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Abstract

This paper is concerned with the determination of algebraic formulae giving all the solu-
tions of the matrix equation Xn = A where n is a positive integer greater than 2 and A is a
2 × 2 matrix with real or complex elements. If A is a 2 × 2 scalar matrix, the equation Xn = A

has infinitely many solutions and we obtain explicit formulae giving all the solutions. If A is
a non-scalar 2 × 2 matrix, the equation Xn = A has a finite number of solutions and we give
a formula expressing all solutions in terms of A and the roots of a suitably defined nth degree
polynomial in a single variable. This leads to very simple formulae for all the solutions when A

is either a singular matrix or a non-singular matrix with two coincident eigenvalues. Similarly
when n = 3 or 4, we get explicit algebraic formulae for all the solutions. We also determine
the precise number of solutions in various cases.
© 2004 Elsevier Inc. All rights reserved.

AMS classification: 15A24

Keywords: nth roots of 2 × 2 matrices; Matrix equation

1. Introduction

Let A be a square matrix whose elements are either real or complex numbers. Any
matrix X such that Xn = A is called an nth root of A and the problem of determining
all the nth roots X of a given matrix has been dealt with by many mathematicians
([2,3], [4, pp. 120–122], [5], [6, pp. 231–239], [7], [8, pp. 94–97], [9]). However,
explicit formulae giving X in terms of A and its elements are not generally known.
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Cayley [1] and Sullivan [10] have obtained algebraic formulae giving the square
roots of 2 × 2 matrices and Damphousse [2] has given formulae expressing the nth
roots of non-singular 2 × 2 matrices in terms of transcendental functions.

This paper is concerned with the determination of algebraic formulae giving the
nth roots of 2 × 2 matrices. As algebraic formulae have already been obtained when
n = 2, we obtain formulae, not hitherto obtained, whenever n � 3. We first obtain
explicit algebraic formulae giving the infinitely many nth roots of scalar 2 × 2 matri-
ces. Next, we show that a non-scalar 2 × 2 matrix A has only finitely many nth roots
all of which are given by

X = {fn(t0)}−1/n(A + t0I ),

where fn(t) is a suitably defined polynomial and t0 is a root of an nth degree poly-
nomial equation in the single variable t such that fn(t0) /= 0. Thus the problem of
finding all nth roots of a non-scalar matrix is reduced to the simple problem of deter-
mining all roots of a polynomial equation. When A is either a non-scalar non-singular
matrix with two coincident eigenvalues or a non-scalar singular matrix, we deter-
mine all possible values of t0 and thus get explicit formulae for all the nth roots of
A. Similarly when n = 3 or 4, the polynomial equation that determines t0 is solv-
able by radicals and we obtain explicit algebraic formulae for all the cube roots and
fourth roots of a given non-scalar matrix. We give a couple of numerical examples
illustrating the application of the formulae obtained.

We also determine the number of distinct nth roots of non-scalar 2 × 2 matrices.
We show that a non-scalar non-singular matrix has precisely n2 distinct nth roots if
the given matrix has two distinct eigenvalues and precisely n distinct nth roots if it
has two coincident eigenvalues. Further, a non-scalar singular matrix has precisely
n distinct nth roots if its trace is non-zero and no solutions if its trace is zero. These
results are different from the conclusion drawn by Damphousse [2, p. 400] that every
non-scalar non-singular 2 × 2 matrix has only n distinct nth roots. In fact, we have
given a numerical example explicitly giving 16 distinct fourth roots of a non-scalar
non-singular 2 × 2 matrix.

In Section 2 we prove some preliminary results, Section 3 deals with the roots of
scalar matrices while Section 4 deals with the roots of non-scalar matrices. Through-
out the paper I denotes the 2 × 2 identity matrix while tr(A) and det(A) denote the
trace and determinant respectively of a matrix A.

2. Preliminaries

In this section we prove two lemmas. The first lemma gives for an arbitrary 2 × 2
matrix A and an arbitrary integer m � 3, a formula expressing Am in terms of A, I

and symmetric functions of the eigenvalues of A. The second lemma gives for an
arbitrary non-scalar 2 × 2 matrix A, an arbitrary positive integer n and a variable t ,
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a formula expressing (A + tI )n in terms of A, I and two functions fn(t) and gn(t).

We also obtain several formulae concerning the functions fn(t) and gn(t).

Lemma 2.1. If A is any arbitrary 2 × 2 matrix with eigenvalues λ1 and λ2 (not
necessarily distinct), then for any positive integer m � 3,

Am = φm−1(λ1, λ2)A − det(A)φm−2(λ1, λ2)I , (2.1)

where

φm(λ1, λ2) = λm
1 + λm−1

1 λ2 + · · · + λm
2 . (2.2)

If A is a singular matrix, then for any positive integer m � 2,

Am = {tr(A)}m−1A. (2.3)

Proof. Let p be the trace and q the determinant of the matrix A so that λ1 and λ2
satisfy the characteristic equation of A, that is, the equation

λ2 − pλ + q = 0. (2.4)

Thus λ1 + λ2 = p and λ1λ2 = q, and it follows from the well-known Cayley–Ham-
ilton theorem that

A2 = pA − qI. (2.5)

By multiplying (2.5) by A, and replacing A2 by pA − qI on the right-hand side of
the resulting equation, it is readily verified that (2.1) holds for m = 3. We assume
that (2.1) holds for any arbitrary integer m, and multiplying (2.1) by A, we get

Am+1 = (
λm−1

1 + λm−2
1 λ2 + · · · + λm−1

2

)
A2

− det(A)
(
λm−2

1 + λm−3
1 λ2 + · · · + λm−2

2

)
A, (2.6)

so that on using the relations λ1 + λ2 = p, λ1λ2 = q = det(A) and (2.5), we get on
simplification

