Williams and Holte(1977). Their
algorithms have complexityO(nM(n)), where M(n) is the complexity of integer
multiplication and the best upper bound bhn) is O(nlognloglogn); seeSthénhage
and Strasser(1971). Considering the gcd problem alonKaltofen and Rolletschek
(1989 already gave an algorithm of complexi€(n?). However, theimlgorithm is more
complicated and a larger constant is hidden under the big Oh notation.

1.1. Related work

Schonhagg€1977) presented thesymptotically fastest algorithm for integer gcd. It takes
time O(nlognloglogn). There is a derigd algorithm for the Jacobi symbol of complexity
O(n(logn)?loglogn). For practical input sizes the most efficient algorithms seem to be
variants ofthe binary gcd and derived Jacobi symbol algorithms;Steadlit and Sorenson
(1993 andMeyer Eikenberry and Sorens¢1998.

If wy is a complex primitiventh root of unity, saywn, = 7/ then he rngZ[wn] is
known to be norm-Euclidean for only finitely manyand the smallest unresolved case is
n = 17; sed_enstra Jr(1979-198) Lemmermeye(1995.

Weilert (2000gb) have gerralised both the “binary” and the asymptotically fast gcd
algorithms toZ[w4] = Z[i], the ring of Gaussian integers. For the latter c¥galert
(2002 hasalso described a derived algorithm for computing the quartic residue symbol,
and in all cases the complexity is identical to the complexity of the corresponding algorithm
overZ. Recently,Collins (2002 desribed an alternative algorithm of complexi®(n?)
for computing the gcd over the ring of Gaussian integers.

Williams (1986 andWilliams and Holtg(1977) both describe algorithms for computing
gcd and cubic residue symbols fijws], the Eis@stén integers.Scheidler and Williams
(1999 de<ribe algorithms for computing gcd amdh power resiue symbol inZ[wn]
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for n = 3,5,7. Their algorithms all have complexit®(nM(n)) for M(n), being the
complexity of integer multiplicatiorKaltofen and Rolletschefd 989 gave an ajorithm of
complexity O(n?) for computing the ged in any fixed quadratic number ring; in particular
their algorithm also applies th¢ rings of Gaussian and Eisenstein integers. However, their
algorithm is more complicated than the “binary” algorithms presented by Weilert and in
this paper.

Weilert (20009 suggests that his binary (i.€L+i)-ary) gcd algorithm for the Gaussian
integers may generalise to other norm-kdean ringsof algebraic integers. Our gcd
algorithm for the Eisenstein integers was obtained independently, but it may nevertheless
be seen as a confirmation of this suggestion in a specific case. Recently, further results
have appearedAgarwal andFrandsen(2004 have geeralised the binary approach to
additional imaginary quadratiargs, one of which is non-Euclideafikstrom (20043 has
generalised the binary approach to computing both gcd and octic residue symbjalgin

Weilert gives an algorithm for the quartic relsie symbol that is derived from the asymp-
totically fast gcd algorithm oveZ[i]. For practical purposes, however, it would be more
interesting to have a version derived from the “binary” approach. In the last section of this
paper, we sketch how one can obtain such an algorithm. Independ#ikiggrom (2004h
has described algorithms for cubic and quartic residuosity based on the “binary” approach.

1.2. Applications

Our agorithms may be used for the efficient computation of cubic residuosity in rings
other thanZ[¢] when using a gppropriate homomorphism. As an example, consider the
finite field GF (p) for prime p = 1mod3. Anumberz € {1, ..., p— 1} is a abic residue
precisely wherz(P~D/3 = 1 modp, implying that (non)residuosity may be decided by a
(slow) modular exponentiation. However, it is possible to decide cubic residuosity much
faster proviegd we carry out some preprocessing depending onlg.drhe preprocessing
takestime proportional to a modular exponentiation, so our algorithm would only be useful
if pstays fixed in several residuosity computations. The preprocessing consists in factoring
p overZ[¢], i.e. findhg a primer € Z[¢] suchthatp = = 7. A suitabler may be found
asm = gcd(p,r — ¢), wherer € Z is constructed as a solution to the quadratic equation
x2 4 x 4+ 1 = 0mod p. Following this preprocessing, cubic residuosity of arig decided
using thatz(P~1/3 = 1modp if and only if [z/7] = 1, where[-/-] denotes the cubic
residuosity symbol.

