Available online at www.sciencedirect.com

LINEAR ALGEBRA
AND ITS APPLICATIONS

Extraction of nth roots of 2×2 matrices

Ajai Choudhry
High Commission of India, P.O. Box 439, M.P.C., Airport Lama, Berakas, Bandar Seri Begawan BB 3577, Brunei
Received 13 June 2003; accepted 12 February 2004
Submitted by R.A. Brualdi

Abstract

This paper is concerned with the determination of algebraic formulae giving all the solutions of the matrix equation $X^{n}=A$ where n is a positive integer greater than 2 and A is a 2×2 matrix with real or complex elements. If A is a 2×2 scalar matrix, the equation $X^{n}=A$ has infinitely many solutions and we obtain explicit formulae giving all the solutions. If A is a non-scalar 2×2 matrix, the equation $X^{n}=A$ has a finite number of solutions and we give a formula expressing all solutions in terms of A and the roots of a suitably defined nth degree polynomial in a single variable. This leads to very simple formulae for all the solutions when A is either a singular matrix or a non-singular matrix with two coincident eigenvalues. Similarly when $n=3$ or 4 , we get explicit algebraic formulae for all the solutions. We also determine the precise number of solutions in various cases. © 2004 Elsevier Inc. All rights reserved.

AMS classification: 15A24
Keywords: nth roots of 2×2 matrices; Matrix equation

1. Introduction

Let A be a square matrix whose elements are either real or complex numbers. Any matrix X such that $X^{n}=A$ is called an nth root of A and the problem of determining all the nth roots X of a given matrix has been dealt with by many mathematicians ([2,3], [4, pp. 120-122], [5], [6, pp. 231-239], [7], [8, pp. 94-97], [9]). However, explicit formulae giving X in terms of A and its elements are not generally known.

[^0]Cayley [1] and Sullivan [10] have obtained algebraic formulae giving the square roots of 2×2 matrices and Damphousse [2] has given formulae expressing the nth roots of non-singular 2×2 matrices in terms of transcendental functions.

This paper is concerned with the determination of algebraic formulae giving the nth roots of 2×2 matrices. As algebraic formulae have already been obtained when $n=2$, we obtain formulae, not hitherto obtained, whenever $n \geqslant 3$. We first obtain explicit algebraic formulae giving the infinitely many nth roots of scalar 2×2 matrices. Next, we show that a non-scalar 2×2 matrix A has only finitely many nth roots all of which are given by

$$
X=\left\{f_{n}\left(t_{0}\right)\right\}^{-1 / n}\left(A+t_{0} I\right)
$$

where $f_{n}(t)$ is a suitably defined polynomial and t_{0} is a root of an nth degree polynomial equation in the single variable t such that $f_{n}\left(t_{0}\right) \neq 0$. Thus the problem of finding all nth roots of a non-scalar matrix is reduced to the simple problem of determining all roots of a polynomial equation. When A is either a non-scalar non-singular matrix with two coincident eigenvalues or a non-scalar singular matrix, we determine all possible values of t_{0} and thus get explicit formulae for all the nth roots of A. Similarly when $n=3$ or 4 , the polynomial equation that determines t_{0} is solvable by radicals and we obtain explicit algebraic formulae for all the cube roots and fourth roots of a given non-scalar matrix. We give a couple of numerical examples illustrating the application of the formulae obtained.

We also determine the number of distinct nth roots of non-scalar 2×2 matrices. We show that a non-scalar non-singular matrix has precisely n^{2} distinct nth roots if the given matrix has two distinct eigenvalues and precisely n distinct nth roots if it has two coincident eigenvalues. Further, a non-scalar singular matrix has precisely n distinct nth roots if its trace is non-zero and no solutions if its trace is zero. These results are different from the conclusion drawn by Damphousse [2, p. 400] that every non-scalar non-singular 2×2 matrix has only n distinct nth roots. In fact, we have given a numerical example explicitly giving 16 distinct fourth roots of a non-scalar non-singular 2×2 matrix.

