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The objective of the present work is to propose a constitutive model for ice by considering the influence
of important parameters such as strain rate dependence and pressure sensitivity on the response of the
material. In this regard, the constitutive model proposed by Carney et al. (2006) is considered as a starting
basis and subsequently modified to incorporate the effect of brittle cracking within a continuum damage
mechanics framework. The damage is taken to occur in the form of distributed cracking within the
material during impact which is consistent with experimental observations. At the point of failure, the
material is assumed to be fluid-like with deviatoric stress almost dropping down to zero. The constitutive
model is implemented in a general purpose finite element code using an explicit formulation. Several sin-
gle element tests under uniaxial tension and compression, as well as biaxial loading are conducted in
order to understand the performance of the model. Few large size simulations are also performed to
understand the capability of the model to predict brittle damage evolution in un-notched and notched
three point bend specimens. The proposed model predicts lower strength under tensile loading as com-
pared to compressive loading which is in tune with experimental observations. Further the model also
asserts the strain rate dependency of the strength behavior under both compressive as well as tensile
loading, which also corroborates well with experimental results.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Damage produced by ice due to impact upon structural compo-
nents is a common phenomenon in aerospace industries. It can be
considered as a realistic threat to components such as aircraft fuse-
lage and wing skins, leading edge and control surfaces, engine na-
celles and fan blades. The damage caused by the potential impact
of various type of debris (referred to as foreign object damage or
FOD) is always a serious concern for the safe operation of space
shuttles. In this regard, the Columbia Space Shuttle tragedy further
motivated a large scale safety review of the requirements for
certifying the ability of the leading edge of the wing to safely
FOD (Columbia Accident Investigation Board, 2003). Given the
wide range of debris, impact locations and velocities, a complete
experimental test program would be prohibitively expensive and
cannot be accomplished in a timely manner. Therefore, finite
element analyses need to be performed carefully to simulate the
real damage scenario by modeling the projectile and the target
realistically. This motivates the development of constitutive
models for common foreign objects such as foams, ice, hailstones,
etc. However, ice is not a common structural material and
ll rights reserved.
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commercial finite element codes do not have any appropriate mod-
els for it. Further, aside from the interest of aerospace industry, it is
rarely subjected to high strain rate impact conditions.

In general, in available literature, ice is regarded as a class of
materials rather than a single specific material with well defined
properties. It is found in 13 different crystal structures and two
amorphous states. There is a large body of existing work that
describes the compressive and tensile behavior of ice and its
fracture properties in various strain rate regimes, such as Currier
and Schulson (1982), Dempsey et al. (1999), Haynes (1978), Kim
and Kedward (2000), Schulson et al. (2005). However most of the
studies have focused on the mechanical behavior in the creep
and quasi-static regimes. A comprehensive review of mechanical
behavior of ice including its failure mechanisms, response under
different strain rates and fracture properties has been conducted
by Schulson (2001). According to him, the sample compressive
strengths of ice have been reported to be 14.8 ± 2.3 MPa in its sin-
gle crystal form at �10 �C. It has been observed from experiments,
that fundamental properties of ice such as strength, elastic modu-
lus, Poisson’s ratio are functions of temperature, grain size, and
most importantly the strain rate (Epifanov, 2005; Petrovic, 2003;
Schulson, 2001). At �10 �C, Young’s modulus of ice has been
reported in the range of 9.7–11.2 GPa and Poisson’s ratio in the
range 0.29–0.32 (Gold, 1988). In terms of tensile strength, a wide
scatter has been observed from 0.7 to 3.1 MPa over a temperature
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range of �10 �C to �20 �C (Petrovic, 2003). It is also found that un-
der both compressive and tensile loading ice generally displays
ductile behavior at lower strain rate, but brittle behavior at higher
strain rate. Schulson (2001) has reported a dramatic increase in the
compressive failure stress of polycrystalline ice from 0.5 MPa to
10 MPa as the strain rate changes from 10�8/s to 10�3/s.

At higher strain rates, relatively few efforts have been made to
predict the behavior of ice. To name a few, Jones (1997), Dutta et al.
(2003) have considered strain rates in the range from 10–100/s.
However the results are counterintuitive, at least based on the
understanding of the common engineering materials. The studies
by Dutta (1993) and Dutta et al. (2003) suggest that the strength
of ice at high strain rate (between 102 and 103/s) is lower than that
obtained in the quasi-static deformation regime. In an early work
by Carter (1972), similar trend was reported in compressive
strength behavior of ice at higher strain rate. He explained such de-
crease in compressive strength as a consequence of the inability of
ice to deform plastically at high strain rate regime. The study by
Jones (1997), however shows the completely opposite trend in
the behavior of ice with increasing strain rates. In a recent study,
Kim and Keune (2007) used the split Hopkinson pressure bar to
study the peak strength of ice in the strain rate range 400–2600/
s. The compressive strength of ice was observed to be essentially
constant at a level of 19.7 MPa. In a similar investigation, Shazly
et al. (2005) used thin samples of ice in a Hopkinson bar to study
the effect of strain rate on the dynamic material response of ice.
Their experimental results showed that the strength of ice in-
creases with strain rates. The study on the high-strain rate behav-
ior of ice has been extended by Shazly et al. (2009) for a wide range
of strain rates considering different crystalline structures of ice.
They observed that the peak stress in the specimens are in the
range of 20–24 MPa, when the applied strain rate is in the range
of 90–460/s. These peak strength levels are markedly higher when
compared to those reported in literature for ice under quasi-static
deformation conditions (Schulson, 2001).

