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Background: The ginsenoside Rb1 (Rb1) is the most abundant compound in the root of Panax ginseng.
Recent studies have shown that Rb1 has a neuroprotective effect. However, the mechanisms underlying
this effect are still unknown.
Methods: We used stable isotope labeling with amino acids in cell culture, combined with quantitative
mass spectrometry, to explore a potential protective mechanism of Rb1 in b-amyloid-treated neuronal
cells.
Results: A total of 1,231 proteins were commonly identified from three replicate experiments. Among
these, 40 proteins were significantly changed in response to Rb1 pretreatment in b-amyloid-treated
neuronal cells. Analysis of the functional enrichments and protein interactions of altered proteins
revealed that actin cytoskeleton proteins might be linked to the regulatory mechanisms of Rb1. The CAP1,
CAPZB, TOMM40, and DSTN proteins showed potential as molecular target proteins for the functional
contribution of Rb1 in Alzheimer’s disease (AD).
Conclusion: Our proteomic data may provide new insights into the protective mechanisms of Rb1 in AD.
Copyright � 2015, The Korean Society of Ginseng, Published by Elsevier. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The root of Panax ginseng (Ginseng) has been used in traditional
oriental medicine to improve health formore than a thousand years
in Asia. A number of studies have reported the neuroprotective
effects of ginseng [1]. Cognitive behavior in patients with Alz-
heimer’s disease (AD) was improved by ginseng powder [2].
Ginseng extract prevented the development of locomotion deficits
in patients with Parkinson’s disease [3].

The main bioactive components of ginseng are known as gin-
senosides, which have been identified in > 30 species [4]. It has
been reported that neuroprotective effects on central nervous
system disorders and neuronal diseases can be attributed to the
ginsenosides [5]. The effects of ginsenosides have been shown via
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increased cell survival, extension of neurite growth, and neuronal
rescues both in vivo and in vitro [1]. Of these, ginsenoside Rb1
(Rb1) has been reported to be the primary ginsenoside responsible
for the neuroprotective effects of neurodegenerative diseases [6].
Hippocampal neurons were protected by Rb1 against either
ischemia or glutamate-induced neuronal diseases [7]. Recently,
several studies have reported the protective effects of Rb1 against
AD. Rb1 improved AD by increasing brain-derived neurotrophic
factor and decreasing Tau protein [8] and protected neuronal cells
from injury with b-amyloid (Ab) treatment [9,10]. Additionally,
Rb1 demonstrated anti-neuroinflammation effects in a rat model
of AD [11].

In the past decade, many studies using state-of-the-art tech-
nologies have tried to understand the molecular mechanisms and
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Fig. 1. SILAC analysis of pretreatment with Rb1 in Ab-induced neurocytotoxicity. (A) An overview of SILAC experiments. Cells were pretreated with or without 100mM Rb1 for 24 h
and then exposed to 25mM Ab for 24 h. Each cell was lysed, and equal amounts of proteins were combined and then separated by SDS-PAGE. The gel lane was divided into 10 regions
and analyzed using nano-LC MS/MS as described in the Materials and methods section. (B) Immunoblot analysis of Rb1 during Ab exposure in SH-SY5Y cells. Decreased PARP-1
cleavage and Bax were observed with Rb1 pretreatment. (C). Paired peptides of a tubulin beta-2A chain showed an approximate ratio of 1:1. SH-SY5Y cells were cultured in
light media containing 12C6-Arg and 12C6, 14N2-Lys or heavy media containing 13C6-Arg and 13C6, 15N2-Lys. Equal amounts of protein concentration were combined at a 1:1 ratio and
were identified and quantified by nano-LC MS/MS. Ab, b-amyloid; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SILAC, stable isotope labeling with amino
acids in cell culture.
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to find biomarkers for the early diagnosis and treatment of AD [12].
In particular, proteomic studies, which provide powerful tools to
identify the dynamic expression of proteins in biological samples,
have been used to identify the molecular pathways involved in
neuropathogenesis. From these studies, a number of potential
target proteins have been identified for AD [13e15]. Recently, these
proteomic studies have attempted to investigate the molecular ef-
fects of ginsenosides in cancer, smooth muscle cells, and diabetes
[16e18]. However, even though a number of studies examining the
protective effects of Rb1 are ongoing, our understanding of the
regulatory mechanisms of Rb1 in AD is still lacking.

