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Abstract

We refine the dictionary of the gauge/gravity correspondence realizingN = 1 super-Yang–Mills by means of D5-branes
wrapped on a resolved Calabi–Yau space. This is done by fixing an ambiguity on the correct interpretation of the holographic
dual of the running gauge coupling and amounts to identify a specific 2-cycle in the dual ten-dimensional supergravity
background. In doing so, we also discuss the role played in this context by gauge transformations in the relevant seven-
dimensional gauged supergravity. While all nice properties of the duality are maintained, this modification of the dictionary
has some interesting physical consequences and solves a puzzle recently raised in the literature. In this refined framework, it is
also straightforward to see how the correspondence naturally realizes a geometric transition.
 2003 Elsevier Science B.V.

1. Introduction and summary of the results

One of the goals recently pursued in the context
of the AdS/CFT correspondence has been to look for
gravity duals ofN = 2 andN = 1 super-Yang–Mills
(SYM) theory, both with and without matter.

An important step toward this goal was done by
Maldacena and Nuñez (MN) in Ref. [1] where a
supergravity dual of pureN = 1 SYM was proposed.
As it is the case for gravity duals of confining
gauge theories, one cannot obtain an exact duality
since extra degrees of freedom, not belonging to
the gauge theory, cannot be decoupled within the
supergravity regime.1 Nevertheless, many interesting
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1 Similar considerations hold, for instance, for another notable
example of a gravity dual ofN = 1 SYM, the Klebanov–Strassler

properties of the gauge theory are encoded in the
dual supergravity background and can be described in
detail.

The MN model is constructed engineering aN = 1
SYM theory by wrappingN D5-branes on a non-
trivial 2-cycle of a resolved Calabi–Yau (CY) space.
The unwrapped part of the brane world-volume re-
mains flat and supports a four-dimensional gauge the-
ory. By implementing the proper topological twist so
to preserve 4 supercharges [3], some of the world-
volume fields become massive and decouple and one
ends up, in the IR, with four-dimensional pureN = 1
SYM theory. This is obtained by considering the
world-volume theory of the D5-branes at energies
where both the higher string modes as well as the KK
excitations on the 2-cycle decouple. The back-reaction

solution [2], which, although displaying a different UV completion,
is equivalent to the MN solution in the IR.
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of the D-branes deforms the original background. The
topology of the resulting space is in general very dif-
ferent from the starting CY space. In this case, as dis-
cussed by Vafa in Ref. [4], one expects the resulting
space to be a deformed CY space, where the 2-cycle
has shrunk but a 3-sphere has blown-up, rendering a
ten-dimensional non-singular solution. The question is
whether one can extract information on the gauge the-
ory, possibly at non-perturbative level, from the dual
supergravity background.

This question was recently addressed in a rather de-
tailed way by Di Vecchia, Lerda and Merlatti (DLM)
in Ref. [5] (see Refs. [6,7] for previous works dis-
cussing these issues) and a number of informations on
the gauge theory were shown to be predicted by the
dual supergravity background in a precise and quan-
titative way. In particular, the expected running of the
gauge coupling with the correspondingβ-function, the
chiral symmetry anomaly, the phenomenon of gaug-
ino condensation with the corresponding breaking of
the chiral symmetry toZ2 in the IR as well as the in-
stanton action contribution, were all derived from the
supergravity solution.

The gauge/gravity dictionary can be derived from
two basic equations [5] expressing the gauge coupling
constant and the gaugino condensate〈λ2〉, which is
a protected operator of the gauge theory, in terms of
supergravity degrees of freedom. These two equations
read

(1)
1

g2
YM

= F(ρ) ∼ Vol
(
S2),

(2)
〈
λ2〉 ∼ (

Λ

µ

)3

= G(ρ),

whereΛ is the dynamically generated scale,µ is the
subtraction energy at which the gauge theory is de-
fined andF(ρ) andG(ρ) are two given functions of
the radial coordinateρ of the ten-dimensional super-
gravity background. In particular,F(ρ) is proportional
to the volume of the 2-cycle the D5-branes wrap as
seen in the deformed geometry. The identification in
Eq. (2) (which is written in units of the energy scale)
gives instead the radius/energy relation in the corre-
spondence.

