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SUMMARY

Studies support the importance of microRNAs in physiological and pathological processes. Here we describe
the regulation and function of miR-29 in myogenesis and rhabdomyosarcoma (RMS). Results demonstrate
that in myoblasts, miR-29 is repressed by NF-kB acting through YY1 and the Polycomb group. During
myogenesis, NF-kB and YY1 downregulation causes derepression of miR-29, which in turn accelerates differ-
entiation by targeting its repressor YY1. However, in RMS cells and primary tumors that possess impaired
differentiation, miR-29 is epigenetically silenced by an activated NF-kB–YY1 pathway. Reconstitution of
miR-29 in RMS in mice inhibits tumor growth and stimulates differentiation, suggesting that miR-29 acts as
a tumor suppressor through its promyogenic function. Together, these results identify a NF-kB–YY1–miR-
29 regulatory circuit whose disruption may contribute to RMS.

INTRODUCTION

MicroRNAs (miRNAs) are small noncoding single-stranded

RNAs that constitute a novel class of gene regulators. These

RNAs are initially transcribed by RNA polymerase II as primary

transcripts (Lee et al., 2004; Zeng et al., 2005) that are then

processed in the nucleus by Drosha into an �70 nucleotide pre-

cursor miRNA that forms hairpin structures (Gregory et al., 2005).

Precursor miRNAs are then exported into the cytoplasm and

serve as substrates to generate mature miRNAs (He and Han-

non, 2004). Approximately 50% of miRNAs are found in clusters,

transcribed as polycistronic primary transcripts (Mourelatos

et al., 2002).

miRNAs negatively regulate gene expression at the posttran-

scriptional level by base pairing with the 30 untranslated region

(UTR) of their target mRNAs. It is believed that if this pairing is per-

fect or nearly perfect, as seen predominantly in plants (Gregory

et al., 2005), the mRNA becomes cleaved and degraded (Patta-

nayak et al., 2005). However, with most mammalian miRNAs,

the pairing is imperfect, resulting in translational repression

(Hutvagner, 2005). Since their initial discovery, more than 3000

miRNAs have been identified in animals, plants, and viruses.

With over 500 miRNAs in the human genome and a plethora of

predicted mRNA targets, it is believed that these small RNAs

have an enormous regulatory potential in gene expression

programs (Bartel, 2004). Indeed, the functions of miRNAs have

been found to extend to both physiological and pathological

conditions, including cell proliferation, cell death, differentiation,

development, metabolism, viral infection, and cancer (Miska,

2005; Shivdasani, 2006).

One cellular process under miRNA control is skeletal muscle

differentiation. This process is orchestrated by the transcription

factors MyoD, Myf5, myogenin, MRF4, and Mef2. These factors

activate muscle genes to coordinate myoblasts to terminally
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withdraw from the cell cycle and subsequently fuse into multinu-

cleated myotubes (Sabourin and Rudnicki, 2000). Several muscle

miRNAs are regulated by these myogenic transcription factors

and are required for skeletal muscle formation. For instance,

MyoD and Mef2 regulate expression of miR-1 that suppresses

HDAC4, resulting in augmented Mef2 activity (Rao et al., 2006;

Zhao et al., 2005). MyoD induces miR-206, which targets DNA

polymerase to facilitate cell-cycle exit, as well as follistatin to

enhance myogenesis (Anderson et al., 2006; Kim et al., 2006;

Rosenberg et al., 2006). In addition, miR-133 synthesis is con-

trolled by Mef2, but functionally this miRNA inhibits myogenesis

by downregulating serum response factor (SRF), which maintains

myoblast proliferation (Chen et al., 2006; Liu et al., 2007).

Analogous to muscle miRNAs, signal transduction pathways

function within a hierarchical network to positively and negatively

regulate myogenesis. Among these is NF-kB, which is active in

myoblasts and functions to block differentiation in vitro and

in vivo (Acharyya et al., 2007; Guttridge et al., 2000; Wang

et al., 2007). NF-kB exists as a dimer, with the p50/p65 hetero-

dimer form being the most common (Hayden and Ghosh,

2004). In resting cells, NF-kB is retained in the cytoplasm through

binding of its IkB inhibitor. Classical activation of NF-kB occurs

by factors that stimulate the IkB kinase complex to phosphory-

late and degrade IkB, leading to NF-kB nuclear translocation

and subsequent target gene expression (Karin and Ben-Neriah,

2000).

Recent work has demonstrated that NF-kB’s ability to repress

myogenesis occurs through multiple mechanisms that depend

on components of the classical NF-kB pathway (Bakkar et al.,

2008). One such mechanism involves the target gene Yin Yang

1 (YY1), which itself is capable of repressing muscle differentia-

tion (Caretti et al., 2004; Lee et al., 1994; Wang et al., 2007). YY1

is also a member of the Polycomb group (PcG), which functions

to silence transcription of a selected set of genes by chromatin

modification (Sparmann and van Lohuizen, 2006). In myoblasts,

NF-kB regulates YY1, which in turn binds and inhibits myofibrillar

promoters by recruiting the PcG member Ezh2 as well as the

histone deacetylase protein HDAC1 (Caretti et al., 2004; Wang

et al., 2007). Thus, activation of NF-kB ensures that YY1 levels

and Polycomb activity are maintained in undifferentiated cells.

In addition to their underlying etiology in a variety of muscle-

related diseases including dystrophies and cachexia, a skeletal

muscle lineage is also considered to be the origin of rhabdomyo-

sarcoma (RMS), an aggressive, malignant pediatric soft-tissue

sarcoma (Breitfeld and Meyer, 2005; Mackall and Helman,

2001). These tumors are thought to arise as a consequence of

a dysfunctional balance of the growth and terminal differentiation

of muscle progenitor cells. Despite current modes of intensive

chemotherapy, radiation, and surgery, survival for children with

advanced disease is dismal, and prognosis has remained un-

changed for decades. RMS is divided into two major histological

subtypes, embryonal and alveolar. Whereas embryonal RMS

(ERMS) recapitulates the phenotypical and biological features

of embryonic muscle, alveolar RMS (ARMS) is a more loosely or-

ganized tumor displaying poor muscle differentiation (Qualman

et al., 1998). Current knowledge of the molecular mechanisms

that contribute to the failure in differentiation of RMS tumors is

limited. Although miRNAs are considered to act as tumor sup-

pressors or oncogenes in an assortment of cancers, notably,
370 Cancer Cell 14, 369–381, November 4, 2008 ª2008 Elsevier Inc
their potential role in RMS has not been explored. In this study,

we demonstrate the regulation of miR-29 by the NF-kB–YY1

regulatory pathway and elucidate its significance in normal

skeletal muscle differentiation and RMS.