We performed a mass spectrometry (MS)-based proteomics
experiment using stable isotope labeling with amino acids in cell
culture (SILAC) to identify any proteins that are significantly altered
by the neuroprotective effects of Rb1 in Ab-treated neuronal cells.
By following this approach, our data provide several new candidate
proteins involved in the protective mechanisms of Rb1 and offer
new insights into the potential molecular mechanisms of Rb1 in AD.
2. Materials and methods

2.1. SILAC

SILAC experiments were carried out as previously described
[19]. In brief, SH-SY5Y cells were grown for at least five cell di-
visions in either “light media” containing 12C6-Arg and 12C6, 14N2-
Lys or “heavy media” containing 13C6-Arg and 13C6, 15N2-Lys sup-
plemented with 10% dialyzed fetal bovine serum (Invitrogen, New
York, NY, USA), 50 IU/mL penicillin, and 50 mg/mL streptomycin.
The labeled cells were pretreated with (light media) or without
(heavy media) 100mM Rb1 for 24 h and then exposed to 25mM
Ab25e35 (Sigma-Aldrich, St. Louis, MO, USA) for 24 h. The cells were
then lysed in buffer containing 1% Triton X-100, 150mM NaCl, 1mM
EDTA, 50mM TriseHCl (pH 8.0), 1mM sodium orthovanadate, 5mM
NaF, 5mM sodium pyrophosphate, 1mM phenylmethylsulfonyl
fluoride (PMSF), aprotinin (1.5 mg/mL), antipain (10 mg/mL), leu-
peptin (10 mg/mL), and benzamidine (0.1 mg/mL). The lysates were



Fig. 2. Quantitative analysis of the proteins differentially expressed following Rb1
pretreatment of Ab-induced neurotoxicity. (A) A Venn diagram demonstrating the
overlap between the proteins identified in three replicates after Rb1 pretreatment in
Ab-induced neurotoxicity. A total of 1,231 proteins overlapped from the three repli-
cates. (B) Distribution of protein expression levels by SILAC. Thirty-six proteins were
significantly upregulated, and four proteins were significantly downregulated by> 1.5-
fold. Ab, b-amyloid; SILAC, stable isotope labeling with amino acids in cell culture.
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centrifuged at 160,000g and mixed at a 1:1 ratio according to their
protein concentration. The combined protein lysates were sepa-
rated via 10% sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) and stained with Coomassie Brilliant Blue G-
250 (Bio-Rad, Hercules, CA, USA).