When the order of the multiplicative rgup in question is unknown, modular
exponentiation cannot be used, but it may still be possible to identify some nonresidues
by computing residue symbols. In particular, the primality tesbafmgéard andFrandsen
(20031 uses our algorithms for finding cubic nonresidues in a more general ring.

Computation of gcd and cubic residuosity is also used for the implementation of
cryptosystems bgcheidler and William$1995 andWilliams (1986).

2. Preliminary factsabout Z[¢]

Z[¢]is the ring of integers extended with a primitive third root of urgitfcomplex root
of 22 4 z+ 1). We will be using the following definitions and facts; $esland and Rosen
(1990.
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Let - and N(-) denote complex conjugation and complex norf(x) = o«aa,
respectively. Note that = ¢2 = ¢ > andN(a + b¢) = a2 + b? — ab.

A unitin Z[¢] is an element of norm 1. There are six unitift ]: +1, £¢, i;z. Two
elementsy, B € Z[¢] are said to be associates if there exists aaniichthate = ¢8.

A prime r in Z[¢] is a non-unit such that for any, 8 € Z[¢], if 7|af, thenz|a Or
|B.

1—¢isaprimeinZ[¢]andN(1 — ¢) = 3. A primary number has the form 38 for
somep € Z[¢]. If « € Z[¢] is not divisible by 1— ¢ thenea is associated with a primary
number, andN(¢) = 1 (mod 3. The definition of primary seems to vary in that some
authors such asemmermeye(2000 andlIreland and Rose(1990 require the éternate
forms+1+ 38 and—1 + 38, respectively. However, our definition is more convenientin
the presentontext.

The cubic residuosity symb@l/-1 : Z[¢] x (Z[c]1— (1 —)Z[¢]) — {0,1,¢,¢ Y is
defined as follows:

For primern € Z[¢] wherer is not associated with 4 ¢:

[a/7] = (@ 3 )modr,

where thenotation “ .. modx” refers to the unique congruence value §N™-1/3
among the element®, 1, ¢, ¢~ 1}.
Fornumberg = ]_[it:1 nim‘ € Z[¢] whereg is not divisible by 1— ¢:

t

[a/B] = [ Jle/mil™.

i=1
Note that the definition implies

[a/e] = 1 foraunite,
[e/B] = O when gede, B) # 1,
[a/B] = [«'/B]l, whena =’ (MOdp),
lee'/B] = [a/B]-[/B],
[-1/8] = 1.
In addition, we will need the following laws satisfied by the cubic residuosity symbol; see

Lemmermeye(2000.
The cubic reciprocity law:

[@/B] = [B/«], whena andpg are both primary.
The complementary laws (for primag/= 1 4+ 3(m+ n¢), wherem, n € Z):
[1-¢/Bl = ¢™
[c/B] = ¢~ (MM,
3. Computingthegedin Z[¢]

It turns out thathe well-known binary integer gcdgdrithm has a natural generalisation
to a gcd algorithm for the Eisenstein integers. The generalised algorithm is best understood
by relating it to the binary algorithm in a nonstandard version. The authors are not aware
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of any description of the latter in the literature. For the standard versioBaele and
Shallit (1996).

A slightly nonstandard version of the binary gcd is the following. Every integer can
be represented as-1)' - 21 - (4m + 1), wherei € {0,1}, j > 0 andm e Z. Without
loss of generality, we may therefore assume that the numbers in question are of the form
(4m + 1). Oneiteration consists in replacing the numerically larger of the two numbers
by their difference. If it is nonzero then the dividing 2-power (at ledpn2ay be renoved
without changing the gcd. If necessarg tiesulting odd number is multiplied witk 1 to
get a number of the formm + 1 and we aregady for the next iteration. It is fairly obvious
that the product of the numeric values of the two numbers decreases by a factor at least 2
in each step until the gcd is found, and hence the gcd of two nurabbrsan be computed
in time (log? |ab)).

To make the analogue, we recall that any elemenZff] that is notdivisible by
1 — ¢ is associated with a (unique) primanymber, i.e. a number of the form- 3w.
This implies that any element iA[¢] \ {0} has a (unique) representation of the form
(=) -(1—¢)l - (143x) where 0< i < 6,0< j anda € Z[Z]. In addtion, the difference
of two primary numbers is divisible byl — ¢)2, since 3= —¢2(1 — ¢)2. Now a gcd
algorithm for the Eisenstein integers may be formulated as an analogue to the binary integer
gcd algorithm. We may assume without losggeherality that the two input numbers are
primary. Replace the (normvé} larger of the two numbers with their difference. If it is
nonzero, we may divide out any powers df — ¢) that dvide the difference (at least
(1—¢)?) and convert the remaining factor to primary form by multiplying with a unit. We
have again two primary numbers and the process may be continued. In each step we are
required to identify the (normwise) larger of two numbers. Unfortunately it would be too
costly to compute the relevant norm, but it suffices to choose the large number based on an
approximation that we can afford to compute. By a slightly nontrivial argument one may
prove that the product of the norms of the two numbers decreases by a factor at least 2 in
each step until the ged is found, and hence the gcd of two numb@rsan be computed
in time O(log® N(«B)).