An important point to notice is that the gravity
quantities to be compared with gauge theory opera-

tors should all be computed in the ten-dimensional
framework, this being the natural one from a string
theory point of view. This was done only partially
in Ref. [1]. The 2-cycle entering Eq. (1) was identi-
fied within the seven-dimensional gauged supergrav-
ity geometry, while all other quantities, as the chiral
anomaly and the gauge theory instanton contribution
were obtained considering the ten-dimensional geom-
etry. The observation above overcomes this hybrid in-
terpretation and leads to a very homogeneous picture
of the entire duality, as it was drawn in Ref [5]. How-
ever, as pointed out recently in Ref. [8], this posed a
new problem since it seemed that in doing so a singu-
lar transformation in the gauge coupling was needed
in order to get the NSVZβ-function [9] from the
β-function obtained from the corresponding gravita-
tional dual.

In this Letter we reconsider this issue, and clar-
ify what is the correct 2-cycle in the ten-dimensional
deformed geometry to be considered, related to the
2-cycle of the original resolved CY space used to en-
gineer theN = 1 SYM theory. It turns out that the
2-cycle considered in the literature is not the cor-
rect one. As we are going to show, this observation
solves the problem raised in Ref. [8], without spoil-
ing, on the other hand, all nice results obtained in
Ref. [5]. In particular, we will get their same result
for the β-function, but determining now unambigu-
ously the two-loop coefficient. It turns out that super-
gravity, through the holographic relations (1) and (2),
gives aβ-function which is in the same scheme as
that obtained by NSVZ, the Pauli–Villars scheme. Re-
definitions of the holographic relation (2) by means
of analytic functions of the gauge coupling respecting
the symmetry of〈λ2〉, correspond to a change of reg-
ularization scheme. This modifies theβ-function be-
yond two-loops only, showing that supergravity natu-
rally respects the expected universality of the 2-loop
coefficient.2 As a further check for the validity of
our analysis, in this refined framework it is easy to
see that the MN model realizes a geometric transi-
tion, as predicted for these kind of gauge/gravity du-
alities by the general picture discussed by Vafa in
Ref. [4].

2 We thank Wolfang Mueck for sharing with us his recent
findings on related topics.
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2. The geometry revisited

Let us start by summarizing the explicit form of the
MN solution. This solution is obtained from a non-
singular domain wall solution of seven-dimensional
gauged supergravity [10], parameterized by coordi-
nates(x0, . . . , x3, ρ, θ1, φ1), uplifting to ten dimen-
sions along a 3-sphere [11,12], parameterized by co-
ordinates(ψ, θ2, φ2). The relevant fields (the metric,
the dilaton and the RR 3-form the D5-branes magnet-
ically couple to) are

(3)

ds2 = eΦ dx2
1,3

+ eΦα′gsN
[

e2h(dθ2
1 + sin2 θ1dφ

2
1

) + dρ2

+
3∑

a=1

(
σa −Aa

)2

]
,

(4)e2Φ = sinh2ρ

2eh
,

(5)

F (3) = 2α′gsN
3∏

a=1

(
σa −Aa

) − α′gsN
3∑

a=1

Fa ∧ σa,

where

A1 = −1

2
a(ρ) dθ1,

A2 = 1

2
a(ρ)sinθ1dφ1,

(6)A3 = −1

2
cosθ1dφ1,

e2h = ρ coth2ρ − ρ2

sinh2 2ρ
− 1

4
,

(7)a(ρ) = 2ρ

sinh2ρ
,

Aa being the threeSU(2)L gauge fields of the relevant
seven-dimensional gauged supergravity. Theσa are
the left-invariant one-forms parameterizing the 3-
sphere

σ 1 = 1

2
(cosψ dθ2 + sinψ sinθ2dφ2),

σ 2 = −1

2
(sinψ dθ2 − cosψ sinθ2dφ2),

(8)σ 3 = 1

2
(dψ + cosθ2dφ2).