In an early work, an experimental investigation was conducted
by Mcnaughtan and Chisman (1969), to study the effects of impact
velocity up to 2500 ft/s, impact angle, plate material properties and
thickness on the damage to flat, light alloy plates caused by the im-
pact of one inch diameter hail.

The literature for modeling high velocity ice impacts is even
smaller, which is not too surprising considering the availability
of efficient and fast computational power only recently and the
market for this research is a narrow segment of the aerospace
industry. Anghileri et al. (2005) have developed three numerical
models of hailstone, using Lagrangian finite element, arbitrary
Lagrangian Eulerian, and smooth particle hydrodynamics methods
which are available in the general purpose finite element code LS-
DYNA. The relative advantages and disadvantages of these meth-
ods were assessed and it was concluded that the smoothed particle
hydrodynamics model is the most efficient and effective for the
analysis of the event. In their study, ice had been modeled as an
elastic–plastic material with failure (using the material model
referred to as *MAT13 in LS-DYNA). This model allows a plastic
hardening behavior that adequately produces the effect of the
propagation of the microcracks inside the ice before it crushes,
reaching a fluid-like state. When the plastic failure strain is
reached all shear stress components are relaxed to zero. Further-
more, if the tensile failure pressure is reached, the material carries
only hydrostatic compressive stresses like a fluid.

Pereira et al. (2006) conducted experiments to measure the
forces generated by ice projectiles of different crystalline struc-
tures impacting a rigid component at various velocities and
orientations. It was observed that when the impact velocity is sig-
nificantly lower than the wave propagation speed, from a visual
perspective, the ice projectile acts like an agglomeration of many
tiny particles rather than a single solid. The results indicated (for
the considered impact velocity range) that the crystalline structure
of the ice has negligible effects on the forces generated during im-
pact. In a very recent work, Sherburn and Horstemeyer (2010) re-
ported a study on impact cratering of ice using CTH model. Their
study showed a correlation between the damaged volume of the
ice crater with the momentum of the aluminum projectile. In their
numerical modeling of ice, an equation of state of the Mie–Grunie-
sen type was developed and Bammann–Cheisa–Johnson plasticity-
damage model is used.

Attempts to use existing models, including some intended for
brittle materials, demonstrated the need for a physically motivated
damage mechanics based model. This provides the impetus for the
present study to develop such a constitutive model for ice, which is
capable of depicting its response in the impact regime, incorporat-
ing the effects of strain rate, pressure sensitivity and other influ-
encing parameters. Moreover, impact experiments show profuse
brittle cracking throughout the ice projectiles during impact (Kim
and Kedward, 2000). In order to represent this behavior, the
proposed constitutive model is further refined to include the pro-
gressive damage phenomenon in ice through a continuum damage
mechanics approach, based on brittle cracking.

The most relevant work with respect to the present investiga-
tion was performed by Carney et al. (2006). They developed a
phenomenological model for ice, and performed numerical simula-
tions for impact problems which were compared with experimen-
tal results. The critical aspects of the model are the independent
failure stress in tension and compression, strain rate sensitivity
of the flow stress, ability of the failed ice to continue to carry
hydrostatic stress. Along with the conventional elastic–plastic
response, a failure model was introduced by them. The final stress
was computed as:

r ¼ de � dp � ðr0 � PIÞ; ð1Þ

where de and dp are the damage variables associated with the fail-
ure due to plastic strain and pressure, respectively. The failure cri-
terion for plastic strain is,

de ¼ 0 if �p > �p
fail;

1 otherwise;

(
ð2Þ

and for pressure it is taken as,

dp ¼ 0 if P > Pcut-off or P < PT
fail;

1 otherwise:

(
ð3Þ

The impact force history obtained from numerical simulations
through LS-DYNA was in good agreement with the experimental
results. However, the damage model, proposed by Carney et al.
(2006) has a serious drawback, since it does not incorporate any
damage evolution law. The damage parameters in their model can
assume only two limiting values of 0 and 1. Further, a sudden
change in value of de or dp from unity to zero, may induce spurious
oscillations in the stress response.

Based on the pertinent literature as discussed above, in the
present work a constitutive model for ice is developed, which is
valid in the high strain rate regime, by considering the phenome-
nological model proposed by Carney et al. (2006) as a starting
basis. An isotropic elastic–plastic material model with progressive
damage evolution in the form of brittle cracking is suggested. The
elastic response is calculated by considering a split in the strain en-
ergy density function into deviatoric and volumetric parts as pro-
posed by Simo and Hughes (1996). The pressure is computed by
using the equation of state proposed by Carney et al. (2006), which
takes into account the experimental data on pressure versus volu-
metric strain. The failure stress of ice is taken to be pressure and
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strain rate dependent. It should be recalled that the compressive
strength for ice more or less lies within the range 5–25 MPa (with
a mean value of 15 MPa) over the strain rate 10�8–10�2/s (Petrovic,
2003); whereas the available data for tensile strength shows a
wide scatter from 0.7 to 3.1 MPa with a mean value of 1.43 MPa.
However it is worth mentioning that the strength of ice largely de-
pends on the grain size and the strain rate. It is also observed that
the difference between the tensile strength and compressive
strength reduces in the high strain rate regime (tensile strength
being 1/4th or 1/5th of the compressive strength), as mentioned
in Shazly et al. (2009).

