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Abstract

Wepresent simple and efficient algorithms for computing the gcd and cubic residuosity in the ring
of Eisensteinintegers,Z[ζ ], i.e. the integers extended withζ , a complex primitive third root of unity.
The algorithms are similar and may be seen as generalisations of the binary integer gcd and derived
Jacobi symbol algorithms. Our algorithms take timeO(n2) for n-bit input. For the cubic residuosity
problem this is an improvement from the known results based on the Euclidean algorithm, and taking
time O(n · M(n)), whereM(n) denotes the complexity of multiplyingn-bit integers. For the gcd
problem our algorithm is simpler and faster than an earlier algorithm of complexityO(n2). Thenew
algorithms have applications in practical primality tests and the implementation of cryptographic
protocols.
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1. Introduction

The Eisenstein integers,Z[ζ ] = {a + bζ | a, b ∈ Z}, are the ring of integers extended
with a complex primitive third root of unity, i.e.ζ is root of x2 + x + 1. Since the ring
Z[ζ ] is a unique factorisation domain, a greatest common divisor (gcd) of two numbers
is well defined (up to multiplication by a unit). The gcd of two numbers may be found
using the classic Euclidean algorithm, sinceZ[ζ ] is a Euclidean domain, i.e. there is a
norm N(·) : Z[ζ ] \ {0} �→ N such that for a, b ∈ Z[ζ ] \ {0} there isq, r ∈ Z[ζ ] suchthat
a = qb + r with r = 0 or N(r) < N(b).

When a gcd algorithm is directly based on the Euclidean property, it requires a
subroutine for division with remainder. For integers there is a very efficient alternative
in the form of thebinary gcd, that only requires addition/subtraction and division by two;
seeStein(1967). A corresponding Jacobi symbol algorithm has been analysed as well by
Shallit and Sorenson(1993).

It turns out that there are natural generalisations of these binary algorithms over the
integers to algorithms over the Eisenstein integersfor computing the gcd and the cubic
residuosity symbol. The role of 2 is taken by the number 1− ζ , which is a prime of norm
3 in Z[ζ ].

We present and analyse these new algorithms. It turns out that they both have
bit complexity O(n2), which is an improvement over the earlier algorithms given by
Scheidler and Williams(1995), Williams (1986) and Williams and Holte(1977). Their
algorithms have complexityO(nM(n)), where M(n) is the complexity of integer
multiplication and the best upper bound onM(n) is O(n logn log logn); seeSchönhage
and Strassen(1971). Considering the gcd problem alone,Kaltofen and Rolletschek
(1989) already gave an algorithm of complexityO(n2). However, theiralgorithm is more
complicated and a larger constant is hidden under the big Oh notation.

1.1. Related work

Schönhage(1971) presented the asymptotically fastest algorithm for integer gcd. It takes
time O(n logn log logn). There is a derived algorithm for the Jacobi symbol of complexity
O(n(logn)2 log logn). For practical input sizes the most efficient algorithms seem to be
variants ofthe binary gcd and derived Jacobi symbol algorithms; seeShallit and Sorenson
(1993) andMeyer Eikenberry and Sorenson(1998).

If ωn is a complex primitiventh root of unity, sayωn = e2π/n, then the ringZ[ωn] is
known to be norm-Euclidean for only finitely manyn and the smallest unresolved case is
n = 17; seeLenstra Jr.(1979–1980), Lemmermeyer(1995).

Weilert (2000a,b) have generalised both the “binary” and the asymptotically fast gcd
algorithms toZ[ω4] = Z[i ], the ring of Gaussian integers. For the latter caseWeilert
(2002) hasalso described a derived algorithm for computing the quartic residue symbol,
and in all cases the complexity is identical to the complexity of the corresponding algorithm
overZ. Recently,Collins (2002) described an alternative algorithm of complexityO(n2)

for computing the gcd over the ring of Gaussian integers.
Williams (1986) andWilliams and Holte(1977) both describe algorithms for computing

gcd and cubic residue symbols inZ[ω3], the Eisenstein integers.Scheidler and Williams
(1995) describe algorithms for computing gcd andnth power residue symbol inZ[ωn]
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for n = 3, 5, 7. Their algorithms all have complexityO(nM(n)) for M(n), being the
complexity of integer multiplication.Kaltofen and Rolletschek(1989) gave an algorithm of
complexityO(n2) for computing the gcd in any fixed quadratic number ring; in particular
their algorithm also applies to the rings of Gaussian and Eisenstein integers. However, their
algorithm is more complicated than the “binary” algorithms presented by Weilert and in
this paper.