Let us now turn to the identification of the actual
S2 of the ten-dimensional geometry (3) entering the
gauge/gravity relation (1). Naively one would say that
this cycle is the cycle parameterized by the two coor-
dinates (θ1, φ1). This is indeed the original cycle al-
ready present in the seven-dimensional solution one
starts from to derive the ten-dimensional one. This was
the choice made both in Ref. [1] and Ref. [5], within
the seven and ten-dimensional geometry, respectively.
In fact, the seven-dimensional solution is non-trivially
embedded in ten dimensions, the non-triviality com-
ing from the topological twist performed in seven di-
mensions. As a result of this, there is a non-trivial
mixing between the three coordinates of theS3 along
which one uplifts the solution (θ2, φ2,ψ) and those of
theS2 along which the original seven-dimensional do-
main wall is wrapped (θ1, φ1). This mix can be seen
explicitly by the appearance of the seven-dimensional
gauge connection in the ten-dimensional metric (3).
We could say that the seven-dimensional domain wall
already knows about the ten-dimensional geometry via
the twist, that from a seven-dimensional point of view
actually mixes space–time degrees of freedom with
internal ones (note that in ten dimensions all these
degrees of freedom are relative to space–time). For
this reason, it will turn out that the proper 2-cycle
is different from that suggested by the naive intu-
ition.

To identify the relevant 2-cycle (and the 3-cycle
dual to it) we now focus on the five-dimensional
angular part of the metric (3). Let us consider two
particular limits,ρ → ∞ andρ → 0. At largeρ, from
the solution (3) we easily get

ds2
5 ∼ ρ

(
dθ2

1 + sin2 θ1dφ
2
1

) + 1

4

(
dθ2

2 + sin2 θ2dφ
2
2

)
(9)+ 1

4
(dψ + cosθ1dφ1 + cosθ2dφ2)

2.

It is easy to see that this is precisely the metric
of the T 1,1 manifold, that topologically isS2 × S3.
Even if it differs from the ‘standard’T 1,1 (see for
instance Refs. [13,14]) as now it is re-scaled in a
way it is no longer an Einstein space, we can anyhow
determine the non-trivial cycles. They are those of the
standardT 1,1, since the only difference with the above
manifold is just a metric difference.

In the above set of coordinates, see Refs. [15–18],
the 2-cycle is not uniquely defined and it turns out
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there are two different, but physically equivalent,
choices

(10)S2: θ1 = −θ2, φ1 = −φ2, ψ = 0,

(11)S2: θ1 = θ2, φ1 = −φ2, ψ = π.

The value ofψ is fixed by the physical requirement
that the cycle is that of minimal volume, this being
proportional to the wrapped D5-brane tension. It is
easy to show that with the first choice,θ1 = −θ2,
φ1 = −φ2, the minimal volume in the geometry (3)
is for ψ = 0. Analogously, forθ1 = θ2, φ1 = −φ2 we
have thatψ = π . Let us stress that the two 2-cycles
(10) and (11) are physically equivalent. Indeed we can
see from Eqs. (3) and (5) that the two corresponding
volumes are equal, namely

Vol
(
S2) ∼

[
e2h(ρ) + 1

4

(
a(ρ)− 1

)2
]

(12)× (
dθ2 + sin2 θ dφ2)

and the projection of the RR field strength along both
cycles vanishes at the origin, as it should be. Moreover,
all the gauge theory implications we will discuss in the
next section are the same for the two cycles.

As already discussed the 3-cycle is instead parame-
terized by

(13)S3: θ1 = φ1 = 0.