The proposed model is further refined to include brittle damage
response of the ice projectiles based on continuum damage mechan-
ics principles. The damage model proposed for brittle materials by
Camacho and Ortiz (1996) is followed and modified to take into ac-
count inelastic response. The model is based on the hypothesis of
strain energy equivalence. Once the damage commences in the
material, only the deviatoric part of the strain energy is modified
due to damage, keeping the volumetric energy unperturbed. This
results in degradation of shear stress. The plastic potential is also
modified due to damage, and the plastic flow rule is essentially
written in terms of the entire aggregate material. The proposed
analytical model is implemented in the general purpose finite
element code FEAP (Zienkiewicz and Taylor, 1991) within an explicit
solution framework and several numerical examples are solved.

2. Constitutive model for ice

In the present work, the constitutive theory to model the behav-
ior of ice, which was proposed by Carney et al. (2006) is adopted as
mentioned in Section 1. A simple isotropic elastic–plastic model
with failure was suggested in Carney et al. (2006). The elastic re-
sponse was represented by considering hypoelastic constitutive
theory and the plastic response by following the J2 flow theory.

However, in the present work, a hyperelastic model is assumed
to make the deformation behavior thermodynamically consistent.
A multiplicative kinematics is used for elastic–plastic deformation
gradient along with the assumption, that the elastic response can
be assumed to be linear (Lee, 1969; Lubliner, 1990; Mandel,
1973). Let u(B) represent the time dependent mapping of the ref-
erence placement B to the current placement X. A multiplicative
decomposition of total deformation gradient into elastic and plas-
tic parts is assumed, so that,

F ¼ rXu ¼ FeFp: ð4Þ

An essential feature of this description is the introduction of an
intermediate local configuration, relative to which the elastic re-
sponse is characterized. A free energy function (stored energy den-
sity per unit reference volume) is considered as,

w ¼ ŵðFe;aÞ; ð5Þ

where a is the set of strain-like internal variables. Throughout the
formulation of the governing equations, the stress–strain response
is assumed to be isotropic. Accordingly, the free energy is indepen-
dent of the orientation of the reference configuration. From the sec-
ond law of thermodynamics (Clausius–Plank inequality), it follows
that the rate of dissipated energy density (or, simply, the dissipa-
tion) per unit reference volume (Armero, 2004) should be non-neg-
ative, so that

D ¼ s : d� _w P 0; ð6Þ

where s and d are the Kirchoff stress tensor and the rate of defor-
mation tensor, respectively. Without going into the detailed deriva-
tion, directly by using the Coleman–Noll argument (i.e., D = 0 for an
elastic process), one obtains,
s ¼ 2
@~w

@be be
: ð7Þ

Here it is noted that the requirement of isotropy necessitates that
the free energy function may be expressed as ~wðbe

;aÞ, where be = -
FeFeT is the elastic left Cauchy–Green deformation tensor. For an
inelastic process, the dissipation becomes,

D ¼ s : dp þ q _a P 0: ð8Þ

where q ¼ �@~w=@a are the stress like hardening variables and dp is
the plastic part of d. The plastic flow is assumed to be isochoric so
that:

det Fp ¼ det Cp ¼ 1; ð9Þ

which implies that,

J ¼ det F ¼ det Fe: ð10Þ
2.1. Elastic response

Following the approach adopted by Simo (1988), and consistent
with the assumption of isotropy and the notion of an intermediate
stress-free configuration, the stress–elastic strain response is char-
acterized by a stored-energy function of the form:

w ¼ UðJeÞ þWð �beÞ: ð11Þ

Here, U(Je) and Wð �beÞ are the volumetric and deviatoric parts of w
respectively, where �be (in order to make it volume preserving) is gi-
ven by,

�be ¼ Je�2=3be ¼ Je�2=3FeFeT
: ð12Þ

The explicit forms of the above terms and subsequent derivation of
Kirchoff stress tensor are reported in Simo and Hughes (1996) and
hence omitted here. The final expression for Kirchhoff stress tensor
for a material obeying Hooke’s law can be written as follows:

s ¼ �p1þ s0 ¼ j
2
ðJe2 � 1Þ þ ldev½ �be�; ð13Þ

where (p) and (s0) are the pressure and deviatoric components
respectively. For ice, certain modifications were suggested by Car-
ney et al. (2006). In particular, a specific equation of state relating
the pressure to volumetric strain is assumed based on experimental
results under compressive loading. The experimental pressure–vol-
umetric strain curves depicting both loading and unloading as re-
ported in Carney et al. (2006), are shown in Fig. 1. Based on this
figure, an empirical equation relating the (Cauchy) pressure compo-
nent P with the volumetric strain measure (�V) is written as,

P ¼ Ĉð�V Þ þ cT̂ð�V ÞE; ð14Þ

where �V = ln(J). Here, E the internal energy per reference volume, Ĉ
and T̂ are tabular functions and c is the Gruneisen coefficient. In the
present calculations, c is taken as zero following Carney et al.
(2006). Hence, the second term vanishes. From Fig. 1, it is seen that
the pressure remains constant at a value of 68.95 MPa as soon as
�V = 0.008 and unloading occurs linearly. In the present study, an
equation is fitted to the experimental curve as given by,

PðMPaÞ ¼ 1:7232� 105�2
V � 0:0738� 105�V ; for �V < 0:008;

¼ 68:95; for �V P 0:008:

ð15Þ

Due to the lack of tension test data, the same relation between
pressure and volumetric strain is assumed in the present study,
with an opposite sign as,
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PðMPaÞ ¼ �1:7232� 105�2
V � 0:0738� 105�V ; for �V < 0:008

¼ �68:95; for �V P 0:008:

ð16Þ
Table 1
Strain rate sensitivity of ice (Carney et al., 2006).