RESULTS

NF-kB and YY1 Negatively Regulate miR-29b/c
in C2C12 Myoblasts
Although miRNAs are involved in the complex network of skeletal

myogenesis, their interactions with other myogenic regulatory

factors are only beginning to be revealed. Of particular interest

is the regulation of miRNA by transcription factors. Since we re-

cently found that NF-kB functions to inhibit myogenesis through

YY1 (Wang et al., 2007), we initiated a screen for miRNAs poten-

tially regulated by these two transcription factors. The use of

positional weight matrix from TRANSFAC (Wingender et al.,

1997) identified numerous YY1 binding sites upstream of pre-

miRNAs. To narrow our search, we utilized the UCSC genome

browser (Kent et al., 2002) and rVISTA (Loots and Ovcharenko,

2004) to find YY1 sites conserved among species. This gave

rise to a handful of miRNAs that represented potential targets

of YY1 (see Table S1 available online). Among these, we singled

out miR-29b2 and miR-29c, which lie in close proximity to each

other on mouse and human chromosome 1 (Figure S1A). Four

YY1 binding sites (referred to as A, B, C, and D) were identified

in a highly conserved region �20 kb upstream of miR-29b2

and miR-29c (Figure 1A; Figure S1B). This same region also con-

tains several conserved cis-elements for the myogenic transcrip-

tion factors MyoD, myogenin, Mef2, and SRF. In comparison, no

conserved YY1 sites were identified upstream of miR-29a and

miR-29b1, clustered on mouse chromosome 6 and human

chromosome 7 (Figure S1A).

To test whether sites A through D upstream of the miR-29b2

(hereafter referred to simply as miR-29b) and miR-29c locus

were competent for YY1 binding, electrophoretic mobility shift

assays (EMSAs) were performed with extracts prepared from

C2C12 myoblasts and myotubes. Results showed that all four

sites produced binding complexes in myoblasts (MB) (Figure 1B),

but only complexes C and D were supershifted with YY1 anti-

sera. Furthermore, in line with previous findings that YY1 activity

decreases in myogenesis (Caretti et al., 2004; Wang et al., 2007),

complex C and D were also reduced in myotubes (MT). However,

by chromatin immunoprecipitation (ChIP), only site D was bound

by YY1 (Figure 1C). Consistent with EMSA, binding was only de-

tected in MB, suggesting that YY1 binds to a putative regulatory

element of miR-29b/c.

Since YY1 represses myogenic genes through recruitment of

the PcG and HDAC1 (Caretti et al., 2004), we asked whether

similar regulation occurred on the miR-29b/c locus. Indeed, in

addition to YY1, binding for Ezh2 and its trimethylated activity

on histone H3 lysine 27 (H3K27) was also detected, along with

HDAC1 (Figure 1D). In MT, these repressors were replaced with

SRF and Mef2, whose presence is associated with activation of

muscle-specific genes. To further investigate the regulation of

miR-29b/c by YY1, C2C12 myoblasts were transfected with a

YY1 expression plasmid. By quantitative RT-PCR, miR-29b and

miR-29c levels decreased 2-fold in the presence of YY1 (Fig-

ure 1E). In contrast, siRNA knockdown of YY1 significantly
.
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enhanced expression of both miRNAs (Figure 1E; Figure S2A),

suggesting that YY1 is a repressor of miR-29b/c. Next we tested

the activity of the miR-29b/c upstream regulatory region by clon-

ing a 4.5 kb fragment spanning YY1, SRF, and Mef2 binding sites

into a luciferase reporter plasmid. Myogenesis caused an in-

crease in reporter activity (Figure 1F). Furthermore, this activity

was repressed by addition of YY1 but stimulated with either

YY1 knockdown or addition of SRF or Mef2 (Figures 1G and

1H), suggesting that this region upstream of miR-29b/c functions

as an enhancer. To examine the requirement of YY1 binding for

enhancer activity, the D site was mutated and compared to its

wild-type counterpart. Loss of the YY1 site led to higher reporter

activity, and, compared to the wild-type enhancer, the mutant

site was unresponsive to YY1 knockdown (Figure 1H). Collec-

tively, these data demonstrate that the miR-29b/c locus contains

a regulatory region that is under negative control by YY1 and the

PcG in MB and is positively regulated by myogenic transcription

factors in MT.

Since YY1 is a transcriptional target of NF-kB (Wang et al.,

2007), we reasoned that miR-29b/c should also come under

negative control of NF-kB. Consistent with this thinking, treat-

ment of C2C12 myoblasts with TNFa as an activator of NF-kB

reduced miR-29b/c expression (Figure 2A). Similar reduction of

miR-29 was observed in C2C12 cells stably expressing the

p65 subunit of NF-kB (Figure 2B). Conversely, MB containing

siRNA against p65 or expressing the IkBa-SR inhibitor of NF-

kB led to higher levels of miR-29b/c as compared to control cells

(Figures 2C and 2D; Figure S2B). Similar enhancement of miR-29

Figure 1. YY1 Represses miR-29b/c through

Binding to a Conserved Regulatory Region

(A) An rVISTA schematic showing the degree of

sequence conservation between human and

mouse chromosome (Chr) 1 in a region upstream

of the miR-29b/c cluster. Predicted YY1, MyoD,

myogenin, SRF, and Mef2 sites are displayed.

(B) EMSA performed with C2C12 myoblasts (MB)

or myotubes (MT) using probes corresponding to

YY1 sites A–D. With MB extracts, a supershift

EMSA was performed using YY1 antisera. Arrow-

heads denote YY1/DNA-bound complexes.

(C) ChIP assays for YY1 were performed with

chromatin from C2C12 MB or MT. Precipitated

DNA was amplified with oligonucleotides spanning

regions A–D. Total inputs are indicated.

(D) ChIP assays as in (C) were repeated for Ezh2,

H3K27, HDAC1, SRF, and Mef2.

(E) MB were transfected with either a YY1 expres-

sion plasmid (pCMV-YY1) or YY1 siRNA oligos

and then induced to differentiate for 24 hr, at which

time miR-29b and miR-29c were measured by

qRT-PCR and normalized to U6. Fold changes are

shown with respect to control siRNA-transfected

cells, where miR-29 levels were set to a value of 1.

(F) MB were transfected with a miR-29b/

c-enhancer-Luc reporter and maintained as MB

or differentiated in MT for 48 hr, at which time

luciferase activity was determined.

(G) MB were transfected with a miR-29b/

c-enhancer-Luc reporter along with plasmids for

YY1, SRF, or Mef2. Cells were then switched to dif-

ferentiation conditions and subsequently

measured for luciferase activity.

(H) MB were transfected with the miR-29b/

c-enhancer-Luc reporter (YY1 WT) or with an en-

hancer reporter containing a deletion mutation in

the YY1 D site (YY1 Mut) and subsequently differ-

entiated for 48 hr (MT), at which time luciferase

activity was determined (left graph). Separate

transfections were performed with YY1 WT and

YY1 Mut reporters along with a YY1 expression

plasmid (pCMV-YY1) or YY1 siRNA (right graph).