Algorithm 1 describes the details including a start-up to bring the two numbers into
primary form.

Algorithm 1. Compute gcd inZ[¢]
Require: o, 8 € Z[¢]\ {0}
Ensure: g = gcde, B) . _
1: Let primaryy,8 € Z[¢] be defined bya = (=)'t - (1 —-¢)t .y andB =
(=02 A-p)k2.s.
s g« (1— £)mintja. ja}
: Rephceq, g with y, §.
: whilea # B do
LOOP INVARIANT: «, 8 are primary
Let primaryy be definedby — g = (=)' - (1= ¢) -y
Rephce “approximately” larger af, g with y.

end while

g« g-a
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Theorem 1. Algorithm 1 takes time O(log? N(af)) to compute the gcd of «, B, or
formulated alternatively, the algorithm has bit complexity O(n?).

Proof. Let us assume that a numhee a + b¢ € Z[¢] is represented by the integer pair
(a, b). Observe tat sinceN(a) = a+b?—ab, we havehat log|a|+log|b| < log N(«a) <
2(loglal + log|b| + 1) for |a|, |b] > 1, i.e. the logarithm of the norm is proportional to the
number of bits in the representation of a number.

We may do addition, subtraction on general numbers and multiplication by units in
linear time. Sincel — ¢)~t = (2 + ¢)/3, division by (and check for divisibility by)

(1 — ¢) may also be done in linear time.

Clearly, the start-up part of the algorithm that brings the two numbers into primary form
can be done in tim®(log® N(«8)). Hence, we need only worry about the while loop.

We want to prove that the norm of the numbers decrease for each iteration. The
challenge is to see that forming the number g does not increase the norm too much.
In fact, by elementary properties of the complex noMig — ) < 4-maxN(a), N(8)}.
Hence, for they computed in the loop of the algorithm, we déty) = 37! N(a — 8) <
3724.maxN(«), N(B)}. In each iterationy ideally replaces the one efandg with the
larger norm. However, we cannot afford to actually compute the norms to find out which
one is the larger. Fortunately, hyemma 2 it is passible in linear tine to conpute an
approximate norm that may be slightly smaller than the exact norm, namely up to a factor
9/8. Wheny replaces the one of andg with the large approximate norm, we know that
N(«aB) decreases by a factor at leagt9 8/9 = 2 in each iteration, i.e. the total number
of iterations isO(log N(aB)).

Each loop iteration takes tim@(log N(aB)) except possibly for finding the exponent
of (1 — ¢) that dvidese — 8. Assume thafl — ¢)' is the maximal power ofl — ¢) that
dividesa— g in theith iteration. Then the combined time complexity of all loop iterations is
O((3; ti) log N(eB)). We alscknow that the norm decreases by a factor of at lelast 2
intheith iteration, i.e]J; (31-2.2) < N(«pB). Sincethere ae onlyO(log N(«p)) iterations
it follows that[ ], 3¢ < (9/2)C0IN@A) N(aB) and henc&; ti = O(logN(ap)). O

Lemma 2. Givena = a+bt € Z[¢]itis possibleto compute an approximate norm N («)
such that

gNw) < N(@) = N(@)
inlinear time, i.e.intime O(log N(«)).

Proof. Note that

(@—b)*+a%+b?

N@+bg) = >

Givene > 0, we letd denote some approximation to integesatisfying thail — €)|d| <

d < |d|. Note hat

@—b)®+ a2+ b?
2

(1—€)°N@+bheg) < < N(a+ b).
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Since we maycomputea — b in linear time it suffices to ampute approximations and
square them in linear time for sorae< 1/18. Givend in the usual binaryepresentation,
we taked to be|d| with all but the six most significant bits replaced with zeros, in which
case

(1—3%) |d| <d < |d|

and we can compui@ fromd in linear time. [

4. Computing cubic residuosity in Z[¢]

Just as the usual integer gcd algorithms may be used for constructing algorithms for the
Jacobi symbol, so our earlier strategy for computing the gcd[in] can be used as the
basis for an algorithm for computing the cubic residuosity symbol.