Strain rate (x(s�1)) Stress scale factor (y)

1.0 1.00000
10.0 1.25660

100.0 1.51320
200.0 1.59044
300.0 1.63562
400.0 1.66768
500.0 1.69255
600.0 1.71287
700.0 1.73005
800.0 1.74493
900.0 1.75805

1000.0 1.76979
1100.0 1.78042
1500.0 1.81498

10000.0 2.02639
2.2. Plastic response

In order to describe the plastic behavior of ice, a plastic flow
rule based on the current configuration is used. It is assumed that
plastic spin wp = 0 and hence lp = dp, (where dp is the plastic rate of
deformation). For a material obeying J2 flow theory, lp can be writ-
ten as:

lp ¼ Fe _FpðFp�1Fe�1Þ ¼ _cp�r; ð17Þ

where �r is the plastic flow direction and _cp is an effective visco-plas-
tic strain rate. In the case of J2 flow theory, �r is given by:

�r ¼ 3
2

r0
�r
; ð18Þ

where r is the Cauchy stress tensor. The effective Mises stress is de-
fined as:

�r ¼ 3
2
rij0r0ij

� �1
2

; ð19Þ

where, the deviatoric component of Cauchy stress r0ij is given by,

r0ij ¼ rij � Pdij; ð20Þ

with P = �rkk/3, denoting the pressure.
The next important step in plastic deformation is to formulate

an evolution equation for visco-plastic parameter _cp, specific for
ice. According to Carney et al. (2006), the flow stress evolves fol-
lowing the relation given as:

ry ¼ Ŝðjdpj;PÞr̂fð�pÞ: ð21Þ

The scaling function, Ŝ, is composed of two tabular functions of the
strain rate at a specified pressure P, and it is interpolated between
them for any other computed pressure as:

Ŝðjdpj;PÞ ¼ fĈCðjdpjÞ þ ð1� fÞĈTðjdpjÞ: ð22Þ

The function f is given by

f ¼min 1;max 0;
P � PT

PC � PT

� �� �
; ð23Þ
where C and T denote compression and tension, respectively, and
ĈC ; ĈT are tabular functions of strain rate at constant pressure PC

and PT, respectively. Carney et al. (2006) reported the experimental
data for ĈC , whereas the tension data was unavailable.

In the present study, in order to simulate the relation between
tensile and compressive yield stress which is r0cT � r0cC/10 (see
Petrovic, 2003; Shazly et al., 2005), it is assumed that ½ĈT ¼
ĈC=10�. On using this assumption, Eq. (22) can be rewritten as:

Ŝðjdpj;PÞ ¼ 9f þ 1
10

� �
ĈCðjdpjÞ ¼ kĈCðjdpjÞ; ð24Þ

where k = (9f + 1)/10 is a new variable introduced to simplify the
expression. In order to evaluate the function f according to Eq.
(23), two extreme loading condition can be considered. In case of
uniaxial tension f is zero, while f = 1 under uniaxial compressive
loading. Hence, one can obtain two values of k for these two loading
conditions as:

k ¼ 1
10

; for f ¼ 0; and

k ¼ 1; for f ¼ 1:
ð25Þ

In the above equations, the norm of jdpj is defined as:

jdpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ðdp

: dpÞ
r

: ð26Þ

For J2 flow theory, it turns out that, jdpj ¼ _cp.
Assuming isotropic hardening, r̂f in Eq. (21) is given as:

r̂f ð��pÞ ¼ r0 þ h��p; ð27Þ

where r0, h and ��p are initial yield stress under uniaxial compres-
sion, hardening modulus and equivalent plastic strain, respectively.
The Mises equivalent plastic strain is defined as:

��p ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

dp
: dp� �r

dt: ð28Þ

By replacing Ŝðjdpj;PÞ with Eq. (24), Eq. (21) results in:

ry ¼ kr̂f ð��pÞĈCðjdpjÞ: ð29Þ

By denoting, ðry=r̂f ð��pÞÞ ¼ y and jdpj ¼ _cp ¼ x, one gets,

y
k
¼ ĈCðxÞ;

or x ¼ ðĈCÞ�1ðy=kÞ: ð30Þ

For compressive loading, x versus y data given by Carney et al.
(2006) is tabulated in Table 1. On using this experimental data,
for k = 1 (compressive loading), one obtains by curve fitting that:



Fig. 2. Schematic of three dimensional representative volume element (RVE) with l
representing spacing between micro-crack planes, A the cross sectional area of the
RVE and AC the crack area.
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y ¼ 0:1114 logðxÞ þ 1; ð31Þ

Introducing a new constant C = 0.1114 for conciseness of the
expressions, one finally gets,

x ¼ e�1=Cey=C : ð32Þ

Introducing another constant as, _c0 ¼ e�1=C , and substituting the
expressions for x and y, one obtains,

_cp ¼ _c0ery=kCr̂f : ð33Þ

The above equation can be used to evaluate the visco-plastic param-
eter with appropriate choice of k depending on the applied loading
condition, as given in Eq. (25).