Cells were subsequently differentiated for 48 hr,

at which time luciferase activity was determined.

Vector siRNA oligo-transfected cells were used

as a control.

All luciferase data were normalized to b-galactosi-

dase protein and represent the average of three in-

dependent experiments ± SD.
Cancer Cell 14, 369–381, November 4, 2008 ª2008 Elsevier Inc. 371
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was observed in p65�/� fibroblasts expressing MyoD (Figure 2E).

In addition, ChIP analysis showed that YY1 was bound to the

miR-29b/c locus in vector MB but absent in cells devoid of

NF-kB (Figure 2F). These findings strongly suggest that NF-kB

negatively regulates miR-29b/c via YY1.

miR-29 Functions as a Positive Regulator of Myogenesis
Results above led us to speculate that miR-29b/c might itself be

regulated during muscle differentiation. To test this, we exam-

ined miR-29 in both in vitro and in vivo models of myogenesis.

The results showed that levels of miR-29b/c steadily increased

in differentiating C2C12 cells, correlating with induction of known

differentiation markers and repression of its inhibitors NF-kB and

YY1 (Figures 3A–3C). Interestingly, miR-29a was also induced

Figure 2. NF-kB Negatively Regulates miR-29b/c

(A) C2C12 cells were treated with TNFa, and miR-29 expression was mea-

sured by qRT-PCR normalized to U6. Fold changes are shown with respect

to vector cells, where miR-29 levels were set to a value of 1.

(B) MB were transfected with either vector or p65 plasmid, and miR-29b/c

levels were measured 48 hr posttransfection.

(C) MB were transfected with either vector or p65 siRNA oligos, and miR-29b/c

expression was then measured as in (B).

(D) miR-29b and miR-29c were measured in MB stably expressing vector or

IkBa-SR. Fold changes are shown with respect to vector cells, which were

set to a value of 1.

(E) MyoD was stably expressed in p65+/+ or p65�/� mouse embryonic fibro-

blasts (Bakkar et al., 2008), and qRT-PCR was performed for miR-29b and

miR-29c.

(F) ChIP assays with YY1 or control IgG were performed on chromatin derived

from either vector control (V)- or IkBa-SR (SR)-expressing MB. Primers

specific to site D were used for PCR amplification. Total inputs are indicated.

All quantitative data are represented as mean ± SD.
372 Cancer Cell 14, 369–381, November 4, 2008 ª2008 Elsevier Inc
during myogenesis, albeit to lower levels, indicating that this

miRNA might be subject to similar transcriptional silencing in

MB. Regulation of miR-29b was not species specific since

similar induction was seen in differentiating human muscle cells

(Figure 3D). We also found that miR-29b/c was stimulated in

developing postnatal muscle (Figure 3E), suggesting that this

miRNA is relevant in skeletal muscle in vivo, and similar to

cultured cells, there was an inverse relationship between miR-

29b/c and NF-kB/YY1 expression (Figure S3A). Furthermore, in

a cardiotoxin (CTX) model of muscle injury, miR-29b/c levels

initially dropped and then steadily increased in accordance

with the regenerative program. This regulation again correlated

strongly with changes in YY1 (Figure 3F; Figure S3B). Altogether,

these results support that miR-29 is positively regulated during

muscle differentiation.

To test the functional relevance of miR-29 regulation during

myogenesis, we employed a gain-of-function approach by

ectopically expressing miR-29 in C2C12 MB with precursor

miRNA oligos (Pre-29). Expression of miR-29 by this technique

was verified by qRT-PCR (Figure S4A). Compared to control

(Pre-NC), Pre-29 stimulated promoter activities of myofibrillar

genes (Figure 4A) and increased endogenous MyHC and tropo-

nin protein (Figure 4B) and RNA (Figure S4B). Although Pre-29c

was used in this analysis, we observed that all three miR-29 mem-

bers were capable of strongly enhancing muscle differentiation

(Figure 4C; Figure S4C). To verify miR-29 specificity, transfec-

tions were repeated with a mutant form of Pre-29c lacking its

seed region (Pre-29-mut). Results showed that MT formation

was virtually identical in cells expressing Pre-29-mut compared

to control (Figure S4D). To further confirm specificity, we carried

out reciprocal loss-of-function experiments in which C2C12 MB

were administered antisense RNA oligos (Anti-29), which were

seen to successfully decrease endogenous miR-29 (Figure S4E).

Compared to the control (Anti-NC), addition of Anti-29 caused

a significant reduction in myogenic activity (Figure 4D) that corre-

lated tightly with decreases in MyHC, troponin, and MT formation

(Figures 4E and 4F; Figure S4F). Taken together, these results

suggest that miR-29 functions in muscle cells as an enhancer

of differentiation.

miR-29 Regulates Myogenesis through Feedback
Inhibition of YY1
We subsequently investigated the mechanism through which

miR-29 regulates differentiation by searching for targets that

might mediate its effect. Remarkably, one of the protein targets

consistently predicted by three algorithms, TargetScan (Lewis

et al., 2003), miRanda (Enright et al., 2003), and PicTar (Krek

et al., 2005), was YY1. Based on this information and our results

showing an inverse relationship in expression between miR-29

and YY1 during myogenesis (Figure 3), we speculated that

miR-29 acts in a feedback loop to suppress YY1 and its antimyo-

genic activity.

A search for miR-29 binding sites within the YY1 30UTR

revealed that all miR-29 family members were predicted to

hybridize to an evolutionarily conserved site among vertebrate

species (Figure 5A; Figure S5A). Secondary structure analysis

also showed a favorable minimum free energy in the formation

of the miR-29:YY1 30UTR duplex stem-loop (Figure 5B). Further-

more, a perfect match exists between the seed region of miR-29
.
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and the 30UTR of YY1, suggesting that miR-29 is involved in

translational repression of YY1. This was tested by cloning

a 500 bp fragment of the YY1 30UTR downstream of the firefly

luciferase (Luc) gene. Cotransfections of this reporter (WT) with

each of the miR-29 family members caused similar repressions

of luciferase (Figure 5C). This was specific to miR-29 binding

since luciferase was less affected when transfections were

repeated with an irrelevant miR or with a mutant lacking the

miR-29 binding site in the YY1 30UTR. We also observed similar

miR-29-mediated downregulation of luciferase when the full-

length YY1 30UTR was inserted downstream of the reporter

(Figure S5B). At the functional level, we predicted that miR-29

binding to the YY1 30UTR would lead to YY1 translational repres-

sion. Indeed, introduction of Pre-29 caused YY1 protein, but not

RNA, to be reduced, while Anti-29 resulted in the opposite effect

(Figure 5D; Figure S5C). To address whether YY1 targeting by

miR-29 was relevant in vivo, we administered Anti-29 oligos in

hindlimb muscles of neonatal mice and subsequently probed

for YY1. Although some variability was observed with control

oligos, addition of Anti-29 led to reproducible increases in YY1

(Figure 5E; Figure S5D). To ascertain the significance of these

changes in YY1, we used siRNA to knockdown YY1 in differen-

tiating C2C12 cells. Consistent with the role of YY1 as a negative

regulator of myogenesis, depletion of YY1 caused a 2.3-fold

increase in myotube formation (Figure 5F). Given that a similar

phenotype was seen upon miR-29 overexpression in differentiat-

ing MB, this suggests that miR-29 action in skeletal muscle is

largely mediated through negative feedback on YY1.