In each iteration we will assume the two numberg to be primary withN (o) >
N(8). We wiite their differance in the formy — g = (—¢)' (1 — ¢)ly, for primaryy. By
the complementary laws of the cubic residuosity symbey,8] = ¢™ —(MtMi[y, /8] when
B =1+3m+n). If N(y) < N(B), we use tle reciprocity law to swap and before
being ready for a new iteration. The algorithm stops when the two primary numbers are
identical. If the identical value (the gcd) is not 1 then the residuosity symbol evaluates to 0.

Algorithm 2 describes the entire procedure including a start-up to ensure that the
numbers are primary.

Algorithm 2. Compute cubic residuosity B[]
Require: «, B € Z[¢]\ {0}, andg is not divisible by(1 — ¢)
Ensure: ¢ = [«o/pB] A A .
1: Let primaryy, § € Z[¢] be defined by = (=¢)* - (1 —¢)t -y andB = (—¢)'2 - 6.

2: Letm, n € Z be defined by =1+ 3m+ 3n¢.

3t < mji— (M+n)igmod 3

4. Rephcec, 8 by y, §.

5. If N(a) < N(B) then interchange, 8.

6: whilea # g do

7. LOOP INVARIANT: «, 8 are primary andN(«) > N(B)
8. Letprimaryy be definedby — 8= (=¢) - (1—2¢)) -y
9: Letm,n e Z be defined by8 =1+ 3m+ 3n¢.

10 t <« t+mj—(m+n)imod3

11:  Rephcew with y.

12 If N(a) < N(B) then interchange, 8.

13: end while

14: If o # 1 thenc < 0 elsec « ¢!

Theorem 3. Algorithm 2 takes time O(log? N(«g)) to compute [«/B], or formulated
alternatively, the algorithm has bit complexity O(n?).
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Proof. The complexity analysis from the gcd algorithm carries over without essential
changes. [

5. Computing gcd and quartic residuosity in thering of Gaussian integers

We may construct fast algorithms for gcd and quatrtic residuosity in the ring of Gaussian
integersZ[i] = {a+bi | a, b € Z}, in acompletely analogous way to the algorithms over
the Bsenstein integers. In the case of the gcd, this was essentially dofveileyt (20003.
However, the case ofie quartic residue symbol may be nflependent interest since such
an algorithm is likely to be more efficient for practical input values than the asymptotically
ultrafast &gorithm by Weilert (2002.

Here is a sketch of the necessary facts;lsesmmermeye(2000. There are four units
inZ[i]: +£1, £i.1+i isaprimeinZ[i]andN(1+i) = 2. A primary number has the form
1+ (2+ 2i)p forsomep € Z[i]. If « € Z[i] is not divisible by 1+ i then« is associated
with a primay number.

In particular, any element iZ[i] \ {0} has a (unique) representation on the form
il (A+DK.- 1+ @2+ 2)a) where 0< j < 4,0 < kanda € Z[i]. In addtion, the
difference of two primary numbers is divisible bi+i)3, since(2+2i) = —i (1+i)2. This
is the basis for obtaing an algorithm for computing the gcd over the Gaussian integers
analogous taAlgorithm 1 This new afjorithm also has bit complexit®(n?) as one may
prove when using thatl ((1 +i)%) =8andN(x — B) < 4-max{N(x), N(8)}.

For computing quartic residuosity, we needetHollowing additional facts; see
Lemmermeyei(2000. If & is a prime inZ[i] andx is not associated with % i then
N (@) = 1(mod 4, and thequartic residue symbél/-] : Z[i] x (Z[i] — QA +i)Z[i]) —

{0,1, —1,i, —i} is defined as follows:
For primern € Z[i] wherer is not associated with 4 i:

[a/7] = (a4~ ) modr.

Fornumberg = ]—[tj :171?” € Z[i] whereg is not divisible by 1+ i:

t
la/B] = [ [lor/mj1™.
j=1

The quartic reciprocity law and complementary laws doland g primary with 8 =
1+ 2+ 2)(m+ni)andm,n € Z are

N@-1 N(§)-1
4

[w/B] = [B/al-(=1)" 4 ,
[1+i/] = i—"-(+m?
li/g] = "™

This is the basis for obtaining an algorithm for computing quartic residuosity analogous to
Algorithm 2 This new agjorithm also has bit complexit®(n?).
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