2.2. In-gel digestion and MS analysis

Each gel was sliced into 10 bands of equal size, destained with
50% acetonitrile (ACN) in 25mM ammonium bicarbonate and dried
in a speed vacuum concentrator. Dried gel pieces were rehydrated
using 25mM ammonium bicarbonate (pH 8.0) containing 50 ng of
trypsin and incubated at 37�C for 16e24 h. Tryptic peptidemixtures
were extracted with 50% ACN in 5% formic acid (FA) and dried in a
speed vacuum concentrator. Extracted peptides were analyzed
using the Agilent HPLC-Chip/TOF MS systemwith the Agilent 1260
nano-LC system, HPLC-Chip-cube MS interface, and a 6530 QTOF
single quadrupole-TOF mass spectrometer (Agilent Technologies,
Santa Clara, CA, USA). The dried peptides were resuspended in 2%
ACN/0.1% FA and concentrated on a large-capacity HPLC Chip
incorporated with an enrichment column (9 mm, 75 mm I.D.,
160 nL) and a reverse-phase column (15 cm, 76 mm I.D., packedwith
Zorbax 300SB-C18 5-mm resin). The peptides were separated by a
70-min gradient of 3e45% buffer B (buffer A contained 0.1% FA and
buffer B contained 90% ACN/0.1% FA) at a flow rate of 300 nL/min.
The MS and MS/MS data were acquired in the positive ion mode
and data stored centroid mode. The chip spray voltage was set at
1850 V and maintained under chip conditions. The drying gas
temperature was set at 325�C with a flow rate of 3.5 L/min. A
medium isolation (4m/z) windowwas used for precursor isolation.
A collision energy with a slope of 3.7 V/100 Da and an offset of 2.5 V
was used for fragmentation. Additionally, whereas the MS data
were acquired over a mass range of 300e3,000 m/z, the MS/MS
data were acquired over a 50e2500 m/z mass range. Reference
mass correction was performed using a reference mass of 922.
Precursors were set in an exclusion list for 0.5 min after twoMS/MS
spectra. The elution profiles of the light and heavy peptides were
isolated and quantified based on the area of each peptide peak, and
the abundance ratio was calculated based on these areas by Xpress.
Database searches were performed with a peptide mass tolerance
of 20 ppm, an MS/MS tolerance of 0.5 Da, and a strict tryptic
specificity (cleavage after lysine and arginine) allowing one missed
cleavage site; carbamidomethylation of Cys was set as a fixed
modification, whereas methione oxidation (M) was considered a
variable modification.

Quantitative protein ratios were determined by the average
levels of quantified peptides.

2.3. Bioinformatics analysis

Gene Ontology (GO) distribution analysis was performed using
the DAVID database. Analysis of the proteineprotein interaction
networks was carried out using the STRING database Cytoscape
plugin [20].

2.4. Immunoblotting

Protein lysates were separated by 7.5% SDS-PAGE and trans-
ferred to nitrocellulose membranes (Bio-Rad). The membranes
were blocked with 4% skim milk and then incubated with anti-
PARP (Cell Signaling, Danvers, MA, USA) and anti-Mortalin (Neu-
roMab, Davis, CA, USA), followed by incubation with horseradish
peroxidase (HRP)-conjugated goat anti-mouse immunoglobulin G
at room temperature. The proteins were visualized using enhanced
chemiluminescence (ECL).
3. Results and discussion

3.1. SILAC-based proteomic analysis

To explore the potential protectivemechanisms of Rb1 in AD, we
performed a large-scale proteomic analysis using SILAC combined
with nano-LC tandem mass spectrometry (nano-LC-MS/MS) to
investigate proteins expressed differentially owing to pretreatment
with Rb1 in Ab-treated SH-SY5Y cells. Cells grown in “light” media
containing 12C6-Arg and 12C6,14N2-Lys were exposed to Ab after pre-
treatment with Rb1, whereas the cells grown in “heavy” media
containing 13C6-Arg and 13C6, 15N2-Lys were treated with Ab after
pretreatment with vehicle (Fig. 1A). As seen in previous studies
[21], Ab treatment resulted in PARP-1 cleavage and increased Bax
levels, which is a marker of apoptotic cells. These changes were
prevented by Rb1 pretreatment (Fig. 1B). These results showed that
Ab treatment efficiently induced neurotoxicity, and Rb1 prevented
Ab-induced neurotoxicity in SH-SY5Y cells. Analysis of the mono-
isotopic peaks from our SILAC experiments indicated an expected
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1:1: ratio between Rb1 pretreated and control samples, as illus-
trated in Fig. 1C.