miR-29 Functions as a Tumor Suppressor
in Rhabdomyosarcoma
RMS cells are prohibited from terminal differentiation despite

their commitment to a myogenic pathway. Our result showing

that miR-29 promotes myogenesis led us to investigate whether

miR-29 might be a contributing factor in RMS. Functionally, miR-

29 acts as a tumor suppressor through its proapoptotic activity

and targeting of the prosurvival products TCL (Pekarsky et al.,

2006) and Mcl-1 (Mott et al., 2007). To address the role of

miR-29 in RMS, we examined its expression in cell lines derived

from alveolar (ARMS) and embryonal (ERMS) RMS tumors.

Significantly, miR-29b expression was strongly reduced in each

of the RMS cell lines (Figure 6A), indicating that regulation of

miR-29 does not discriminate among RMS subtypes. Consistent

with these results, miR-29b was also highly suppressed in

primary RMS tumors, and similar to the cell lines, this reduction

did not discriminate between ARMS and ERMS (Figure 6B). To

assess the specificity of this regulation with respect to miR-29,

expression of two other muscle-associated microRNAs, miR-1

and miR-206, was examined in RMS. Whereas miR-1 was also

reduced in most tumors, no uniform pattern of regulation oc-

curred with miR-206 (Figures S6A and S6B), suggesting that

RMS is not associated with a general downregulation of

muscle-associated miRNAs.

To further investigate the tumor suppressor role of miR-29 in

RMS, we tested the effects of ectopic expression of miR-29 in

the RH30 ARMS cell line. Addition of Pre-29b oligos in these cells

caused a 2-fold reduction in cell growth compared to Pre-NC

control (Figure S6C). This difference in cell number was further

enhanced when miR-29b was stably expressed using lentiviral

(pMIF) infection (Figure 6C). Decreases in proliferation correlated

with regulation of cell-cycle proteins, the cyclin-dependent

kinase inhibitor p21CIP/WAF1, and cyclin D1 (Figure 6D). This reg-

ulation was also not specific to ARMS since a similar defect in

growth was observed when Pre-29b was added to RD2 ERMS

cells (data not shown). In addition, miR-29 caused only a mild

effect on apoptosis and was not seen to affect expression of

the prosurvival protein Mcl-1 (Figure S6D). Significantly, al-

though RH30 tumor cells fail to undergo terminal differentiation,

stable expression of miR-29b resulted in increased levels of the

differentiation markers MyHC, a-actin, and troponin (Figure 6E).

Morphologically, the cell shape changed from a round to an elon-

gated appearance, suggestive of an increased tendency toward

differentiation (Figure 6F). Indeed, upon addition of differentia-

tion medium, multinucleated myotube-like cells readily formed

in miR-29b-expressing RH30 cells at levels approximately ten

times that of vector (Figure 6G; Figure S6E). This effect was

Figure 3. miR-29 Is Induced During Muscle

Differentiation In Vitro and In Vivo

(A) C2C12 MB were induced to differentiate up to

4 days in differentiation medium (DM), and at the

indicated times, miR-29a, miR-29b, and miR-29c

were measured by qRT-PCR.

(B) RT-PCR analysis of the myogenic markers

MyoD, myogenin,MyHC IIb, skeletal actin (a-actin),

and troponin T performed at times similar to those

in (A).

(C) Western blots probing for YY1 and nuclear p65

in differentiating C2C12 cells.

(D) Expression of miR-29b and miR-29c in primary

human myoblasts (GM) and myotubes (DM).

(E) Measurement of miR-29 from either lower limb

muscles at P2 and P8 or tibialis anterior (TA)

muscles at P15, P23, and P90 in C57BL/6 mice.

(F) Same measurement as in (E) from cardiotoxin

(CTX)-injected TA muscles.

Quantitative values for miR-29 are represented as

mean ± SD.
Cancer Cell 14, 369–381, November 4, 2008 ª2008 Elsevier Inc. 373
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not specific to ARMS since similar differentiation-accelerating

effects by miR-29b were observed in RD2 ERMS cells (Figures

S6F and S6G). These results indicate that miR-29 limits RMS

cell growth through its promotion of myogenic differentiation.

Next, we evaluated the antitumor effect of miR-29 in vivo

by establishing RH30 tumors in immunocompromised mice.

Tumors were allowed to reach a size of at least 0.1 cm3, at which

time 1 3 109 plaque-forming units (pfu) of pMIF-vector or pMIF-

miR-29b-expressing lentivirus were administered intratumorally,

and tumor size was monitored daily for a period of 3 weeks.

Whereas tumors injected with vector control virus grew rapidly,

with a doubling time of 2 days, tumors injected with miR-29b

showed visibly slower growth, with cell doubling occurring at

around 6 days (Figure 7A). Differences in tumor volumes became

more apparent after 8 days postinjection and persisted until the

experimental endpoint, when control tumors were on average

1.9 times larger than those injected with miR-29b (n = 6; p =

0.0029). In some animals, tumors were resected to evaluate

the mechanism of miR-29 action. Hematoxylin and eosin (H&E)

staining from both groups revealed densely packed, small, round

cells with scant cytoplasm, consistent with the ARMS origin of

the RH30 cell line (Figure 7B). Significantly, intratumoral addition

of miR-29 stimulated myogenic differentiation, as evidenced by

the increased expression of MyHC, a-actin, and troponin (Fig-

ure 7C). This was associated with reduced cellular proliferation

since Ki67 and phosphohistone H3 (p-H3) staining were

2.3- and 1.9-fold lower, respectively, in miR-29-injected tumors

versus control (Figures 7B and 7D; p < 0.05). Similar to in vitro

analysis, we again found no clear evidence of apoptosis by

TUNEL staining in miR-29-expressing tumors (Figure 7D), sug-

gesting that in comparison to other malignancies, the proapop-

totic activity of miR-29 may not be a primary tumor suppressor

mechanism in RMS. To verify that our results were not a conse-

quence of lentivirus delivery, RMS tumors were reestablished in

nude mice and subsequently injected with Pre-29b versus

control Pre-NC oligos. Analogous to lentivirus delivery, tumors

administered with Pre-29b were on average 2.2 times smaller

than controls (Figure 7E; n = 4, p = 0.0047). Collectively, these

data support that miR-29 is a tumor suppressor in RMS

functioning through its prodifferentiation activity.