In Section 2 we prove some preliminary results, Section 3 deals with the roots of scalar matrices while Section 4 deals with the roots of non-scalar matrices. Throughout the paper I denotes the 2×2 identity matrix while $\operatorname{tr}(A)$ and $\operatorname{det}(A)$ denote the trace and determinant respectively of a matrix A.

2. Preliminaries

In this section we prove two lemmas. The first lemma gives for an arbitrary 2×2 matrix A and an arbitrary integer $m \geqslant 3$, a formula expressing A^{m} in terms of A, I and symmetric functions of the eigenvalues of A. The second lemma gives for an arbitrary non-scalar 2×2 matrix A, an arbitrary positive integer n and a variable t,
a formula expressing $(A+t I)^{n}$ in terms of A, I and two functions $f_{n}(t)$ and $g_{n}(t)$. We also obtain several formulae concerning the functions $f_{n}(t)$ and $g_{n}(t)$.

Lemma 2.1. If A is any arbitrary 2×2 matrix with eigenvalues λ_{1} and λ_{2} (not necessarily distinct), then for any positive integer $m \geqslant 3$,

$$
\begin{equation*}
A^{m}=\phi_{m-1}\left(\lambda_{1}, \lambda_{2}\right) A-\operatorname{det}(A) \phi_{m-2}\left(\lambda_{1}, \lambda_{2}\right) I, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{m}\left(\lambda_{1}, \lambda_{2}\right)=\lambda_{1}^{m}+\lambda_{1}^{m-1} \lambda_{2}+\cdots+\lambda_{2}^{m} . \tag{2.2}
\end{equation*}
$$

If A is a singular matrix, then for any positive integer $m \geqslant 2$,

$$
\begin{equation*}
A^{m}=\{\operatorname{tr}(A)\}^{m-1} A . \tag{2.3}
\end{equation*}
$$

Proof. Let p be the trace and q the determinant of the matrix A so that λ_{1} and λ_{2} satisfy the characteristic equation of A, that is, the equation

$$
\begin{equation*}
\lambda^{2}-p \lambda+q=0 \tag{2.4}
\end{equation*}
$$

Thus $\lambda_{1}+\lambda_{2}=p$ and $\lambda_{1} \lambda_{2}=q$, and it follows from the well-known Cayley-Hamilton theorem that

$$
\begin{equation*}
A^{2}=p A-q I \tag{2.5}
\end{equation*}
$$

By multiplying (2.5) by A, and replacing A^{2} by $p A-q I$ on the right-hand side of the resulting equation, it is readily verified that (2.1) holds for $m=3$. We assume that (2.1) holds for any arbitrary integer m, and multiplying (2.1) by A, we get

$$
\begin{align*}
A^{m+1}= & \left(\lambda_{1}^{m-1}+\lambda_{1}^{m-2} \lambda_{2}+\cdots+\lambda_{2}^{m-1}\right) A^{2} \\
& -\operatorname{det}(A)\left(\lambda_{1}^{m-2}+\lambda_{1}^{m-3} \lambda_{2}+\cdots+\lambda_{2}^{m-2}\right) A, \tag{2.6}
\end{align*}
$$

so that on using the relations $\lambda_{1}+\lambda_{2}=p, \lambda_{1} \lambda_{2}=q=\operatorname{det}(A)$ and (2.5), we get on simplification

$$
\begin{equation*}
A^{m+1}=\phi_{m}\left(\lambda_{1}, \lambda_{2}\right) A-\operatorname{det}(A) \phi_{m-1}\left(\lambda_{1}, \lambda_{2}\right) I \tag{2.7}
\end{equation*}
$$

and the result follows by induction.
If A is a singular matrix, $\operatorname{det}(A)=0$ and the eigenvalues of A are 0 and $\operatorname{tr}(A)$ so that (2.3) follows from (2.1), (2.2) and (2.5).

We note that $\phi_{m}\left(\lambda_{1}, \lambda_{2}\right)$, which is a symmetric function of the roots of equation (2.4), can be expressed in terms of p and q for all positive integers m. Table 1 gives the values of $\phi_{m}\left(\lambda_{1}, \lambda_{2}\right)$ in terms of p and q for $m=1,2, \ldots, 10$.