Let us now study the metric at the origin. It has the
following form

ds2
5 ∼ 1

4
(cosψ sinθ2dφ2 − sinψ dθ2 − sinθ1dφ1)

2

+ 1

4
(sinψ sinθ2dφ2 + cosψ dθ2 + dθ1)

2

(14)+ 1

4
(dψ + cosθ1dφ1 + cosθ2dφ2)

2.

This is precisely the metric of a deformed conifold
at the apex, see Ref. [13].3 The parameterization of
the non-trivial 2 and 3-cycle is known for this metric,
and is consistent with the ones found before. By
implementing Eq. (10) (or equivalently Eq. (11)) and
Eq. (13) in the above metric one finds a vanishing
radius for the 2-sphere and a finite one for the 3-
sphere, as expected for a deformed conifold. We will
come back to this issue in the last section.

3 We thank E. Gimon for a useful comment on this point.

Let us anticipate that with the above identification
of the 2-cycle, which has of course non-trivial con-
sequences on the explicit form of the function enter-
ing in Eq. (1) (see the explicit expression in Eq. (12)),
the main results about the gauge theory obtained in
Ref. [5] do not change drastically. On the other hand,
as already noticed, the problem related to the determi-
nation of the properβ-function by means of the grav-
itational dual will be solved.

Before studying the gauge theory implications of
what we have been discussing so far, we want to
illustrate another way one can get the same result. In
doing so, we also clarify the meaning of the seven-
dimensional gauge transformations. Indeed in the non-
singular seven-dimensional solution we are free to
makeSU(2) gauge transformations

A → g−1Ag + ig−1 dg,

whereg is an element of theSU(2) group andA is the
SU(2) gauge connection.

The ten-dimensional solution then is not com-
pletely determined, even if all the possible solutions
should be equivalent. Indeed different seven-dimen-
sional gauge choices correspond to different parame-
terizations of the relevant ten-dimensional geometry.
We show this with one concrete example. Consider
then the following gauge transformation

(15)g = e− i
2θ1σ1e− i

2φ1σ3

on theAa ’s in Eq. (6). The new gauge connection is

A′1 = 1

2

(
a(ρ)− 1

)
× (−cosφ1 dθ1 + cosθ1 sinθ1 sinφ1dφ1),

A′2 = 1

2

(
a(ρ)− 1

)
× (sinφ1dθ1 + cosθ1 sinθ1 cosφ1dφ1),

(16)A′3 = −1

2

(
a(ρ)− 1

)
sin2 θ1dφ1,

where the functiona(ρ) is again given by Eq. (7). Now
we have thatA′ → 0 for ρ → 0. As already discussed
at the beginning of this section, the seven-dimensional
gauge connection is the field responsible for the non-
trivial mixing between the seven-dimensional coor-
dinates and the ten-dimensional ones. Moreover, the
seven-dimensional solution represents a domain wall
located precisely atρ = 0 (corresponding to the
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wrapped D5-branes). Hence if the gauge potential van-
ishes atρ = 0, the 2-cycle no longer mixes with the
S3 used to uplift the solution to ten dimensions. Then,
also in the ten-dimensional solution, the 2-cycle will
be simply parameterized byθ1 andφ1, while, as usual,
the 3-cycle byθ2, φ2 andψ .

Once the cycles are properly identified, it is com-
pletely equivalent to study the gauge theory by means
of this solution (that in terms ofA′, Eq. (16)) or of the
other one (that in terms ofA, Eq. (6)). All the physi-
cal results we are going to describe in the next section
will not change. Note that also for this cycle theρ-
dependent volume is precisely given by Eq. (12) and
the projection of the RR field-strength on it vanishes
at the origin.