We performed three independent SILAC-based proteomic ex-
periments and used protein sets with paired light- and heavy-
labeled peptides found in the three replicate experiments. A total
of 1707 proteins in the first dataset, 1829 proteins in the second
dataset, and 1828 proteins in the third dataset were identified. Of
these, 1231 proteins were commonly identified in all three inde-
pendent datasets (Table S1; Fig. 2A). To detect the differentially
expressed proteins, XPRESS was used to compare the extracted ion
chromatography of the light- and heavy-labeled peptides from
nano-LC-MS/MS [19]. A fold-change cutoff of> 1.5 was applied, and
the commonly detected proteins were only used in three inde-
pendent datasets for quantitative analysis. Forty of the proteins
showed a significant difference of> 1.5-fold (Fig. 2B). Among these,
36 proteins were upregulated and four proteins were down-
regulated by pretreatment with Rb1 in Ab-treated SH-SY5Y cells
(Fig. 2B and Table 1).
3.2. Functional enrichment analysis of the changed proteins

To investigate the functional roles of Rb1 in AD, the altered
proteins were subjected to GO-based enrichment analysis using
Table 1
List of proteins altered with a >1.5-fold change in three independent replicates

Accession number1) Gene name Prot

P16402 HIST1H1D Histone H1.3
P17066 HSPA6 Heat shock 70 kDa protein 6
P36776-2 LONP1 Isoform 2 of Lon protease homolog
P31939-2 ATIC Isoform 2 of bifunctional purine bio
O43809 NUDT21 Cleavage and polyadenylation spec
P07951-2 TPM2 Isoform 2 of tropomyosin beta chai
P60981-2 DSTN Isoform 2 of destrin
O96008 TOMM40 Mitochondrial import receptor subu
P10412 HIST1H1E Histone H1.4
P16403 HIST1H1C Histone H1.2
O14874-2 BCKDK Isoform 2 of {3-methyl-2-oxobutan

mitochondrial
P47914 RPL29 60S ribosomal protein L29
Q01518 CAP1 Adenylyl cyclase-associated protein
Q12849-5 GRSF1 Isoform 2 of G-rich sequence factor
P51570-2 GALK1 Isoform 2 of galactokinase
Q8NBX0 SCCPDH Saccharopine dehydrogenase-like o
P17980 PSMC3 26S protease regulatory subunit 6A
P61221 ABCE1 ATP-binding cassette subfamily E m
P46940 IQGAP1 Ras GTPase-activating-like protein
P12955-2 PEPD Isoform 2 of Xaa-Pro dipeptidase
Q16795 NDUFA9 NADH dehydrogenase [ubiquinone]
Q8NBU5-2 ATAD1 Isoform 2 of ATPase family AAA do
P47756-2 CAPZB Isoform 2 of F-actin-capping protei
Q5JTZ9 AARS2 AlanineetRNA ligase, mitochondria
Q9Y2V2 CARHSP1 Calcium-regulated heat stable prote
P84103-2 SRSF3 Isoform 2 of serine/arginine-rich sp
Q9UJZ1-2 STOML2 Isoform 2 of stomatin-like protein 2
P62314 SNRPD1 Small nuclear ribonucleoprotein Sm
Q9NVP1 DDX18 ATP-dependent RNA helicase DDX1
Q9Y266 NUDC Nuclear migration protein nudC
Q9NZI8 IGF2BP1 Insulin-like growth factor 2 mRNA-
P62266 RPS23 40S ribosomal protein S23
Q15637-2 SF1 Isoform 2 of Splicing factor 1
P12268 IMPDH2 Inosine-50-monophosphate dehydro
Q9NXF1-2 TEX10 Isoform 2 of testis-expressed seque
P37108 SRP14 Signal recognition particle 14 kDa p
P39748-2 FEN1 Isoform FENMIT of Flap endonuclea
O60506-2 SYNCRIP Isoform 2 of heterogeneous nuclear
Q8NBQ5 HSD17B11 Estradiol 17-beta-dehydrogenase 1