Lemma 2.2. If A is any arbitrary non-scalar 2×2 matrix with eigenvalues λ_{1} and λ_{2} (not necessarily distinct), trace p, and determinant q, and t is an arbitrary variable, then for any positive integer n,

$$
\begin{equation*}
(A+t I)^{n}=f_{n}(t) A+g_{n}(t) I, \tag{2.8}
\end{equation*}
$$

Table 1
Values of $\phi_{m}\left(\lambda_{1}, \lambda_{2}\right)$

m	$\phi_{m}\left(\lambda_{1}, \lambda_{2}\right)$
1	p
2	$p^{2}-q$
3	$p^{3}-2 p q$
4	$p^{4}-3 p^{2} q+q^{2}$
5	$p^{5}-4 p^{3} q+3 p q^{2}$
6	$p^{6}-5 p^{4} q+6 p^{2} q^{2}-q^{3}$
7	$p^{7}-6 p^{5} q+10 p^{3} q^{2}-4 p q^{3}$
8	$p^{8}-7 p^{6} q+15 p^{4} q^{2}-10 p^{2} q^{3}+q^{4}$
9	$p^{9}-8 p^{7} q+21 p^{5} q^{2}-20 p^{3} q^{3}+5 p q^{4}$
10	$p^{10}-9 p^{8} q+28 p^{6} q^{2}-35 p^{4} q^{3}+15 p^{2} q^{4}-q^{5}$

where the functions $f_{n}(t), g_{n}(t)$ and their respective derivatives with respect to t satisfy the following relations:

$$
\begin{align*}
f_{n+1}(t) & =(2 t+p) f_{n}(t)-\left(t^{2}+p t+q\right) f_{n-1}(t), \tag{2.9}\\
g_{n+1}(t) & =(2 t+p) g_{n}(t)-\left(t^{2}+p t+q\right) g_{n-1}(t), \tag{2.10}\\
q f_{n-1}(t) & =-g_{n}(t)+t g_{n-1}(t), \tag{2.11}\\
g_{n-1}(t) & =f_{n}(t)-(t+p) f_{n-1}(t), \tag{2.12}\\
f_{n}^{\prime}(t) & =n f_{n-1}(t), \tag{2.13}\\
g_{n}^{\prime}(t) & =n g_{n-1}(t), \tag{2.14}\\
\lambda f_{n}(t)+g_{n}(t) & =(t+\lambda)^{n}, \tag{2.15}
\end{align*}
$$

where λ is any eigenvalue of A. Further, when $n \geqslant 3$,

$$
\begin{align*}
& f_{n}(t)=n t^{n-1}+{ }_{n} C_{2} p t^{n-2}+\sum_{m=3}^{n}{ }_{n} C_{m} \phi_{m-1}\left(\lambda_{1}, \lambda_{2}\right) t^{n-m}, \tag{2.16}\\
& g_{n}(t)=t^{n}-{ }_{n} C_{2} q t^{n-2}-q \sum_{m=3}^{n}{ }_{n} C_{m} \phi_{m-2}\left(\lambda_{1}, \lambda_{2}\right) t^{n-m},
\end{align*}
$$

where $\phi_{m}\left(\lambda_{1}, \lambda_{2}\right)=\lambda_{1}^{m}+\lambda_{1}^{m-1} \lambda_{2}+\cdots+\lambda_{2}^{m}$. Finally if the matrix A has two coincident eigenvalues, then for any positive integer n,

$$
\begin{align*}
& f_{n}(t)=n(2 t+p)^{n-1} / 2^{n-1} \tag{2.17}\\
& g_{n}(t)=(2 t+p)^{n-1}\{2 t-(n-1) p\} / 2^{n}
\end{align*}
$$