2.3. Brittle damage model for ice

In order to model the distributed brittle cracking phenomenon
in ice projectile during impact, the damage model proposed by
Camacho and Ortiz (1996) is followed. It should be mentioned
here, that the proposed damage model does not incorporate the
micro-structural behavior of ice (taking into account grain size
and texture) which may play an important role in progressive
damage in certain forms of ice, especially columnar ice (Weiss
and Schulson, 2009). However for granular ice, the micro-structure
is isotropic and so are the mechanical properties (Weiss and
Schulson, 2009). Furthermore, as mentioned in Section 1, the
constitutive models to numerically simulate the behavior of ice
are scarce in the literature. The damage model used by Carney
et al. (2006) does not incorporate a progressive damage evolution
law. By contrast, the present study is aimed at formulating a pro-
gressive isotropic damage evolution law in the form of distributed
cracking within ice. The incorporation of micro-structural features
would involve representation of the polycrystalline nature of ice
within a continuum framework (see for example Roters et al.
(2010)) which can be taken up in subsequent studies. The damage
model proposed by Camacho and Ortiz (1996) represents nearly
co-planar radial microcracks with the help of continuum damage
mechanics principles to simulate the weakening effect of the mate-
rial. They assumed that Hooke’s law is valid for the uncracked
matrix and the stress–strain relation is given as:

reff ¼ C : �eff : ð34Þ

By considering the hypothesis of elastic energy equivalence, the
constitutive relation in terms of the aggregate stress and strain is gi-
ven as,

r ¼ ð1� vÞ2C : �; ð35Þ

where, v(0 < v < 1) is a scalar damage variable representing the
area fraction of micro-cracks. By applying Griffith’s theory of brittle
fracture, the driving force for crack initiation is given by,

J ¼ � @Wð�;vÞ
@v � Gc

l
; ð36Þ

where l is a material property, representing the spacing between
micro-cracks and Gc is the fracture energy. In order to determine
l, one needs to do a material-specific micro-mechanical analysis.

The above Eq. (36) for crack driving force can be derived as fol-
lows. Consider a representative volume element (RVE) as shown in
Fig. 2 with a cross-sectional area of A, in which cracked area is
measured as Ac. By the definition of fracture energy, Gc is the strain
energy released per unit extension of the crack area, Ac so that:

Gc ¼ �
@W
@Ac

; ð37Þ

where W is the total strain energy of the RVE and is given by
W = wV, with w being the strain energy density and V = Al the
volume of the RVE. On using the chain rule of differentiation, Eq.
(37) can be written as,

Gc ¼ �Al
@w
@v

@v
@Ac

: ð38Þ

Further, from the definition of damage variable v = Ac/A one gets,
@v/@Ac = 1/A.

On substituting this into Eq. (38), the condition for crack initia-
tion is obtained as,

Gc

l
¼ � @w

@v : ð39Þ

Thus for continued crack extension,

J ¼ � @w
@v �

Gc

l
P 0: ð40Þ

A simple kinetic evolution equation for damage variable v is given
in terms of the crack driving force by,

_v ¼ J
B

P 0; ð41Þ

where B is a kinetic co-efficient. By letting B ? 0 the rate indepen-
dent limit may be attained.

In this work, the above damage model is modified for ice by
incorporating the effect of plasticity along with elastic degradation,
within a finite deformation framework. The following assumptions
are made for this purpose.

1. The laws of plasticity are written in terms of the aggregate
stresses and strains (not based on matrix stresses and strains).

2. The elastic energy density is decomposed into volumetric and
deviatoric part as mentioned in Section 2.1.

3. Volume of the RVE does not change due to damage, volumetric
energy density will remain unaffected due to damage.

In the above derivation, volume V of the RVE is assumed as
independent of v. Such an assumption is justified as long as the
cracks do not blunt significantly as v increases. The volume change
(i.e., dilatation) due to progressive damage evolution is only impor-
tant in voided aggregates wherein the relevant damage variable v
would be the volume fraction of voids. Hence change in volume of
the RVE during cracking induced damage in ice can be neglected gi-
ven its brittle nature under high strain rate loading. Based on the
above assumptions, the elastic energy density for the damaged
material can be expressed as:

wD
e ¼ UðJeÞ þ ð1� vÞ2Wð �beÞ: ð42Þ

A similar modification has to be made for plastic potential of the
damaged material as:

wD
p ¼ ð1� vÞ2w0

pð��pÞ; ð43Þ
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where, the plastic potential for the uncracked material, obeying lin-
ear hardening law is given by,

w0
pð��pÞ ¼ r0��p þ h

2
ð��pÞ2: ð44Þ

For an elastic–plastic material, the critical condition for crack or
damage initiation is given as:

J ¼ � @w
@v �

Gc

l
P 0; ð45Þ

where w is the total potential given by,

w ¼ wD
e þ wD

p : ð46Þ

The elastic response of the damaged material can now be expressed
by modifying the deviatoric part of Kirchhoff stress as:

ð�s0ÞD ¼ lð1� vÞ2devð �beÞ: ð47Þ

In the above equations, the superscript D is used to denote the dam-
aged counterparts of the respective quantity. Since the volumetric
part of the energy density remains unchanged due to damage, the
hydrostatic part of Cauchy stress r will be given by Eq. (15) (see
Section 2.1). Hence, in the present approach, to determine the con-
stitutive response of the damaged ice, only the deviatoric part of the
stress component has to modified to incorporate the material deg-
radation. The scalar damage parameter (v) is to be treated as an
internal variable and its evolution has to be obtained using Eq.
(41). In order to simulate the observed dependence of failure stress
on the state of stress (i.e., tension or compression) the value of Gc/l
is chosen to be much smaller when the hydrostatic stress is tensile
as explained in Section 4. The results of this choice are illustrated in
the following examples through simulations of failure under
uniaxial tension and compression. In the following section, a sum-
mary of the stress update algorithm for the constitutive model is
presented.