Evidence of Dysregulation of NF-kB–YY1–miR-29
Circuitry in RMS
To further address the mechanism of miR-29 tumor suppressor

activity in RMS, we considered YY1 as a likely downstream effec-

tor since this was a miR-29 target identified in differentiating

muscle cells. Dysregulated expression of YY1 has also been

associated with multiple cancers (Baritaki et al., 2007; de Nigris

et al., 2006; Seligson et al., 2005). In line with our hypothesis,

higher levels of YY1 were detected in RMS cell lines (Figure 8A)

as well as in patient tumors (Figure S7A) compared to normal ad-

jacent tissues (Figure 8B). Significantly, these results coincided

Figure 4. miR-29 Accelerates Muscle Differentiation

(A) C2C12 cells were transfected with 0.2 mg of MyHC-Luc or

troponin-Luc reporters along with 0.2 mg pCMV-LacZ and

50 mM precursor control (Pre-NC) or miR-29c (Pre-29c) oligos.

Cells were differentiated for 48 hr, and luciferase was deter-

mined and normalized to b-galactosidase. Relative activity is

shown with respect to control cells, where normalized lucifer-

ase values were set to 1. Data represent the average of three

independent experiments ± SD.

(B) C2C12 MB were transfected with Pre-NC or Pre-29c

oligos. Cells were then maintained as MB or differentiated

into MT. Lysates were prepared and probed for MyHC IIb

and troponin T.

(C) MB were transfected with Pre-NC or Pre-29a, b, or c mem-

bers and differentiated (DM) for 1 or 2 days (d), at which time

cells were immunostained for MyHC. Cell morphology was

visualized by phase-contrast microscopy. Scale bars =

100 mm for the top two rows and 200 mm for the bottom row.

(D) C2C12 cells were transfected with MyHC-Luc along with

Anti-miR control (Anti-NC) or Anti-miR-29c (Anti-29c). Cells

were then maintained as MB or differentiated into MT for

48 hr, at which time luciferase activity was determined.

Reporter data represent the average of three independent

experiments ± SD.

(E) MB were administered Anti-NC or Anti-29c, and MyHC and

troponin were then probed in cells maintained as MB or differ-

entiated into MT.

(F) MB were transfected with Anti-NC or Anti-29c oligos,

and cells were subsequently differentiated for 3 days, at

which time cultures were stained for MyHC. Positively stained

cells were counted from a minimum of ten randomly chosen

fields from three individual plates and are represented as

mean ± SD.
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strongly with lower levels of miR-29 (Figure 6), implying that tumor

suppressor activity of miR-29 occurred by targeting YY1. In sup-

port of this notion, expression of miR-29b in RH30 cells caused

a concomitant decrease in YY1 (Figure S7B), and similar to

what was observed in C2C12 MB, downregulation of YY1 in

RH30 cells occurred through the conserved binding site in its

30UTR, as ectopic expression of miR-29 repressed activity of

luciferase reporter containing the wild-type, but not mutant,

miR-29 binding site (Figure S7C). Furthermore, depletion of

YY1 with siRNA in RH30 cells and xenograft tumors induced dif-

ferentiation markers (Figure 8C and Figure 8D, respectively) com-

parable to what was observed with reconstituted miR-29. These

data indicate that loss of miR-29 in RMS leads to dysregulated

expression of YY1, thus favoring an undifferentiated phenotype.

In probing into the mechanism underlying the downregulation

of miR-29 in RMS, we found that similar to YY1, Ezh2 was also

pronouncedly elevated in RMS cell lines and patient tumors (Fig-

ures 8A and 8B). This suggested that epigenetic silencing by the

PcG complex might account for loss of miR-29. Consistent with

this thinking, YY1 and Ezh2 binding was detected on the miR-

29b/c locus in RH30 cells, but interestingly, this binding occurred

on site B (Figure 8E) rather than on the YY1 D binding site that

was identified in C2C12 MB (Figure 1). The reason for this differ-

ence in binding site occupancy is not known. It is possible that

such selectivity is dependent on the dosage of the PcG complex

or the presence of a tumor factor that preferentially directs YY1

binding. YY1 knockdown by siRNA oligos in RH30 cells led to

an increase in miR-29b and to a lesser extent miR-29c (Figures

S7D and S7E), supporting data above that YY1 is required for

miR-29 suppression in RMS. Furthermore, this suppression

was also regulated by NF-kB since addition of IkBa-SR lowered

YY1 while concurrently increasing levels of miR-29b (Figure 8F).

This was consistent with the increase in p65 detected in RMS cell

lines and patient tumors (Figures 8A and 8B). Finally, we also

observed that inactivation of NF-kB by stable expression of

IkBa-SR in RH30 cells stimulated their myogenic potential as

assessed by measurement of differentiation markers and quan-

titation of troponin-positive cells (Figures 8G and 8H; Figures

S8A–S8C), which mirrored the phenotype caused by miR-29

overexpression (Figure 6). Together, these data support that

dysregulation of NF-kB–YY1–miR-29 circuitry is a contributing

factor for RMS tumorigenesis by interfering with the muscle dif-

ferentiation program.

DISCUSSION

This study was undertaken to investigate the potential interplay

between the classical transcription factors NF-kB/YY1 and novel

gene regulator miRNAs in both normal and abnormal myogene-

sis. Results led to the identification of miR-29 as a target of the

Figure 5. miR-29 Suppresses YY1 through

Binding to Its 30UTR

(A) Predicted target site of miR-29c (green) in the

30UTR of mouse YY1 (red), with the seed region

underlined.

(B) Predicted folding structure from mFOLD be-

tween miR-29c (green) and the YY1 30UTR (red).

The minimal free energy (mfe) is indicated, and the

seed region is shown by the purple line and arrow.

(C) A wild-type (WT) luciferase reporter was gener-

ated by fusing an �500 bp fragment of the YY1

30UTR encompassing the miR-29 binding site

downstream of the luciferase reporter gene. The

mutant plasmid was generated by deleting the

miR-29 binding site. WT or mutant reporter

constructs were then transfected into MB with

indicated precursor miRNA oligos. Luciferase

was determined at 48 hr posttransfection and nor-

malized to b-galactosidase. Data represent the

average of three independent experiments ± SD.

(D) MB were transfected with precursor (Pre-NC)

or Anti-miR control (Anti-NC) or precursor miR-

29c (Pre-29) or anti-miR-29c (Anti-29) oligos.

YY1 protein was then probed in extracts from cells

differentiated for 48 hr. Blots were stripped and

reprobed for a-tubulin.