Proof. Using the Cayley-Hamilton theorem we get

$$
\begin{equation*}
A^{2}=p A-q I, \tag{2.18}
\end{equation*}
$$

and for $m \geqslant 3$, Lemma 2.1 gives

$$
\begin{equation*}
A^{m}=\phi_{m-1}\left(\lambda_{1}, \lambda_{2}\right) A-q \phi_{m-2}\left(\lambda_{1}, \lambda_{2}\right) I \tag{2.19}
\end{equation*}
$$

where $\phi_{m}\left(\lambda_{1}, \lambda_{2}\right)=\lambda_{1}^{m}+\lambda_{1}^{m-1} \lambda_{2}+\cdots+\lambda_{2}^{m}$. Now using the binomial expansion of $(A+t I)^{n}$, and substituting the values of various powers of A given by (2.18) and (2.19), we obtain the relation (2.8), and for $n \geqslant 3$, we obtain the relations (2.16). Further, $(A+t I)^{n}=(A+t I)^{n-1}(A+t I)$ so that

$$
\begin{equation*}
f_{n}(t) A+g_{n}(t) I=\left\{f_{n-1}(t) A+g_{n-1}(t) I\right\}(A+t I) \tag{2.20}
\end{equation*}
$$

which, on using (2.18), reduces to

$$
\begin{align*}
& \left\{f_{n}(t)-(t+p) f_{n-1}(t)-g_{n-1}(t)\right\} A \\
& \quad=\left\{-g_{n}(t)-q f_{n-1}(t)+t g_{n-1}(t)\right\} I . \tag{2.21}
\end{align*}
$$

Since A is a non-scalar matrix, it follows that

$$
\begin{align*}
& f_{n}(t)=(t+p) f_{n-1}(t)+g_{n-1}(t) \tag{2.22}\\
& g_{n}(t)=-q f_{n-1}(t)+t g_{n-1}(t)
\end{align*}
$$

and the relations (2.11) and (2.12) follow readily. If E is the translation operator defined for any function $\psi_{n}(t)$ by $E \psi_{n}(t)=\psi_{n+1}(t)$, we may write the relations (2.22) as follows:

$$
\begin{align*}
& (E-t-p) f_{n-1}(t)-g_{n-1}(t)=0 \tag{2.23}\\
& q f_{n-1}(t)+(E-t) g_{n-1}(t)=0
\end{align*}
$$

and eliminating $g_{n-1}(t)$ from the equations (2.23), we get

$$
\begin{equation*}
\left\{E^{2}-(2 t+p) E+t^{2}+p t+q\right\} f_{n-1}(t)=0 \tag{2.24}
\end{equation*}
$$

and the relation (2.9) follows. The relation (2.10) is obtained similarly. Further, on differentiating both sides of (2.8) with respect to t, we get

$$
\begin{equation*}
n(A+t I)^{n-1}=f_{n}^{\prime}(t) A+g_{n}^{\prime}(t) I \tag{2.25}
\end{equation*}
$$

or,

$$
\begin{equation*}
n\left\{f_{n-1}(t) A+g_{n-1}(t) I\right\}=f_{n}^{\prime}(t) A+g_{n}^{\prime}(t) I \tag{2.26}
\end{equation*}
$$

and, since A is a non-scalar matrix, the relations (2.13) and (2.14) now follow readily.
If λ is any eigenvalue of A so that $\lambda^{2}-p \lambda+q=0$, we obtain from (2.22) the recurrence relation

$$
\begin{equation*}
\lambda f_{n}(t)+g_{n}(t)=(t+\lambda)\left(\lambda f_{n-1}(t)+g_{n-1}(t)\right) \tag{2.27}
\end{equation*}
$$

When $n=1$, we get from (2.8), $A+t I=f_{1}(t) A+g_{1}(t) I$ so that $f_{1}(t)=1$ and $g_{1}(t)=t$, and now the recurrence relation (2.27) leads to

$$
\begin{equation*}
\lambda f_{n}(t)+g_{n}(t)=(t+\lambda)^{n-1}\left(\lambda f_{1}(t)+g_{1}(t)\right), \tag{2.28}
\end{equation*}
$$

and hence we get the relation (2.15).

Finally if the matrix A has two coincident eigenvalues, we must have $q=p^{2} / 4$, and the recurrence relations (2.9) and (2.10) may be written as

$$
\begin{align*}
& \{E-(t+p / 2)\}^{2} f_{n-1}(t)=0, \tag{2.29}\\
& \{E-(t+p / 2)\}^{2} g_{n-1}(t)=0,
\end{align*}
$$

and, using the standard methods of solving recurrence relations, we readily obtain (2.17).