Weilert (2000a) suggests that his binary (i.e.(1+ i)-ary) gcd algorithm for the Gaussian
integers may generalise to other norm-Euclidean ringsof algebraic integers. Our gcd
algorithm for the Eisenstein integers was obtained independently, but it may nevertheless
be seen as a confirmation of this suggestion in a specific case. Recently, further results
have appeared.Agarwal andFrandsen(2004) have generalised the binary approach to
additional imaginary quadratic rings, one of which is non-Euclidean.Wikström(2004a) has
generalised the binary approach to computing both gcd and octic residue symbols inZ[ω8].

Weilert gives an algorithm for the quartic residue symbol that is derived from the asymp-
totically fast gcd algorithm overZ[i ]. For practical purposes, however, it would be more
interesting to have a version derived from the “binary” approach. In the last section of this
paper, we sketch how one can obtain such an algorithm. Independently,Wikström(2004b)
has described algorithms for cubic and quartic residuosity based on the “binary” approach.

1.2. Applications

Our algorithms may be used for the efficient computation of cubic residuosity in rings
other thanZ[ζ ] when using an appropriate homomorphism. As an example, consider the
finite field G F(p) for prime p ≡ 1 mod3. A numberz ∈ {1, . . . , p− 1} is a cubic residue
precisely whenz(p−1)/3 ≡ 1 modp, implying that (non)residuosity may be decided by a
(slow) modular exponentiation. However, it is possible to decide cubic residuosity much
faster provided we carry out some preprocessing depending only onp. Thepreprocessing
takestime proportional to a modular exponentiation, so our algorithm would only be useful
if p stays fixed in several residuosity computations. The preprocessing consists in factoring
p overZ[ζ ], i.e. finding a primeπ ∈ Z[ζ ] suchthat p = ππ̄ . A suitableπ may be found
asπ = gcd(p, r − ζ ), wherer ∈ Z is constructed as a solution to the quadratic equation
x2+ x + 1= 0 mod p. Following this preprocessing, cubic residuosity of anyz is decided
using thatz(p−1)/3 ≡ 1 mod p if and only if [z/π] = 1, where[·/·] denotes the cubic
residuosity symbol.

When the order of the multiplicative group in question is unknown, modular
exponentiation cannot be used, but it may still be possible to identify some nonresidues
by computing residue symbols. In particular, the primality test ofDamgård andFrandsen
(2003b) usesour algorithms for finding cubic nonresidues in a more general ring.

Computation of gcd and cubic residuosity is also used for the implementation of
cryptosystems byScheidler and Williams(1995) andWilliams (1986).

2. Preliminary facts about Z[ζ ]
Z[ζ ] is the ring of integers extended with a primitive third root of unityζ (complex root

of z2+ z + 1). We will be using the following definitions and facts; seeIreland and Rosen
(1990).
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Let ·̄ and N(·) denote complex conjugation and complex norm,N(α) = αᾱ,
respectively. Note that̄ζ = ζ 2 = ζ−1 andN(a + bζ ) = a2+ b2− ab.

A unit in Z[ζ ] is an element of norm 1. There are six units inZ[ζ ]: ±1,±ζ,±ζ 2. Two
elementsα, β ∈ Z[ζ ] are said to be associates if there exists a unitε suchthatα = εβ.

A prime π in Z[ζ ] is a non-unit such that for anyα, β ∈ Z[ζ ], if π |αβ, thenπ |α or
π |β.

1− ζ is a prime inZ[ζ ] andN(1− ζ ) = 3. A primary number has the form 1+ 3β for
someβ ∈ Z[ζ ]. If α ∈ Z[ζ ] is not divisible by 1− ζ thenα is associated with a primary
number, andN(α) ≡ 1 (mod 3). The definition of primary seems to vary in that some
authors such asLemmermeyer(2000) andIreland and Rosen(1990) require the alternate
forms±1+ 3β and−1+ 3β, respectively. However, our definition is more convenient in
the presentcontext.