3. The gauge/gravity dictionary revisited

Let us now investigate what are the consequences
of the above discussion on the gauge/gravity dictio-
nary. As recalled in the introduction, the two crucial
equations in relating gauge and gravity quantities are
those expressing the gauge coupling and the energy
scale of the gauge theory as functions of gravity fields.
Using the solution (3)–(7) they read in our case

(17)

1

g2
YM

= 1

2(2π)3α′gs

∫
S2

e−φ
√

detG = N

16π2Y (ρ),

(18)

(
Λ

µ

)3

= a(ρ),

where

Y (ρ) = 4e2h(ρ) + (
a(ρ)− 1

)2 = 4ρ tanhρ,

(19)a(ρ) = 2ρ

sinh2ρ
,

Eq. (17) is obtained identifying the Yang–Mills cou-
pling constant from the DBI action of the D5-branes
while the energy/radius relation (18) was obtained in
Ref. [5] from the identification of the gaugino conden-
sate in terms of the supergravity fielda(ρ) [7].

Eq. (17) differs from the analogous equation of
Ref. [5], Eq. (4.7), the difference being in the precise
ρ-dependence of the functionY (ρ) (that is essentially
the volume of theS2). In particular, nowY (ρ) goes to

zero at smallρ, and we get

(20)

1

g2
YM

 Nρ

4π2
for ρ → ∞ which meansµ � Λ,

(21)
1

g2
YM

 0 for ρ → 0 which meansµ ∼ Λ.

The largeρ behavior is the same as in DLM, while at
ρ = 0 we get a Landau pole. We will comment more
on this point later.

From the above equations one can get the complete
perturbativeN = 1 β-function. We can write

(22)β(gYM ) = ∂gYM

∂ ln(µ/Λ)
= ∂gYM

∂ρ

∂ρ

∂ ln(µ/Λ)

and compute the two derivative contributions from
Eqs. (17) and (18), respectively. In doing so, let us
first disregard the exponential corrections, which are
sub-leading at largeρ and which give rise to non-
perturbative contributions. In this case the expansion
in Eq. (20) is exact. We easily get

∂gYM

∂ρ
= −Ng3

YM

8π2 ,

(23)

∂ρ

∂ ln(µ/Λ)
= 3

2

(
1− 1

2ρ

)−1

= 3

2

(
1− Ng2

YM

8π2

)−1

,

where in the last step of the second equation we have
used again Eq. (20). The final result is then

(24)β(gYM ) = −3
Ng3

YM

16π2

(
1− Ng2

YM

8π2

)−1

which is the NSVZβ-function [9]. Note how this dif-
fers from the result of DLM. Besides exponentially
suppressed corrections, in their case the expression
(20) received also sub-leading corrections as power
series in 1/ρ and logρ. These corrections should be
taken into account when deriving the perturbativeβ-
function. The contributions in the 1/ρ change the re-
sult beyond two-loop only, hence respecting the uni-
versality of the two-loop coefficient of theβ-function.
The contributions proportional to logρ, instead, spoil
this universality. This gives, as a result, aβ-function
not belonging to the same universality class of the
NSVZ β-function. As discussed in Ref. [8], in order
to get rid of the unwanted logarithmic corrections and
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get aβ-function respecting the universality of the two-
loop coefficient, a singular transformation in the gauge
coupling is needed. We have shown here that the cor-
rect identification of the relevant 2-cycle in the geom-
etry gives instead directly the result (24) and the com-
plications discussed in Ref. [8] are not present. Let us
stress that this is not an option: once the correct 2-
cycle is identified, the result (24) naturally follows.

Note also how the correct gauge/gravity dictionary
naturally respects the universality of the two-loop
coefficient of theβ-function. Indeed the geometric
considerations leading to the identification of the
gaugino condensate with the functiona(ρ) [5,7] are
insensible to a redefinition of the holographic relation
(18) by means of an analytic function of the gauge
coupling [8]. If doing so, one can easily see that the
result we have obtained, Eq. (24), changes beyond
two-loops only.

As anticipated there are also some non-perturbative
contributions to theβ-function that supergravity sug-
gests should be present. These are included by con-
sidering the full expression forY (ρ) and a(ρ) in
Eqs. (17) and (18). The analysis performed in Ref. [5]
is essentially unchanged in this case and we do not
repeat it here. It would be nice to check this (unex-
pected) prediction by doing some computations in the
field theory.