3. Roots of scalar matrices

Theorem 3.1. All solutions of the matrix equation

$$
\begin{equation*}
X^{n}=k I, \tag{3.1}
\end{equation*}
$$

where k is an arbitrary non-zero real or complex number, are given by

$$
\begin{equation*}
X=k^{1 / n} I, \tag{3.2}
\end{equation*}
$$

and

$$
X=\left[\begin{array}{cc}
\left\{k^{1 / n}(1+\rho)+2 u\right\} / 2 & v\left\{k^{1 / n}(1-\rho)+2 u\right\} / 2 \tag{3.3}\\
\left\{k^{1 / n}(1-\rho)-2 u\right\} /(2 v) & \left\{k^{1 / n}(1+\rho)-2 u\right\} / 2
\end{array}\right]
$$

where ρ is any nth root of unity other than 1 , and u, v are arbitrary parameters such that $v \neq 0$. Further, all solutions of the matrix equation

$$
\begin{equation*}
X^{n}=O, \tag{3.4}
\end{equation*}
$$

apart from the trivial solution $X=O$, are given by

$$
X=\left[\begin{array}{cc}
a & b \tag{3.5}\\
-a^{2} / b & -a
\end{array}\right]
$$

where a and b are arbitrary parameters such that $b \neq 0$.
Proof. If μ_{1} and μ_{2} are the eigenvalues of any solution X of Eq. (3.1), from Lemma 2.1 we get

$$
\begin{equation*}
X^{n}=\phi_{n-1}\left(\mu_{1}, \mu_{2}\right) X-\operatorname{det}(X) \phi_{n-2}\left(\mu_{1}, \mu_{2}\right) I \tag{3.6}
\end{equation*}
$$

and using (3.1) we get

$$
\begin{equation*}
\phi_{n-1}\left(\mu_{1}, \mu_{2}\right) X-\operatorname{det}(X) \phi_{n-2}\left(\mu_{1}, \mu_{2}\right) I=k I . \tag{3.7}
\end{equation*}
$$

If X is a scalar matrix, $X=s I$ so that (3.1) gives $s^{n} I=k I$. If $k \neq 0$, we must have $s^{n}=k$ and we thus get the solutions (3.2) of (3.1), while if $k=0$ we get the trivial solution of (3.4). If X is not a scalar matrix, it follows from (3.7) that

$$
\begin{equation*}
\phi_{n-1}\left(\mu_{1}, \mu_{2}\right)=\mu_{1}^{n-1}+\mu_{1}^{n-2} \mu_{2}+\cdots+\mu_{2}^{n-1}=0 \tag{3.8}
\end{equation*}
$$

so that $\mu_{2}=\mu_{1} \rho$ where ρ is any nth root of unity other than $1, \operatorname{det}(X)=\mu_{1} \mu_{2}=$ $\mu_{1}^{2} \rho$ and (3.7) reduces to $\mu_{1}^{n} I=k I$ so that $\mu_{1}^{n}=k$. There are now two possibilities:
(i) If $k \neq 0$, we get $\mu_{1}=k^{1 / n}$ and hence $\mu_{2}=k^{1 / n} \rho$. It follows from (3.7) that any matrix X with eigenvalues $\mu_{1}=k^{1 / n}$ and $\mu_{2}=k^{1 / n} \rho$ is a solution of (3.1). If we now write

$$
X=\left[\begin{array}{ll}
a & b \tag{3.9}\\
c & d
\end{array}\right]
$$

we get

$$
\begin{align*}
& a+d=\mu_{1}+\mu_{2}=k^{1 / n}(1+\rho) \tag{3.10}\\
& a d-b c=\mu_{1} \mu_{2}=k^{2 / n} \rho
\end{align*}
$$

Eqs. (3.10) are easily solved for a, b, c, d to get the solution

$$
\begin{align*}
& a=\left\{k^{1 / n}(1+\rho)+2 u\right\} / 2, \\
& b=v\left\{k^{1 / n}(1-\rho)+2 u\right\} / 2, \tag{3.11}\\
& c=\left\{k^{1 / n}(1-\rho)-2 u\right\} /(2 v), \\
& d=\left\{k^{1 / n}(1+\rho)-2 u\right\} / 2,
\end{align*}
$$

where u and v are arbitrary parameters such that $v \neq 0$ and we thus get the solutions (3.3) of Eq. (3.1).
(ii) If $k=0$, we get $\mu_{1}=0$ and hence also $\mu_{2}=0$. Thus both eigenvalues of X are zero and if we take X as in (3.9), we get $a+d=0$ and $a d-b c=0$ and these two equations are readily solved for c and d to obtain the solutions (3.5) of Eq. (3.4).