The cubic residuosity symbol[·/·] : Z[ζ ] × (Z[ζ ] − (1− ζ )Z[ζ ]) �→ {0, 1, ζ, ζ−1} is
defined as follows:

For primeπ ∈ Z[ζ ] whereπ is not associated with 1− ζ :

[α/π] = (α
N(π)−1

3 ) modπ,

where thenotation “. . . modπ” refers to the unique congruence value forα(N(π)−1)/3

among the elements{0, 1, ζ, ζ−1}.
Fornumberβ =∏t

i=1 π
mi
i ∈ Z[ζ ] whereβ is not divisible by 1− ζ :

[α/β] =
t∏

i=1

[α/πi ]mi .

Note that the definition implies

[α/ε] = 1 for aunit ε,
[α/β] = 0 when gcd(α, β) �= 1,

[α/β] = [α′/β], whenα ≡ α′ (modβ),
[αα′/β] = [α/β] · [α′/β],
[−1/β] = 1.

In addition, we will need the following laws satisfied by the cubic residuosity symbol; see
Lemmermeyer(2000).

The cubic reciprocity law:

[α/β] = [β/α], whenα andβ are both primary.

The complementary laws (for primaryβ = 1+ 3(m + nζ ), wherem, n ∈ Z):

[1− ζ/β] = ζ m,

[ζ/β] = ζ−(m+n).

3. Computing the gcd in Z[ζ ]
It turns out thatthe well-known binary integer gcd algorithm has a natural generalisation

to a gcd algorithm for the Eisenstein integers. The generalised algorithm is best understood
by relating it to the binary algorithm in a nonstandard version. The authors are not aware
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of any description of the latter in the literature. For the standard version seeBach and
Shallit (1996).

A slightly nonstandard version of the binary gcd is the following. Every integer can
be represented as(−1)i · 2 j · (4m + 1), wherei ∈ {0, 1}, j ≥ 0 andm ∈ Z. Without
loss of generality, we may therefore assume that the numbers in question are of the form
(4m + 1). Oneiteration consists in replacing the numerically larger of the two numbers
by their difference. If it is nonzero then the dividing 2-power (at least 22) may be removed
without changing the gcd. If necessary the resulting odd number is multiplied with−1 to
get a number of the form 4m+1 and we are ready for the next iteration. It is fairly obvious
that the product of the numeric values of the two numbers decreases by a factor at least 2
in each step until the gcd is found, and hence the gcd of two numbersa, b can be computed
in time (log2 |ab|).

To make the analogue, we recall that any element ofZ[ζ ] that is notdivisible by
1 − ζ is associated with a (unique) primarynumber, i.e. a number of the form 1+ 3α.
This implies that any element inZ[ζ ] \ {0} has a (unique) representation of the form
(−ζ )i ·(1−ζ ) j ·(1+3α) where 0≤ i < 6, 0≤ j andα ∈ Z[ζ ]. In addition, the difference
of two primary numbers is divisible by(1 − ζ )2, since 3= −ζ 2(1 − ζ )2. Now a gcd
algorithm for the Eisenstein integers may be formulated as an analogue to the binary integer
gcd algorithm. We may assume without loss ofgenerality that the two input numbers are
primary. Replace the (normwise) larger of the two numbers with their difference. If it is
nonzero, we may divide out any powers of(1 − ζ ) that divide the difference (at least
(1− ζ )2) andconvert the remaining factor to primary form by multiplying with a unit. We
have again two primary numbers and the process may be continued. In each step we are
required to identify the (normwise) larger of two numbers. Unfortunately it would be too
costly to compute the relevant norm, but it suffices to choose the large number based on an
approximation that we can afford to compute. By a slightly nontrivial argument one may
prove that the product of the norms of the two numbers decreases by a factor at least 2 in
each step until the gcd is found, and hence the gcd of two numbersα, β can be computed
in time O(log2 N(αβ)).

Algorithm 1describes the details including a start-up to bring the two numbers into
primary form.

Algorithm 1. Compute gcd inZ[ζ ]
Require: α, β ∈ Z[ζ ] \ {0}
Ensure: g = gcd(α, β)

1: Let primary γ, δ ∈ Z[ζ ] be defined byα = (−ζ )i1 · (1 − ζ ) j1 · γ and β =
(−ζ )i2 · (1− ζ ) j2 · δ.