3. Summary of explicit stress update algorithm for the
constitutive model

In this section, a simple explicit (forward Euler) algorithm for
updating the stresses and internal variables is described which is
used along with the well known central difference method (Zie-
nkiewicz and Taylor, 1991).

� Known at time tn : Fn; Fe
n; Fp

n; �rn; r0n; _cp
n

Given at time tn+1 : Fn+1

� Using explicit forward Euler approach, the plastic flow rule Eq.
(17) is integrated as:
Fp
nþ1 ¼ Fp

n þ Fe�1
n _cp

n
3
2

r0n
�rn

� �
FnDt: ð48Þ
and
Fp
nþ1 ¼ det Fp

nþ1

� ��1=3
Fp

nþ1: ð49Þ
� With Fp
nþ1 obtained from the last step, Fe

nþ1 is determined as,
Fe
nþ1 ¼ Fnþ1 Fp

nþ1

� ��1
: ð50Þ
� Using Fe
nþ1, one can obtain the elastic left Cauchy–Green

deformation as,
be
nþ1 ¼ Fe

nþ1 Fe
nþ1

� �T
; ð51Þ
and
be
nþ1 ¼ Je

nþ1

� ��2=3be
nþ1: ð52Þ
� The deviatoric part of Kirchhoff stress is computed as:
s0nþ1 ¼ ldevðbe
nþ1Þ: ð53Þ
� To update the pressure part, the equation-of-state as proposed
in Section 2.1 is used as:
Pnþ1 ¼ Ĉð�V Þ: ð54Þ
� The Kirchhoff stress and the Cauchy stress are updated subse-
quently as:
snþ1 ¼ Je
nþ1Pnþ1 � 1þ s0nþ1; ð55Þ

rnþ1 ¼ J�1
nþ1snþ1: ð56Þ
� The Mises equivalent stress is computed as:
rnþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

r0nþ1 : r0nþ1

� �r
; ð57Þ
where,
r0nþ1 ¼ rnþ1 �
1
3

trðrnþ1Þ: ð58Þ
� The flow stress is updated as:
r̂f nþ1 ¼ r0 þ h��p
nþ1; ð59Þ
where, equivalent plastic strain ��p
nþ1 is given by,
��p
nþ1 ¼ ��p

n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ðdp

n : dp
nÞ

r
Dt: ð60Þ
� Finally, the visco-plastic parameter is updated using Eq. (33) as
explained in Section 2.2:
_cp
nþ1 ¼ _c0 � e

�rnþ1
kCr̂f nþ1 : ð61Þ
To incorporate the proposed brittle damage model the above up-
date algorithm is modified as follows:
� The entire plastic update will remain same, as per the assump-

tion stated in Section 2.3.
� In elastic stress update, the deviatoric stress has to be computed

as:
ðs0DÞnþ1 ¼ lð1� vnÞ
2devðbe

nþ1Þ: ð62Þ
� However, the pressure computation will not get modified.
Hence, the total stress will now become:
snþ1 ¼ Je
nþ1Pnþ11þ ðs0DÞnþ1: ð63Þ
� Finally, the damage variable has to be updated using:
vnþ1 ¼
Jn

B
Dt þ vn: ð64Þ
4. Numerical examples

The constitutive model for ice explained in Section 2 is imple-
mented in finite element code FEAP (Zienkiewicz and Taylor,
1991) by writing a user material subroutine. The finite element
implementation is validated by conducting several single element
tests and by studying some large size example problems. The en-
tire finite element analysis is performed using explicit time inte-
gration scheme. First, a single 3-D eight noded brick element is
considered under uniaxial and biaxial loading conditions, and the
material input parameters are taken to be exactly same as those
used by Carney et al. (2006) in their finite element simulation.
The important parameters reported in Carney et al. (2006) are
listed in Table 2. The yield stress in tension and compression are
chosen to be very large to suppress yielding, since it has been
established that failure of ice under high strain rate or impact



Table 2
Material properties corresponding to the ice constitutive model used in the
simulations.

Density (q) 897.6 kg/m3

Young’s modulus (E) 9.31 GPa
Initial compressive flow stress 172.4 MPa
Initial tensile flow stress 17.24 MPa
Plastic tangent modulus (h) 6.89 MPa
Poisson’s ratio (m) 0.33
Pressure cut-off in compression (PC) 4.93 MPa
Pressure cut-off in tension (PT) 0.433 MPa
Gc/l in compression 0.01 N/mm2

Gc/l in tension 2e�4 N/mm2
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loading occurs in a brittle manner. In order to incorporate the brit-
tle damage model for ice as proposed in Section 2.3, three addi-
tional parameters, viz., the fracture energy (Gc), the distance
between the micro-flaws (l) which can cause final failure, and
the kinetic coefficient B, are needed. From published experimental
data (Mulmule and Dempsey, 2000; Petrovic, 2003) for the critical
stress intensity factor under mode I ðKIc ¼ 100 kPa

ffiffiffiffiffi
m
p
Þ and

Young’s modulus E = 9.31 GPa, the value of the fracture energy
Gc � 10�3 N/mm. By assuming the value of l = 5 mm, Gc/l under
tensile loading is taken as 2 � 10�4 N/mm2. When hydrostatic
stress is compressive, but with unequal principal stresses, inclined
cracks can initiate under mode II loading. However these planes
would experience compressive normal stress. Under such a condi-
tion, crack face closure and sliding is likely to occur which will re-
tard crack initiation. So Gc is expected to be much higher than
under mode I when crack faces remain open. Thus, it is seen from
experimental data that failure stress in compression is approxi-
mately seven times higher than the failure stress in tension under
quasi-static loading. This implies that Gc should be approximately
50 times larger (as Kc is proportional to failure stress and Gc is pro-
portional to Kc

2). Hence Gc/l in compression is taken as 0.01 N/
mm2.