1) Accession numbers are from the Uniprot database; significantly different protein
(unlabeled/labeled) ratios quantitated from integrated proteomics software. Ratios were
DAVID [22]. As shown in Fig. 3A, the cellular component term
annotation reveals a major spectrum of cellular localizations
involved in the proteineDNA complex, ribonucleoprotein complex,
membrane-bound organelle, nonmembrane-bound organelle, and
intracellular organelle part GO terms. To further understand the
biological implications of the intracellular organelle part term-
related proteins and investigate which have the best p values in
the cellular component category (Table S2), enrichment was per-
formed for different aspects of the biological process. The biological
process category showed that a majority of proteins were associ-
ated with macromolecular complex subunit organization, cellular
component assembly, DNA packing, actin filament-based process,
and organelle organization, for which five subcategory terms were
identified (Fig. 3B; Table S3).
3.3. Actin cytoskeleton

To investigate the regulatory mechanisms of Rb1 in AD, we
performed an analysis of proteineprotein interaction networks
using the STRING database plugin Cytoscape [20]. We analyzed the
proteins that were differentially expressed by Rb1 pretreatment.
The subnetworks with upregulated proteins revealed a strong
interaction network. Interestingly, consistent with our biological
ein description Log2 ratio (treat/control)

7.32
5.67

, mitochondrial 3.82
synthesis protein PURH 1.50
ificity factor subunit 5 1.48
n 1.30

1.24
nit TOM40 homolog 1.22

1.21
1.17

oate dehydrogenase [lipoamide]} kinase, 1.14

1.04
1 1.00
1 0.91

0.90
xidoreductase 0.90

0.81
ember 1 0.73
IQGAP1 0.72

0.71
1 alpha subcomplex subunit 9, mitochondrial 0.67

main-containing protein 1 0.66
n subunit beta 0.66
l 0.65
in 1 0.65
licing factor 3 0.64
, mitochondrial 0.64
D1 0.64
8 0.63

0.63
binding protein 1 0.63

0.62
0.62

genase 2 0.60
nce 10 protein 0.59
rotein �0.59
se 1 �0.66
ribonucleoprotein Q �0.82

1 �1.49

modulations (p < 0.05); fold change is calculated using Rb1 pretreated/control
obtained from n ¼ 3.



Fig. 3. Gene Ontology (GO) term annotation analysis of the proteins altered by Rb1. (A) The differentially expressed proteins are categorized by cellular components using GO
annotation. A total of five subcategory terms are identified. (B) Intracellular organelle part, which has the most significant p value enrichment of the cellular component categories,
is categorized by biological process according to GO annotation. The biological process category shows that most proteins were involved in macromolecular complex subunit
organization, cellular component assembly, DNA packing, actin filament-based process, and organelle organization, for which five subcategory terms were identified.
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process category from the GO term analysis (Fig. 3B), the functional
subnetwork associated actin binding and cytoskeletal protein
binding was mainly clustered in the network list following the
analysis of molecular function (Fig. 4A). We noted that cytoskeletal
abnormalities induce neurodegenerative diseases such as AD and
Parkinson’s disease [23,24].

CAP1, CAPZB, and DSTN are known to be related to the actin
cytoskeleton and have been reported to be associated with nervous
system injury [23]. In particular, the actin cytoskeleton in associ-
ation with these proteins has been recently reported to play a
critical role in regulating AD [25,26]. CAP1 is one of the main
proteins that regulate actin dynamics [27], and it has been linked to
a variety of human diseases [28,29]. CAP1 controls actin filament
turnover through the recycling of the cofilin-1 and actin proteins
[30]. Knockdown of CAP1 regulates cell motility in cells [27]. The
changes in CAP1 expression after sciatic nerve injury affect the
motility and differentiation of Schwann cells [31]. Interestingly, it
has been shown that CAP1 knockdown results in the aggregation
and dephosphorylation of cofilin-1 in cells, similar to that seen in
AD [27,32], whereas the expression of CAP1 protein was dramati-
cally increased in Rb1-pretreated samples (Table 1). Therefore, our
results suggest that CAP1 may be one of candidate proteins related
to the regulatory mechanism of Rb1 in AD. CAPZB, which is an actin
cytoskeleton regulator, directly binds to the barbed end of F-actin
and b-tubulin [33]. The interaction between CAPZB and b-tubulin
exerts an effect on microtubule polymerization and is essential for
growth cone morphology and neurite outgrowth [34]. The mRNA
levels of CAPZB were increased in hippocampus CA1 pyramidal
neurons at the mid stage of AD progression but decreased at the
severe stage of AD [26]. However, little is known about the func-
tional roles and protein expression of CAPZB in AD. DSTN is known
to be an actin-depolymerizing factor [35]. Recent studies have
demonstrated that DSTN plays an important role in human dis-
eases such as cancer [36]. By contrast, the relevance of DSTN to AD
is not yet clear. Additionally, previous studies have reported that
DSTN binds to cofilin-1 and regulates its functions similar to CAP1
[35].