2: g← (1− ζ )min{ j1, j2}
3: Replaceα, β with γ, δ.
4: while α �= β do
5: LOOP INVARIANT: α, β are primary
6: Let primaryγ be defined byα − β = (−ζ )i · (1− ζ ) j · γ
7: Replace “approximately” larger ofα, β with γ .
8: end while
9: g← g · α
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Theorem 1. Algorithm 1 takes time O(log2 N(αβ)) to compute the gcd of α, β, or
formulated alternatively, the algorithm has bit complexity O(n2).

Proof. Let us assume that a numberα = a + bζ ∈ Z[ζ ] is represented by the integer pair
(a, b). Observe that sinceN(α) = a2+b2−ab, we have that log|a|+log |b| ≤ log N(α) ≤
2(log |a|+ log |b|+ 1) for |a|, |b| ≥ 1, i.e. the logarithm of the norm is proportional to the
number of bits in the representation of a number.

We may do addition, subtraction on general numbers and multiplication by units in
linear time. Since(1 − ζ )−1 = (2 + ζ )/3, division by (and check for divisibility by)
(1− ζ ) may also be done in linear time.

Clearly, the start-up part of the algorithm that brings the two numbers into primary form
can be done in timeO(log2 N(αβ)). Hence, we need only worry about the while loop.

We want to prove that the norm of the numbers decrease for each iteration. The
challenge is to see that forming the numberα − β does not increase the norm too much.
In fact, by elementary properties of the complex norm,N(α− β) ≤ 4 ·max{N(α), N(β)}.
Hence, for theγ computed in the loop of the algorithm, we getN(γ ) = 3− j N(α − β) ≤
3−24 ·max{N(α), N(β)}. In each iteration,γ ideally replaces the one ofα andβ with the
larger norm. However, we cannot afford to actually compute the norms to find out which
one is the larger. Fortunately, byLemma 2, it is possible in linear time to compute an
approximate norm that may be slightly smaller than the exact norm, namely up to a factor
9/8. Whenγ replaces the one ofα andβ with the larger approximate norm, we know that
N(αβ) decreases by a factor at least 9/4 · 8/9 = 2 in each iteration, i.e. the total number
of iterations isO(log N(αβ)).

Each loop iteration takes timeO(log N(αβ)) except possibly for finding the exponent
of (1− ζ ) that dividesα − β. Assume that(1− ζ )ti is the maximal power of(1− ζ ) that
dividesα−β in thei th iteration. Then the combined time complexity of all loop iterations is
O((

∑
i ti ) log N(αβ)). We alsoknow that the norm decreases by a factor of at least 3ti−2 ·2

in thei th iteration, i.e.
∏

i (3
ti−2·2) ≤ N(αβ). Sincethere are onlyO(log N(αβ)) iterations

it follows that
∏

i 3ti ≤ (9/2)O(log N(αβ)) N(αβ) and hence
∑

i ti = O(log N(αβ)). �

Lemma 2. Given α = a+bζ ∈ Z[ζ ] it is possible to compute an approximate norm Ñ (α)

such that

8

9
N(α) ≤ Ñ (α) ≤ N(α)

in linear time, i.e. in time O(log N(α)).

Proof. Note that

N(a + bζ ) = (a − b)2+ a2+ b2

2
.

Givenε > 0, we letd̃ denote some approximation to integerd satisfying that(1− ε)|d| ≤
d̃ ≤ |d|. Note that

(1− ε)2N(a + bζ ) ≤ (ã − b)2+ ã2+ b̃2

2
≤ N(a + bζ ).
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Since we maycomputea − b in linear time it suffices to compute approximations and
square them in linear time for someε < 1/18. Givend in the usual binaryrepresentation,
we taked̃ to be|d| with all but the six most significant bits replaced with zeros, in which
case

(
1− 1

32

)
|d| ≤ d̃ ≤ |d|

and we can computẽd2 from d in linear time. �

4. Computing cubic residuosity in Z[ζ ]
Just as the usual integer gcd algorithms may be used for constructing algorithms for the

Jacobi symbol, so our earlier strategy for computing the gcd inZ[ζ ] can be used as the
basis for an algorithm for computing the cubic residuosity symbol.

In each iteration we will assume the two numbersα, β to be primary withÑ(α) ≥
Ñ (β). We write their difference in the formα − β = (−ζ )i(1− ζ ) jγ , for primaryγ . By
the complementary laws of the cubic residuosity symbol,[α/β] = ζ mj−(m+n)i [γ /β] when
β = 1+ 3(m + nζ ). If Ñ (γ ) < Ñ (β), we use the reciprocity law to swapγ andβ before
being ready for a new iteration. The algorithm stops when the two primary numbers are
identical. If the identical value (the gcd) is not 1 then the residuosity symbol evaluates to 0.