In order to obtain the rate independent limit of the damage evo-
lution law, a parametric study is performed by considering three
values of B : [1 � 10�6,1 � 10�7,1 � 10�8] Ns/mm2 under quasi-
static loading (r = 0.001/s). The stress–strain response for uniaxial
tensile loading is shown in Fig. 3. It is observed that B 6 10�7

Ns/mm2 predicts the rate independent response in the quasi-static
limit. Similar trend is observed for compressive loading case also.
Hence, for the subsequent analyses, the coefficient B is taken as
10�7 Ns/mm2.
0 1 2 3 4 5 6

x 10
−4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ln(1+u
Z
/L

0
)

σ zz
 (

M
Pa

)

B=1× 10−8Ns/mm2

B=1× 10−7Ns/mm2

B=1× 10−6Ns/mm2

Fig. 3. Stress versus strain curves under uniaxial tension corresponding to different
values of viscosity parameter B.
The tensile and compressive stress–strain behavior computed
under uniaxial tensile and compressive loading are shown in
Fig. 4 for the quasi-static case (10�3/s). It is observed from the plot,
that with the chosen input parameters, the uniaxial tensile failure
stress is obtained as 1.55 MPa and the compressive failure stress as
10.3 MPa which are in reasonable agreement with the data avail-
able in literature (Petrovic, 2003). The model predicts elastic brittle
failure for both types of loading. Thus, the stress–strain response is
linear till the stress reaches a failure value after which it drops rap-
idly. This phenomenon is also observed in the available literature
particularly for quasi-static loading (Dutta, 1993). Once the scalar
damage parameter v reaches a prescribed critical value of
Dc = 0.95, the stress level attains a saturation value close to zero.
A value of Dc closer to 1 used to reduce the stresses in the damaged
region to small values in order to simulate loss of stress carrying
capacity.

In order to study the rate effect on the stress–strain response,
the uniaxial compressive and tensile loading are repeated for a
range of strain rate (r) values and the results are presented in
Fig. 5. Due to rate hardening behavior of ice, it is observed that
the failure stress increases under high strain rate loading which
corroborates with experimental observations (Schulson, 2001).
Further it is also observed that the difference between the failure
strength under compressive and tensile loading reduces as the
strain rate increases. The compressive failure strength is approxi-
mately seven times larger than the tensile failure strength under
quasi-static loading (strain rate of 10�3/s), whereas the compres-
sive failure strength is only 3.5 times larger than the tensile value
at a strain rate 1/s. Thus the present numerical simulations also
corroborates with the experimental observations in high strain
rate case, as mentioned in Shazly et al. (2009). The compressive
failure stress predicted by the model as a function of strain rate
is compared with published experimental data (Jones, 1997; Kim
and Keune, 2007; Meller and Cole, 1982; Shen et al., 1988) in
Fig. 6. It can be seen that although the predicted failure stress is
somewhat higher than the experimental data, the trend exhibited
by the latter (in particular the enhancement with increasing strain
rate) is well captured.

Fig. 7 shows the stress–strain response of the element subjected
to hydrostatic compression. The material shows linear elastic re-
sponse (see Fig. 7(a)) initially, with all the three stress components
having identical variations. However, if one continues to deform
the element further, the hydrostatic pressure reaches the cut-off
value of �68.95 MPa (specified by the EOS, Eq. (15)) as shown in
Fig. 7(b). Plastic deformation also does not occur within the
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material, since the yield criterion used in the model is essentially
based on J2 flow theory in which plastic flow depends on the
deviatoric component of the stresses only. Under such a type of
loading, the failure of the material is governed by the pressure
cut-off value as prescribed by the equation-of-state. Some simula-
tions were carried out to understand the effect of lateral confining
pressure on the failure strength. It was found from these simula-
tions that confining pressure strongly enhances the tensile and
compressive failure strengths. This implies that brittle cracking
will be suppressed under application of confining pressure which
agrees with experimental observations (Schulson, 2001).

The failure envelopes for tensile and compressive stress states
are obtained numerically by modeling biaxial loading conditions.
The single 3-D element is subjected to either extension or contrac-
tion in both X and Y directions. By changing the applied displace-
ment ratio (ux/uy), different degrees of biaxiality can be achieved.
Fig. 8(a) shows the failure envelope in stress plane obtained for
compressive stress state under a strain rate of 10�2/s. In this plot,
the numerically obtained data are compared with the experimen-
tal results reported by Schulson (2001). There is a reasonable
agreement between the two sets of data. Similarly in Fig. 8(b),
the numerically simulated failure envelope is stress plane is
plotted for the tensile regime. However, no experimental data is
available for this stress state in order to make a comparison.