Interestingly, previous studies have reported that three pro-
teins of actin filament-based processes from the GO term analysis
are closely related to cofilin-1 [24]. Furthermore, a number of
studies have shown the functional relevance between cofilin-1
and AD. In particular, aberrant cofilin-1 activity led to cognitive
decline in AD, and its dephosphorylation without a change in
protein expression was observed with age and in AD pathological
conditions [37]. We were also able to identify cofilin-1 from our
MS data set (Table S1). Cofilin-1 expression was not affected by
Rb1 pretreatments or Ab treatment, as similarly observed in
previous studies [37]. This is in contrast to other actin cytoskel-
eton proteins, which were increased by Rb1 pretreatments prior
to Ab treatment (Fig. 4B). Thus, the proteineprotein interactions
of cofilin-1 were analyzed using our dataset. A total of five pro-
teins from the STRING database were found to interact with
cofilin-1. The SF1 and TOMM40 proteins were identified as well
(Fig. 4B). Interestingly, a number of studies have suggested that
TOMM40 is a biomarker for AD [38]. Additionally, previous studies
showed that TOMM40 was dramatically decreased in whole blood
from AD patients [39], whereas Rb1 pretreatment increased the
expression of TOMM40 in Ab-treated cells (Fig. 4B; Table S3).
Moreover, a previous study showed that Ab treatment of cortical
neurons induced a dramatic perturbation of the neurotubule
network with curly unparalleled segments, but Rb1 pretreatment
preserved a normal neurotubule organization [40]. This result
supports our data. Further studies are required to determine the
mechanism by which Rb1 regulates neurotubule organization in
Ab-induced neurotoxicity. Taken together, our results suggest that
Rb1 might play an important role in regulating actin cytoskeleton
organization in AD.

In conclusion, we performed a comparative MS-based prote-
omic analysis using SILAC to investigate the potential protective
mechanisms of Rb1 in AD. We identified a total of 1231 proteins
from three independent samples. Among these proteins, 40 pro-
teins showed significant fold changes after Rb1 pretreatment in
Ab-treated cells. Our bioinformatics analysis revealed the signif-
icance of actin cytoskeleton-related proteins for the protective
mechanisms of Rb1 in AD. Therefore, CAP1, CAPZB, TOMM40, and
DSTN proteins might be potential biomarkers and regulatory
proteins of Rb1 pretreatment for AD protection. Additional studies
are required to determinewhether the proteins found in our study
might be regulatory proteins for the protective mechanisms of
Rb1 in AD.



Fig. 4. Protein interaction network of the proteins altered by Rb1 in b-amyloid (Ab)-induced neurotoxicity. (A) The proteins are grouped using Gene Ontology (GO) biological
process terms (Fig. 3B). Protein interaction networks were analyzed using STRING database information and visualized by Cytoscape. The networks show the clustered proteins
implicated in the actin cytoskeleton. The functionally significant proteins are clustered with GO biological process terms (blue, dashed line) and actin cytoskeleton (black, dotted
line). (B) The analysis of the protein interaction network of cofilin-1 with the altered proteins was performed using STRING database information and visualized by Cytoscape. The
node colors represent the expression levels of each protein (red, increase; green, decrease).
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