4. Roots of non-scalar matrices

Theorem 4.1. If A is a non-scalar matrix with trace p, determinant q and eigenvalues λ_{1} and λ_{2} (not necessarily distinct), and the functions $\phi_{m}\left(\lambda_{1}, \lambda_{2}\right), f_{n}(t)$, $g_{n}(t)$ are defined by (2.2) and (2.16), all solutions of the matrix equation

$$
\begin{equation*}
X^{n}=A, \quad n \geqslant 3, \tag{4.1}
\end{equation*}
$$

are given by

$$
\begin{equation*}
X=\left\{f_{n}\left(t_{0}\right)\right\}^{-1 / n}\left(A+t_{0} I\right) \tag{4.2}
\end{equation*}
$$

where t_{0} is any root of the polynomial equation $g_{n}(t)=0$ such that $f_{n}\left(t_{0}\right) \neq 0$. Further, if the matrix A is non-singular and has two distinct eigenvalues, Eq. (4.1) has n^{2} distinct solutions while if A has two coincident eigenvalues, it has n distinct solutions which are given by

$$
\begin{equation*}
X=n^{-1}\left(2 p^{n-1}\right)^{-1 / n}\{2 A+(n-1) p I\} . \tag{4.3}
\end{equation*}
$$

Finally, if the matrix A is singular and $p=0, E q$. (4.1) has no solutions while if $p \neq 0$ it has n distinct solutions which are given by

$$
\begin{equation*}
X=p^{-(n-1) / n} A \tag{4.4}
\end{equation*}
$$

Proof. Let X be an nth root of the matrix A and let μ_{1} and μ_{2} be the eigenvalues of X. Using Lemma 2.1 we get

$$
\begin{equation*}
X^{n}=\phi_{n-1}\left(\mu_{1}, \mu_{2}\right) X-\operatorname{det}(X) \phi_{n-2}\left(\mu_{1}, \mu_{2}\right) I \tag{4.5}
\end{equation*}
$$

and hence it follows from (4.1) that

$$
\begin{equation*}
\phi_{n-1}\left(\mu_{1}, \mu_{2}\right) X-\operatorname{det}(X) \phi_{n-2}\left(\mu_{1}, \mu_{2}\right) I=A . \tag{4.6}
\end{equation*}
$$

Since A is a non-scalar matrix, it follows from (4.6) that $\phi_{n-1}\left(\mu_{1}, \mu_{2}\right)$ must necessarily be non-zero, and hence there exists a non-zero number s and a number t such that

$$
\begin{equation*}
X=s(A+t I) . \tag{4.7}
\end{equation*}
$$

Substituting this value of X in (4.1) and using the relation (2.8), we get

$$
\begin{equation*}
s^{n}\left\{f_{n}(t) A+g_{n}(t) I\right\}=A \tag{4.8}
\end{equation*}
$$

Since A is non-scalar, it follows that $g_{n}(t)=0$ and $s^{n} f_{n}(t)=1$. Thus Eq. (4.1) has finitely many roots all of which are given by (4.2) where t_{0} is any root of the polynomial equation $g_{n}(t)=0$ such that $f_{n}\left(t_{0}\right) \neq 0$.