5. Simulations of failure in three-point bend bar

In order to assess the numerical capability of the proposed
constitutive model for ice, few more simulations are performed
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involving un-notched and notched three-point bend specimens in
this section.
5.1. Three point bend (un-notched) specimen

Fig. 9 shows a schematic diagram of the specimen used in the
analysis. The specimen has a length of L = 80 mm and width
W = 20 mm. Due to symmetry about the mid-span of the beam,
only half of the specimen is modeled. The finite element mesh
for this geometry comprises of 209 four-noded quadrilateral ele-
ments. The finite element analyses are performed in a displace-
ment-controlled mode by specifying displacement in negative Y
direction on the top surface nodes near the mid-plane. In order
to avoid the stress concentration due to application of a concen-
trated load, the displacement is applied at three adjacent nodes
in a distributed manner, instead of prescribing it on a single node.
Symmetry conditions (ux = 0) are applied along the x = 0 line. The
material properties used in the analysis once again correspond to
ice which are summarized in Table 2. In order to simulate the qua-
si-static loading condition, the specimen is subjected to a displace-
ment rate of 0.01 mm/s. The specimen is loaded subsequently up to
the damage initiation and propagation.

Fig. 10 shows the load–displacement plot for this simulation. It
is observed that once the damage commences, the load carrying
capacity of the beam drops very sharply to zero, indicating an
elastic brittle damage type of response. Fig. 11 displays the spatial
distribution of the damage variable over the beam at applied dis-
placement uy = 0.012 mm. From the contour plot shown in this fig-
ure, it can be seen that damage initiation takes place in the
compression zone also, simultaneously with development of ten-
sile damage. This happens because the application of transverse
load at the top surface near the mid-plane of the beam introduces
stress concentration, which is high enough to trigger damage in the
compressive stress regime.

5.2. Three point bend (notched) specimen

The same specimen geometry as in Section 5.1 has been chosen
with a notch of diameter 0.1 mm and notch length of 10 mm at the
mid-span of the bar. The mesh consists of 740 four-noded quadri-
lateral elements. The boundary conditions applied on the specimen
are the same as the un-notched beam analyzed earlier with the
additional requirement that the notch surface be free of traction.
In order to understand how the damage variable evolves within
the specimen under quasi static loading, the displacement is ap-
plied at a rate of 0.001 mm/s. Figs. 12 and 13 display the load-
deformation response and contour plot of the damage variable v,
at displacement of 0.0008 mm respectively. Fig. 13 shows that
damage initiates and progresses rapidly up to critical value of 0.8
near the notch tip, due to tensile stress concentration in this
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region. In this case, however, no damage occurs at the point of load
application.

The non-linearity observed in the load versus displacement
response is on account of development of micro-cracking induced
damage near the notch tip (see Fig. 13). This also gives rise to
oscillations in the load as can be noticed in Fig. 12. In brittle
materials like ceramics, development of micro-cracking in the
fracture process zone ahead of a notch (as seen in Fig. 13) can
shield it from the far-field loading and impart some enhancement
to the toughness (Anderson, 1994). However, micro-cracking is not
very effective in the sense that it will not result in a rising crack
growth resistance curve, which corroborates with experimental
observations for brittle materials like ceramics, bulk metallic
glasses and ice (Schu et al., 2007; Schulson et al., 2005). It is impor-
tant to note that no attempt has been made to simulate crack
extension from the notch in the present study using, say, a cohe-
sive zone model, as in the work of Tvergaard and Hutchinson
(1992). If such a simulation had been conducted, then an abrupt
drop in the load–displacement curve would have occurred
corresponding to the onset of unstable crack growth from the
pre-existing notch.

6. Summary and conclusions

The present study was aimed at developing a constitutive mod-
el for ice, which is valid in the high strain rate or impact regime.
With this objective in hand and keeping in mind the scarcity of
the available models to numerically simulate the behavior of ice,
the model proposed by Carney et al. (2006) has been considered
as a starting basis of the present work. An equation of state has
been employed which empirically represents the experimental
data available for pressure versus volumetric strain behavior of
ice. The occurrence of brittle damage through distributed micro-
cracking has been incorporated using continuum damage mechan-
ics principles and extended to the finite deformation regime. The
proposed model has been implemented in the general purpose fi-
nite element code FEAP (Zienkiewicz and Taylor, 1991) using an
explicit time integration scheme and several numerical examples
have been presented to assess the performance of the model. The
important conclusions from these analysis are as follows:

� The proposed continuum damage model along with chosen
material parameters predicts the vast difference between ten-
sile and compressive failure strengths of ice under quasi-static
loading (with strain rate r = 10�3/s). Thus it is found that the
former is around 1.5 MPa, while the latter is about 10 MPa.
These values are in good agreement with experimental results.
� The proposed model allows for continuous evolution of damage

in ice due to micro-cracking. It is thermodynamically consistent
and is based on continuous damage mechanics principles. This
is unlike the work of Carney et al. (2006), where abrupt material
failure occurs due to the damage variable being re-set to zero
upon attainment of some critical conditions. Consequently,
the present model is free of numerical instabilities as the dam-
age progressively evolves in the material, which has been
shown through the various examples.
� The proposed model predicts the experimentally observed

increase in compressive and tensile failure strengths as function
of strain rate. The ratio of the compressive to tensile strength
diminishes as strain rate increases. The variation of compressive
failure strength with strain rate obtained from the numerical
simulations is similar to available experimental data, although
it is somewhat higher.
� The failure locus in stress plane under biaxial compressive load-

ing compares well with experimental data.
� The analysis of notched three-point bend specimen shows that

micro-cracking near the notch tip may impart some toughness
enhancement due to shielding which is similar to other brittle
materials such as ceramics and amorphous alloys. However,
the crack growth process is expected to be unstable, with little
R-curve behavior since micro-cracking is not a very effective
toughening mechanism.
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