(E) P5 neonatal mice were injected with Anti-miR

control (Anti-NC) or Anti-miR-29c (Anti-29) oligos

in lower limb muscles. Forty-eight hours post-

injection, lysates were probed for YY1.

(F) MB were transfected with siRNA control or

siRNA against YY1. Cells where then differenti-

ated for 24 hr, at which time they were photo-

graphed under phase contrast or immunostained

for MyHC. Numbers indicate averages of MyHC-

positive cells counted from a minimum of ten ran-

domly chosen fields, represented as mean ± SD.

Scale bar = 200 mm at top and 100 mm at bottom.
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NF-kB–YY1 pathway. Although miRNA biology has greatly

advanced in the last few years, much of the effort has focused

on describing the targets of miRNAs rather than understanding

the regulation of miRNA genes themselves. The nature of miRNA

promoter/regulator elements remains one of the most interesting

and open questions in the study of miRNA regulation, and their

identification as recently described for embryonic stem cells

(Marson et al., 2008) is likely to help unravel the regulatory

networks involved by these miRNAs. Our current study identified

a regulatory element located �20 kb upstream from the miR-

29b/c cluster on chromosome 1. This element contains a YY1

binding site that also associates with the transcriptional repres-

sor factors Ezh2 and HDAC1. We showed that this repressive

complex binds specifically in myoblasts when miR-29b/c ex-

pression was at its lowest and that loss of YY1 and Ezh2 binding

during myogenesis leads to induction of miR-29. This suggests

that YY1 and the PcG complex function through this regulatory

element to epigenetically repress miR-29b/c transcription in

progenitor muscle cells. Recent work has shown that a similar

PcG complex under NF-kB control is responsible for the silenc-

ing of multiple myofibrillar genes in myoblasts (Wang et al.,

2007). Likewise, we found that miR-29 expression was also

negatively regulated by NF-kB, suggesting that miR-29 regula-

tion is controlled by a mechanism analogous to that described

for protein-coding genes.

The difficulty of accurately identifying the transcriptional start

site (TSS) of miRNAs has hindered studies of intergenic miRNA

regulation. However, recently Chang and colleagues (2008)

used the rapid amplification of cDNA ends (RACE) technique to

characterize the TSS of miR-29b/c. Impressively, their results

placed the TSS within the conserved regulatory region described

in this report. The four YY1 sites that we identified are located in

close proximity to the TSS. Site D, which is occupied by YY1 in

myoblasts, lies 2 kb downstream of the pre-miR-29b/c start

site in the first intron, whereas the functional YY1 binding site

B in RMS lies only 200 bp upstream of the TSS. This is consistent

with previous findings that map YY1 regulatory sites within the

proximal promoter regions of myofibrillar genes (Wang et al.,

2007), again supporting the argument that miR-29 can be

regulated in a fashion similar to that of protein-coding genes.

The decrease in NF-kB and YY1 activities, in conjunction with

an upregulation of miR-29 during in vitro and in vivo differentiation

of skeletal muscle cells, argues that this family of miRNAs plays

a role in normal myogenesis. Our results from combined gain-

of-function and loss-of-function experiments support this notion.

We further showed that the mechanism by which the miR-29

family functions in this capacity is by targeting its own repressor,

YY1. Reports have shown that YY1 mRNA and protein are down-

regulated during muscle differentiation (Caretti et al., 2004; Wang

et al., 2007), in part through the concomitant reduction of p65 and

the classical signaling pathway of NF-kB (Bakkar et al., 2008). Our

current findings suggest that miR-29 is an additional factor ensur-

ing YY1 downregulation during skeletal myogenesis. Therefore,

similar to multiple myogenic transcription factors, cell-cycle

regulators, and signaling pathways, miR-29 represents a group

of noncoding RNAs including the muscle-specific miRs 1, 133,

and 206 that participates in fine tuning the fidelity of skeletal

muscle cell differentiation.

Figure 6. miR-29 Functions as a Tumor Suppressor in

Rhabdomyosarcoma

(A) Normal human skeletal muscle cells were cultured along

with alveolar rhabdomyosarcoma (ARMS) and embryonal

rhabdomyosarcoma (ERMS) cell lines, and qRT-PCR was

performed to measure miR-29b.

(B) Total RNAs were obtained from ten RMS patient tumors

(numbers represent patient identification), and expression of

miR-29b was measured by qRT-PCR. Total RNAs from human

skeletal muscle were used as the control. For (A) and (B),

quantitative data for miR-29 values are represented as

mean ± SD.

(C) RH30 cells were transduced with vector or miR-29b-

expressing lentiviruses, and stable cell lines were generated.

Cell numbers were determined in triplicate by trypan blue

staining over the course of 10 days; values are expressed as

mean ± SD.

(D) Total RNAs were extracted from vector or miR-29b-

expressing RH30 cells, and semiquantitative RT-PCR was

performed probing for p21CIP/WAF1 and cyclin D1. GAPDH

was used as a control.

(E) Analysis as in (D) was performed for the differentiation

markers MyHC, a-actin, and troponin T.

(F) Phase-contrast images of control and miR-29-expressing

RH30 cells. Arrowheads indicate myotube-like structures.

Cells were treated with differentiation medium for 2 days

and immunostained for troponin. Scale bars = 200 mm.

(G) Vector control or miR-29-expressing RH30 cells were

differentiated (DM) for 0, 1, 2, 3, or 4 days and subsequently

immunostained for troponin. The graph represents the aver-

age number of troponin-positive cells that were counted

from a minimum of ten randomly chosen fields from three

culture plates.
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The ability of miR-29 to stimulate normal myogenesis promp-

ted us to ask whether it could also contribute to the aberrant

myogenic differentiation and tumor development in RMS. In-

deed, our results support that miR-29 acts as a tumor suppres-

sor in skeletal muscle cells. This conclusion was derived from

findings showing that miR-29 expression was dramatically

reduced in RMS cancer cell lines and patient tumor samples.

These data are consistent with a recently performed miRNA

profiling study that identified the downregulation of miR-29 in

four patients with ARMS (Subramanian et al., 2007). Further

support for tumor suppressor actions of miR-29 in RMS came

from our results showing that forced expression of miR-29

restored the potential to reengage a muscle differentiation pro-

gram and led to a reduction in RH30 proliferation. Significantly,

the tumor suppressor activities of miR-29 were also confirmed

in an RMS xenograft model. Similar to cultured cells, miR-29-ex-

pressing tumors displayed increased differentiation and reduced

cellular proliferation. Thus, loss of miR-29 in RMS likely facili-

tates tumor development through an inhibition of myogenic

differentiation. Previous studies have suggested that miR-29 is

involved in B cell chronic lymphocytic leukemia and cholangio-

carcinoma by regulating an apoptotic pathway. However, our

results in RMS did not reveal a significant effect on apoptosis,

suggesting that miR-29 exerts its tumor suppressor function in

RMS through a mechanism distinct from those previously

described.