We will now determine the number of distinct solutions of (4.1). If A is a nonscalar non-singular matrix and $\lambda_{1} \neq \lambda_{2}$, using (2.15) we get for any n, the two relations

$$
\begin{align*}
& \lambda_{1} f_{n}(t)+g_{n}(t)=\left(t+\lambda_{1}\right)^{n}, \tag{4.9}\\
& \lambda_{2} f_{n}(t)+g_{n}(t)=\left(t+\lambda_{2}\right)^{n},
\end{align*}
$$

and it now follows that $f_{n}(t)$ and $g_{n}(t)$ cannot have a common root. Thus if $g_{n}\left(t_{0}\right)=$ 0 , we will necessarily have $f_{n}\left(t_{0}\right) \neq 0$. Next we note that if $g_{n}(t)=0$ has a repeated root t_{0}, then $g_{n}\left(t_{0}\right)=0$ and $g_{n}^{\prime}\left(t_{0}\right)=0$, and from (2.14) we get $g_{n-1}\left(t_{0}\right)=0$ so that it follows from (2.11) that $f_{n-1}\left(t_{0}\right)=0$ and hence from (2.12) we get $f_{n}\left(t_{0}\right)=0$ which is a contradiction. Thus $g_{n}(t)=0$ cannot have a repeated root and since $g_{n}(t)$ is a polynomial of degree n in t, the equation $g_{n}(t)=0$ has n distinct roots. Moreover, for each such root $t_{0},\left\{f_{n}\left(t_{0}\right)\right\}^{-1 / n}$ takes n distinct values, and thus each root t_{0} of $g_{n}(t)=0$ leads to n distinct solutions of (4.1). Any two solutions of Eq. (4.1) are of the type $s_{1}\left(A+t_{1} I\right)$ and $s_{2}\left(A+t_{2} I\right)$ and they can be equal if and only if $s_{1}=s_{2}$ and $t_{1}=t_{2}$, but these conditions do not hold. Thus a non-scalar non-singular matrix A with two distinct eigenvalues has exactly n^{2} distinct nth roots.

If A is a non-scalar non-singular matrix with two coincident eigenvalues, the functions $f_{n}(t)$ and $g_{n}(t)$ are given by (2.17). Thus there is only one admissible root of the equation $g_{n}(t)=0$, namely $t_{0}=(n-1) p / 2$, for which $f_{n}\left(t_{0}\right) \neq 0$ and with this value of t_{0}, (4.2) yields exactly n distinct nth roots of A which are given by (4.3).

If A is a non-scalar singular matrix, $q=0$ and from (2.16) we get $g_{n}(t)=t^{n}$ so that $t_{0}=0$. Since $q=0$, the eigenvalues of A are 0 and p, and hence it follows from (2.16) that $f_{n}\left(t_{0}\right)=p^{n-1}$. If $p=0$ then $f_{n}\left(t_{0}\right)=0$ and hence we get no solutions while if $p \neq 0$ then $f_{n}\left(t_{0}\right) \neq 0$ and substituting $t_{0}=0$ and $f_{n}\left(t_{0}\right)=p^{n-1}$ in (4.2), we get n distinct solutions which are given by (4.4).

Corollary 4.2. If a non-scalar matrix A has distinct eigenvalues and ω denotes a primitive cube root of unity, the 9 cube roots of A are given by

$$
\begin{equation*}
X=\left(3 t_{0}^{2}+3 p t_{0}+p^{2}-q\right)^{-1 / 3}\left(A+t_{0} I\right) \tag{4.10}
\end{equation*}
$$

where t_{0} takes any of the three values

$$
\begin{equation*}
\left\{\left(p+\left(p^{2}-4 q\right)^{1 / 2}\right) q / 2\right\}^{1 / 3} \omega^{k}+\left\{\left(p-\left(p^{2}-4 q\right)^{1 / 2}\right) q / 2\right\}^{1 / 3} \omega^{2 k} \tag{4.11}
\end{equation*}
$$

where $k=0,1,2$, while the 16 fourth roots of A are given by

$$
\begin{equation*}
X=\left\{4 t_{0}^{3}+6 p t_{0}^{2}+4\left(p^{2}-q\right) t_{0}+p^{3}-2 p q\right\}^{-1 / 4}\left(A+t_{0} I\right) \tag{4.12}
\end{equation*}
$$

where t_{0} takes any of the four values

$$
\begin{array}{ll}
-q^{1 / 2}+\left(2 q-p q^{1 / 2}\right)^{1 / 2}, & -q^{1 / 2}-\left(2 q-p q^{1 / 2}\right)^{1 / 2} \\
q^{1 / 2}+\left(2 q+p q^{1 / 2}\right)^{1 / 2}, & q^{1 / 2}-\left(2 q+p q^{1 / 2}\right)^{1 / 2} \tag{4.13}
\end{array}
$$

Proof. When $n=3$ or 4 , the equation $g_{n}(t)=0$ is a cubic or a quartic equation which is solvable by radicals using standard methods. A direct application of solution (4.2) of Theorem 4.1 yields the solutions of the equations $X^{3}=A$ and $X^{4}=A$ as stated above.