Algorithm 2 describes the entire procedure including a start-up to ensure that the
numbers are primary.

Algorithm 2. Compute cubic residuosity inZ[ζ ]
Require: α, β ∈ Z[ζ ] \ {0}, andβ is not divisible by(1− ζ )

Ensure: c = [α/β]
1: Let primaryγ, δ ∈ Z[ζ ] be defined byα = (−ζ )i1 · (1− ζ ) j1 · γ andβ = (−ζ )i2 · δ.
2: Let m, n ∈ Z be defined byδ = 1+ 3m + 3nζ .
3: t ← m j1− (m + n)i1 mod 3
4: Replaceα, β by γ, δ.
5: If Ñ (α) < Ñ (β) then interchangeα, β.
6: while α �= β do
7: LOOP INVARIANT: α, β are primary andÑ(α) ≥ Ñ(β)

8: Let primaryγ be defined byα − β = (−ζ )i · (1− ζ ) j · γ
9: Let m, n ∈ Z be defined byβ = 1+ 3m + 3nζ .

10: t ← t + m j − (m + n)i mod 3
11: Replaceα with γ .
12: If Ñ (α) < Ñ (β) then interchangeα, β.
13: end while
14: If α �= 1 thenc← 0 elsec← ζ t

Theorem 3. Algorithm 2 takes time O(log2 N(αβ)) to compute [α/β], or formulated
alternatively, the algorithm has bit complexity O(n2).
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Proof. The complexity analysis from the gcd algorithm carries over without essential
changes. �

5. Computing gcd and quartic residuosity in the ring of Gaussian integers

Wemay construct fast algorithms for gcd and quartic residuosity in the ring of Gaussian
integers,Z[i ] = {a+ bi | a, b ∈ Z}, in acompletely analogous way to the algorithms over
the Eisenstein integers. In the case of the gcd, this was essentially done byWeilert (2000a).
However, the case of the quartic residue symbol may be of independent interest since such
an algorithm is likely to be more efficient for practical input values than the asymptotically
ultrafast algorithm byWeilert (2002).

Here is a sketch of the necessary facts; seeLemmermeyer(2000). There are four units
in Z[i ]:±1,±i . 1+ i is a prime inZ[i ] andN(1+ i) = 2. A primary number has the form
1+ (2+ 2i)β for someβ ∈ Z[i ]. If α ∈ Z[i ] is not divisible by 1+ i thenα is associated
with a primary number.

In particular, any element inZ[i ] \ {0} has a (unique) representation on the form
i j · (1+ i)k · (1+ (2+ 2i)α) where 0≤ j < 4, 0 ≤ k andα ∈ Z[i ]. In addition, the
difference of two primary numbers is divisible by(1+i)3, since(2+2i) = −i(1+i)3. This
is the basis for obtaining an algorithm for computing the gcd over the Gaussian integers
analogous toAlgorithm 1. This new algorithm also has bit complexityO(n2) as one may
prove when using thatN((1+ i)3) = 8 andN(α − β) ≤ 4 ·max{N(α), N(β)}.

For computing quartic residuosity, we need the following additional facts; see
Lemmermeyer(2000). If π is a prime inZ[i ] andπ is not associated with 1+ i then
N(π) ≡ 1( mod 4), and thequartic residue symbol[·/·] : Z[i ] × (Z[i ] − (1+ i)Z[i ]) �→
{0, 1,−1, i,−i} is defined as follows:

For primeπ ∈ Z[i ] whereπ is not associated with 1+ i :

[α/π] = (α
N(π)−1

4 ) modπ.

Fornumberβ =∏t
j=1 π

m j
j ∈ Z[i ] whereβ is not divisible by 1+ i :

[α/β] =
t∏

j=1

[α/π j ]m j .

The quartic reciprocity law and complementary laws forα and β primary with β =
1+ (2+ 2i)(m + ni) andm, n ∈ Z are

[α/β] = [β/α] · (−1)
N(α)−1

4 · N(β)−1
4 ,

[1+ i/β] = i−n−(n+m)2
,

[i/β] = i n−m .

This is the basis for obtaining an algorithm for computing quartic residuosity analogous to
Algorithm 2. This new algorithm also has bit complexityO(n2).
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