Figure 7. miR-29 Inhibits RMS Tumor

Growth In Vivo

(A) RH30 tumors were established in mice and

then injected with vector or miR-29b-expressing

lentiviruses. Tumor volume was recorded daily

for 21 days; values are expressed as mean ± SD.

(B) Tumors were sectioned for histological staining

with hematoxylin and eosin (H&E) or the prolifera-

tion markers Ki67 and phosphohistone H3 (p-H3).

Apoptotic cells were stained by a standard TUNEL

assay. Scale bars = 200 mm for top two rows and

100 mm for bottom two rows.

(C) During the course of miRNA treatment, three

tumors from vector control- and miR-29b-injected

groups were resected. Total RNAs were prepared,

and semiquantitative RT-PCR was performed

probing for differentiation markers.

(D) Ki67-, p-H3-, and TUNEL-positive cells were

quantitated by counting positively stained cells

from ten randomly chosen fields from six sections

per tumor, represented as mean ± SD. *p < 0.05.

(E) RH30 xenograft tumors were established as in

(A) and then injected with precursor control miR

(Pre-NC) or miR-29b (Pre-29b) oligos. Tumor

volume was recorded over 21 days; data are

represented as in (A).

In an attempt to elucidate the down-

stream oncogenes that mediate the tu-

mor suppressor function of miR-29, we

discovered that YY1 was highly induced

in RMS cells and patient samples. YY1

was downregulated by ectopic expres-

sion of miR-29 in RH30 cells, and the

data support that this downregulation is

mediated by a translational repression mechanism similar to

the one that we observed in C2C12 MB. These data further sug-

gest that YY1 is a downstream effector of miR-29. YY1 is thought

to function as an oncogene through the modulation of key genes

involved in cell-cycle regulation and apoptosis (Gordon et al.,

2006). However, our results demonstrated that in RMS, the on-

cogenic activity of YY1 arises from its antidifferentiation property

in myogenesis. Furthermore, YY1 has been shown to regulate

p53 (Sui et al., 2004). Findings demonstrate that p53 is required

for normal skeletal myogenesis and that its inactivation corre-

lates with RMS (Cam et al., 2006). Therefore, it is possible that

deregulated expression of YY1 in RMS leads to p53 inactivation

in muscle cells that contributes to their transformed phenotype

predominantly by a block in myogenic differentiation. In addition

to YY1, we have identified several sarcoma-associated onco-

genes that qualify as miR-29 targets (Table S2), suggesting

that the tumor suppressor activity of miR-29 in muscle cells

may occur through different mechanisms or that miR-29 may

function as a tumor suppressor in multiple sarcomas other

than RMS.

In contrast to the majority of tumor suppressor miRNAs, which

reside in fragile sites and exhibit loss of heterozygosity (Calin

et al., 2004), miR-29 genes reside in chromosomal regions not

typically described to undergo rearrangements (Barr, 2001; Dou-

glass et al., 1985). This suggests that mechanisms other than

chromosomal alterations exist to suppress miR-29. Our current
Cancer Cell 14, 369–381, November 4, 2008 ª2008 Elsevier Inc. 377
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findings support that such suppression results from a dysregula-

tion of YY1 in RMS. YY1 is bound to the regulatory region of miR-

29b/c in RMS cells, suggesting that suppression of miR-29b/c

occurs by epigenetic silencing. Our finding that Ezh2 levels are

also elevated in RMS is consistent with findings that PcG pro-

teins contribute to oncogenesis (Sparmann and van Lohuizen,

2006). Interestingly, recent work has elucidated that miR-29

can target methyltransferases in lung tumor cells and that forced

expression of miR-29 leads to reduced global DNA methylation

(Fabbri et al., 2007). Thus, miR-29 might represent a unique class

of miRNAs involved in cancer epigenomics with respect to their

regulation and function.

Taken together, these results identify the involvement of

miR-29 in a regulatory circuit relevant in both skeletal myogenesis

and RMS. As modeled in Figure 8I, we propose that miR-29 and

YY1 are interlinked by a mutual negative feedback loop whereby

miR-29 blocks YY1 translation and YY1 inhibits miR-29 transcrip-

tion. This loop is further regulated by NF-kB, which indirectly

controls miR-29 through YY1. In normal proliferating myoblasts,

constitutive NF-kB activity functions in part by maintaining levels

of YY1 that repress miR-29 by an epigenetic mechanism. Once

differentiation ensues, NF-kB activity is decreased, leading to

a transcriptional reduction in YY1 and subsequent derepression

of miR-29. Increasing levels of miR-29 in turn inhibit YY1 transla-

tion, thereby promoting myofibrillar gene expression. However,

in RMS this regulatory circuit is compromised by constitutive

activation of NF-kB–YY1 that, in combination with elevated PcG

activity, promotes sustained silencing of miR-29. In the absence

of miR-29, YY1 levels are further elevated to inhibit differentiation,

thereby facilitating tumor development. These findings not only

Figure 8. NF-kB–YY1–miR-29 Circuitry Is

Dysregulated in RMS

(A) Extracts were prepared from normal human

muscle and RMS cell lines, and immunoblots

were performed probing for YY1, Ezh2, and p65.

(B) Lysates were prepared from five RMS patient

tumors (T) and adjacent normal muscle tissue (N)

and probed for YY1, Ezh2, and p65 proteins.

(C) RH30 cells were transfected with control

siRNA oligos or siRNA-YY1 oligos. Cells were

differentiated, and semiquantitative RT-PCR was

performed probing for differentiation markers.

GAPDH was used as a control.

(D) RH30 tumors were established in nude mice

and then injected with siRNA oligos every 3 days

for 1 week. RNA and protein lysates were pre-

pared from tumors and subsequently probed by

RT-PCR for MyHC, a-actin, and troponin and by

western blot for YY1.

(E) ChIP assays with either a YY1 antibody or con-

trol IgG were performed on chromatin isolated

from human skeletal muscle cells (control) or

RH30 cells (RMS). Precipitated DNA fragments

were amplified with oligonucleotides spanning

regions A–D of the human miR-29b/c regulatory

region. Total inputs are indicated.

(F) RH30 cells were infected with adenoviruses

expressing vector control or IkBa-SR. YY1 and

miR-29b levels were measured at 48 hr postin-

fection by qRT-PCR and are represented as

mean ± SD.

(G) RH30 cells were infected with control or IkBa-

SR adenovirus, and differentiation markers were

probed by qRT-PCR.

(H) RH30 cells were transduced with vector or

IkBa-SR-expressing retroviruses to generate sta-

ble cell lines. Cells were then treated with differ-

entiation medium for 2 days and immunostained

for troponin and quantified for myofibrillar ex-

pression, represented as mean ± SD.