The correct supergravity prediction for the chiral
anomaly and chiral symmetry breaking discussed in
Ref. [5] is also unchanged. The gauge theoryθ -angle
is related to the flux of the RR 2-formC(2) through
the 2-cycle and theN vacua of the gauge theory are
parameterized by shifts in the angular variableψ .
Finally, the gauge theory instantons are described by
euclidean D1-branes wrapped on the 2-cycle (10) (or
equivalently (11)), and computing their corresponding
action in the background (3)–(7) one easily finds the
expected gauge theory instanton action, as in Ref. [5].

Summarizing, once the proper identification of the
S2 related to the gauge coupling is made, all the nice
properties of the correspondence discussed in Ref. [5]
still hold while the complications addressed in Ref. [8]
turn out not to be present. The only property which is
lost is soft confinement one had signs of, in the DLM
picture, when takingρ all the way to zero. We find
a Landau pole, instead. However, this is not really an
issue. The curvature of the MN background goes like
α′R ∼ 1/gsN so the regime in which the supergravity

approximation is reliable is for largeN . In this regime
a Landau pole can indeed be present even if the gauge
coupling remains finite at the scaleΛ, since in Eq. (21)
it is really g2

YMN which is going to infinity and not
the gauge coupling itself. To discuss the duality in
the deep IR at finiteN , one has to go beyond the
supergravity approximation.

4. The duality as a geometric transition

As anticipated, a by-product of our analysis is
that now it is easy to show that the MN solution
is indeed an explicit example realizing the general
picture proposed by Vafa in Ref. [4] (see Refs. [19,
20] for further clarifications).

The general idea discussed in Ref. [4], applied to
the case at hand, is to engineer a supersymmetric
gauge theory by means of D5-branes wrapped on a
supersymmetric 2-cycle of a resolved CY manifold.
The dual supergravity solution is conjectured to cor-
respond to a deformed CY geometry, where the D-
branes are absent and the manifold has undergone a
geometric transition: on the deformed CY theS2 is
shrunk and anS3 has blown-up. The D-branes are re-
placed byHNSNS flux through a non-compact 3-cycle
andHRR flux through theS3.

From the discussion in Section 2, it is clear that
the MN duality indeed realizes a geometric transition.
Starting from the ten-dimensional metric, Eq. (3), and
taking the limitρ → 0 we get

ds2 ∼ dx2
1,3 + α′gsN

[
dρ2 + ρ2(dθ2

1 + sin2 θ1dφ
2
1

)

(25)+
3∑

a=1

(
σa −Aa

)2

]
.

By using Eq. (13), combined with one parameteri-
zation of the 2-cycle (equivalently Eqs. (10) or (11)
one immediately sees that the topology of the space at
ρ = 0 is that of anS3, which is blown-up: while the 2-
sphere is shrunk (R2

S2 ∼ ρ2), the radius of the 3-sphere

remains finite,R2
S3 = α′gsN . Hence the original re-

solved CY space used to engineer theN = 1 SYM
by means of D-branes wrapped on a non-vanishing
2-cycle has undergone a geometric transition to a de-
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formed CY, where theS2 has shrunk and anS3 has
blown-up, as predicted by Vafa duality.4

Let us end noticing an aspect where the MN cor-
respondence is apparently different from Vafa general
picture. In the MN supergravity solution there is just
one 3-form,HRR, switched-on while the NSNS one is
not. As we have been extensively discussed, in the MN
solution the gauge coupling is related to the volume of
theS2, rather than to theBNS flux along the 2-cycle,
as it is instead the case for Vafa duality. In fact, the
MN configuration is related by T-dualities to fractional
D3-branes onN = 1 orbifolds (having D4-branes sus-
pended between non-parallel NS5 branes as an inter-
mediate step). There, the volume ofS2 translates in-
deed into theB2 flux along theS2. So, in a sense, this
difference amounts just to a U-duality gauge.
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