Finally we give a couple of numerical examples to illustrate the use of the formulae obtained above.

The non-singular matrix $\left[\begin{array}{cc}25 & 7 \\ -7 & 39\end{array}\right]$ has two coincident eigenvalues and, using
(4.3), its only real fifth root is readily found to be $\left[\begin{array}{cc}153 / 80 & 7 / 80 \\ -7 / 80 & 167 / 80\end{array}\right]$.

The 16 fourth roots of the matrix $\left[\begin{array}{cc}-179 & 390 \\ -130 & 276\end{array}\right]$ are found using (4.12) to be the following matrices:

$$
\begin{aligned}
& \pm\left[\begin{array}{ll}
-1 & 6 \\
-2 & 6
\end{array}\right], \quad \pm\left[\begin{array}{cc}
-\mathrm{i} & 6 \mathrm{i} \\
-2 \mathrm{i} & 6 \mathrm{i}
\end{array}\right], \quad \pm\left[\begin{array}{cc}
-17 & 30 \\
-10 & 18
\end{array}\right], \quad \pm\left[\begin{array}{cc}
-17 \mathrm{i} & 30 \mathrm{i} \\
-10 \mathrm{i} & 18 \mathrm{i}
\end{array}\right], \\
& \pm\left[\begin{array}{cc}
-9+8 \mathrm{i} & 18-12 \mathrm{i} \\
-6+4 \mathrm{i} & 12-6 \mathrm{i}
\end{array}\right], \quad \pm\left[\begin{array}{cc}
8+9 \mathrm{i} & -12-18 \mathrm{i} \\
4+6 \mathrm{i} & -6-12 \mathrm{i}
\end{array}\right], \\
& \pm\left[\begin{array}{cc}
9+8 \mathrm{i} & -18-12 \mathrm{i} \\
6+4 \mathrm{i} & -12-6 \mathrm{i}
\end{array}\right], \quad \pm\left[\begin{array}{cc}
8-9 \mathrm{i} & -12+18 \mathrm{i} \\
4-6 \mathrm{i} & -6+12 \mathrm{i}
\end{array}\right] .
\end{aligned}
$$

References

[1] A. Cayley, A memoir on the theory of matrices, Philos. Trans. Roy. Soc. London 148 (1858) 17-37.
[2] P. Damphousse, The arithmetic of powers and roots in $\mathrm{Gl}_{2}(\mathrm{C})$ and $\mathrm{Sl}_{2}(\mathrm{C})$, Fibonacci Quart. 27 (1989) 386-401.
[3] E.D. Denman, Roots of real matrices, Linear Algebra Appl. 36 (1981) 133-139.
[4] L.E. Dickson, Modern Algebraic Theories, B.H. Sanborn, Chicago, 1926.
[5] J.-C. Evard, F. Uhlig, On the matrix equation $f(X)=A$, Linear Algebra Appl. 162-164 (1992) 447-519.
[6] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1960.
[7] C.K. Koc, M. Inceoglu, A parallel algorithm for principal nth roots of matrices, Automatica 33 (1997) 1735-1738.
[8] C.C. MacDuffee, Theory of Matrices, Chelsea, New York, 1946.
[9] D.E. Otero, Extraction of m th roots in matrix rings over fields, Linear Algebra Appl. 128 (1990) 1-26.
[10] D. Sullivan, The square roots of 2 X 2 matrices, Math. Mag. 66 (1993) 314-316.

[^0]: E-mail address: ajaic203@yahoo.com (A. Choudhry).
 0024-3795/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
 doi:10.1016/j.laa.2004.02.010