(I) Model depicting the role of the NF-kB–YY1–

miR-29 regulatory circuit in both normal myogenic

differentiation and RMS. In myogenesis, this

circuit involves constitutive activity of NF-kB in

myoblasts regulating YY1, which subsequently

epigenetically suppresses miR-29 and maintains cells in an undifferentiated state. As differentiation ensues, downregulation of the NF-kB–YY1 pathway leads

to upregulation of miR-29 that in turns further decreases YY1 levels to ensure proper differentiation into myotubes. In RMS, this circuit becomes dysregulated

due to an increase in the NF-kB–YY1 pathway that constitutively represses miR-29. In the absence of miR-29 tumor suppressor activity, YY1 is left uncontrolled,

thereby impairing differentiation and leading to rhabdomyosarcomagenesis.
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provide insights into the interplay between transcription factors

and miRNAs during muscle differentiation but also have implica-

tions for the diagnosis and treatment of RMS.

EXPERIMENTAL PROCEDURES

Cell Lines

C2C12 myoblasts (MB) were cultured and differentiated as described previ-

ously (Guttridge et al., 1999). Human MB were obtained from Clonetics and

maintained in F12 medium supplemented with 20% FBS and 4% chicken

embryo extract. Human RMS cell lines were maintained in RPMI medium

supplemented with 10% FBS.

Transfection and Infections

Transfections with miRNA precursor oligos and siRNA oligos were performed

with Lipofectamine 2000 as suggested by the manufacturer (Invitrogen). For

luciferase assays, cells were transfected in 12-well plates and luciferase activ-

ity was monitored as described previously (Guttridge et al., 1999). For lentivirus

production, pMIF-cGFP-Zeo vector or pMIF-cGFP-Zeo-miR-29b plasmids

along with pPACK packaging plasmid mix (System Biosciences) were trans-

fected into 293TN cells maintained in 10% FBS. Forty-eight hours after trans-

fection, supernatant was harvested from these cells and viral titers were esti-

mated by fluorescence-activated cell sorting analysis. Approximately 1 3 109

virus particles were used to transduce RH30 or RD2 cells, which were subse-

quently placed in 200 mg/ml Zeocin for stable selection. Adenovirus particles

expressing IkBa-SR or GFP vector control (University of North Carolina Vector

Core Facility) were used to infect RH30 cells. RNAs were prepared at 48 hr

postinfection and used for subsequent analysis. pBabe vector and pBabe-

IkBa-SR retroviruses were produced as described previously (Hertlein et al.,

2005).

Oligonucleotides and Plasmids

Precursor miRNA oligos were obtained from Ambion. 2-O0-methyl- and

30-amino-C6-modified Anti-miR oligos were obtained from Fidelity Systems.

siRNA oligos against human or mouse YY1 were obtained from Santa Cruz

Biotechnology, and siRNA oligos against p65 were obtained from Dharmacon.

In each case, 50 mM oligos were used for transient transfections. Details on the

construction and use of plasmids can be found in Supplemental Experimental

Procedures.

RT-PCR and Real-Time RT-PCR

Total RNAs from cells were extracted using TRIzol reagent (Invitrogen). Ex-

pression of mature miRNAs was determined using a miRNA-specific TaqMan

microRNA assay kit (Applied Biosystems) in an iCycler (Bio-Rad Laboratories).

U6 was used for normalization.

Immunoblotting and Immunostaining

Cell extracts were prepared and used for immunoblotting as described previ-

ously (Guttridge et al., 1999). Source and dilution for each antibody were as

follows: YY1 (Santa Cruz, 1:1000), troponin T (Sigma, 1:1000), MyHC (Sigma,

1:1000), Ezh2 (Zymed, 1:1000), p65 (Rockland, 1:10000), a-tubulin (Sigma,

1:1000), and b-actin (Santa Cruz, 1:1000). For immunofluorescence of

C2C12 cells, antibodies used were MyHC or troponin T (Sigma, 1:500). For tu-

mor sections, antibodies used were anti-phosphohistone H3 (Cell Signaling,

1:200) and Ki67 (Dako, 1:50).

EMSAs and ChIP

EMSAs and ChIP were performed as described previously (Wang et al., 2007).

For ChIP assays, 2 mg of antibodies against YY1 (Santa Cruz), Ezh2 (Zymed),

HDAC1 (Santa Cruz), trimethyl histone H3K27 (Upstate), SRF (Santa Cruz),

Mef2 (Santa Cruz), or isotype IgG (Sigma) were used. Genomic DNA pellets

were resuspended in 20 ml of water. PCR was performed with 2 ml of immuno-

precipitated material, and products were analyzed on an agarose gel

visualized by a gel documentation system.
Tumor Samples

Specimens were obtained from the Cooperative Human Tissue Network in

accordance with the institutional review boards of The Ohio State University

and Nationwide Children’s Hospital. Details on the characterization of each

tumor specimen can be found in Supplemental Experimental Procedures.

Animal Studies

Mice were housed in the animal facilities of the Arthur G. James Comprehen-

sive Cancer Center under conventional conditions with constant temperature

and humidity and fed a standard diet. Treatment of mice was in accordance

with the institutional guidelines of The Ohio State University Animal Care and

Use Program. For Anti-miR oligo injection, P5 C57BL/6 mice were injected

with 5 nM Anti-NC or Anti-miR-29 oligos in the lower limb. Muscles were col-

lected 48 hr postinjection and used for western blotting. For cardiotoxin (CTX)

studies, 4-week-old mice were injected with 50 ml of CTX at 10 mg/ml in the

tibialis anterior. Muscles were harvested and RNAs extracted for real-time

RT-PCR analysis. For xenograft studies, 3- to 4-week-old athymic nu/nu

female mice (Charles River Laboratories, NCI) were injected subcutaneously

with 3 3 106 RH30 cells. Tumor diameter was measured two-dimensionally

daily with electronic calipers. Tumor volume was calculated using the following

formula: (p/6) 3 Dl 3 Ds
2, where Dl is the largest diameter and Ds is the smallest

diameter. Pre-miR oligos or siRNA oligos (5 mM) were preincubated with

Lipofectamine (Invitrogen) for 15 min prior to injection into tumors in a final

volume of 60 ml of Opti-MEM (Invitrogen).

Bioinformatic and Statistical Analysis

Promoter sequences were retrieved from UCSC Genome Bioinformatics

(http://genome.ucsc.edu/). Prediction of the transcription factor binding sites

was performed using the rVISTA sequence analysis tool (http://rvista.dcode.

org/). Prediction of miRNA targets was performed using three publicly avail-

able algorithms: TargetScan (http://www.targetscan.org/), miRanda (http://

www.microrna.org/), and PicTar (New York University Center for Comparative

Functional Genomics). Statistical significance of tumor growth was assessed

using a paired Student’s t test.

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, eight figures, and two tables and can be found

with this article online at http://www.cancercell.org/supplemental/

S1535-6108(08)00330-9.
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