Am+1 = φm(λ1, λ2)A − det(A)φm−1(λ1, λ2)I, (2.7)

and the result follows by induction.
If A is a singular matrix, det(A) = 0 and the eigenvalues of A are 0 and tr(A) so

that (2.3) follows from (2.1), (2.2) and (2.5).
We note that φm(λ1, λ2), which is a symmetric function of the roots of equation

(2.4), can be expressed in terms of p and q for all positive integers m. Table 1 gives
the values of φm(λ1, λ2) in terms of p and q for m = 1, 2, . . . , 10. �

Lemma 2.2. If A is any arbitrary non-scalar 2 × 2 matrix with eigenvalues λ1 and
λ2 (not necessarily distinct), trace p, and determinant q, and t is an arbitrary vari-
able, then for any positive integer n,

(A + tI )n = fn(t)A + gn(t)I, (2.8)
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Table 1
Values of φm(λ1, λ2)

m φm(λ1, λ2)

1 p

2 p2 − q

3 p3 − 2pq

4 p4 − 3p2q + q2

5 p5 − 4p3q + 3pq2

6 p6 − 5p4q + 6p2q2 − q3

7 p7 − 6p5q + 10p3q2 − 4pq3

8 p8 − 7p6q + 15p4q2 − 10p2q3 + q4

9 p9 − 8p7q + 21p5q2 − 20p3q3 + 5pq4

10 p10 − 9p8q + 28p6q2 − 35p4q3 + 15p2q4 − q5

where the functions fn(t), gn(t) and their respective derivatives with respect to t

satisfy the following relations:
fn+1(t) = (2t + p)fn(t) − (t2 + pt + q)fn−1(t), (2.9)

gn+1(t) = (2t + p)gn(t) − (t2 + pt + q)gn−1(t), (2.10)

qfn−1(t) = −gn(t) + tgn−1(t), (2.11)

gn−1(t) = fn(t) − (t + p)fn−1(t), (2.12)

f ′
n(t) = nfn−1(t), (2.13)

g′
n(t) = ngn−1(t), (2.14)

λfn(t) + gn(t) = (t + λ)n, (2.15)

where λ is any eigenvalue of A. Further, when n � 3,

fn(t) = ntn−1 + nC2ptn−2 +
n∑

m=3

nCmφm−1(λ1, λ2)t
n−m,

(2.16)

gn(t) = tn − nC2qtn−2 − q

n∑
m=3

nCmφm−2(λ1, λ2)t
n−m,

where φm(λ1, λ2) = λm
1 + λm−1

1 λ2 + · · · + λm
2 . Finally if the matrix A has two coin-

cident eigenvalues, then for any positive integer n,

fn(t) = n(2t + p)n−1/2n−1, (2.17)

gn(t) = (2t + p)n−1{2t − (n − 1)p}/2n.

Proof. Using the Cayley–Hamilton theorem we get

A2 = pA − qI, (2.18)
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and for m � 3, Lemma 2.1 gives

Am = φm−1(λ1, λ2)A − qφm−2(λ1, λ2)I, (2.19)

where φm(λ1, λ2) = λm
1 + λm−1

1 λ2 + · · · + λm
2 . Now using the binomial expansion

of (A + tI )n, and substituting the values of various powers of A given by (2.18) and
(2.19), we obtain the relation (2.8), and for n � 3, we obtain the relations (2.16).
Further, (A + tI )n = (A + tI )n−1(A + tI ) so that

fn(t)A + gn(t)I = {fn−1(t)A + gn−1(t)I }(A + tI ) (2.20)

which, on using (2.18), reduces to

{fn(t) − (t + p)fn−1(t) − gn−1(t)}A
= {−gn(t) − qfn−1(t) + tgn−1(t)}I. (2.21)

Since A is a non-scalar matrix, it follows that

fn(t) = (t + p)fn−1(t) + gn−1(t), (2.22)

gn(t) = −qfn−1(t) + tgn−1(t),

and the relations (2.11) and (2.12) follow readily. If E is the translation operator
defined for any function ψn(t) by Eψn(t) = ψn+1(t), we may write the relations
(2.22) as follows:

(E − t − p)fn−1(t) − gn−1(t) = 0, (2.23)

qfn−1(t) + (E − t)gn−1(t) = 0,

and eliminating gn−1(t) from the equations (2.23), we get

{E2 − (2t + p)E + t2 + pt + q}fn−1(t) = 0, (2.24)

and the relation (2.9) follows. The relation (2.10) is obtained similarly. Further, on
differentiating both sides of (2.8) with respect to t , we get

n(A + tI )n−1 = f ′
n(t)A + g′

n(t)I (2.25)

or,

n{fn−1(t)A + gn−1(t)I } = f ′
n(t)A + g′

n(t)I (2.26)

and, since A is a non-scalar matrix, the relations (2.13) and (2.14) now follow readily.
If λ is any eigenvalue of A so that λ2 − pλ + q = 0, we obtain from (2.22) the

recurrence relation

λfn(t) + gn(t) = (t + λ)(λfn−1(t) + gn−1(t)). (2.27)

When n = 1, we get from (2.8), A + tI = f1(t)A + g1(t)I so that f1(t) = 1 and
g1(t) = t, and now the recurrence relation (2.27) leads to

λfn(t) + gn(t) = (t + λ)n−1(λf1(t) + g1(t)), (2.28)

and hence we get the relation (2.15).
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Finally if the matrix A has two coincident eigenvalues, we must have q = p2/4,

and the recurrence relations (2.9) and (2.10) may be written as

{E − (t + p/2)}2fn−1(t) = 0, (2.29)

{E − (t + p/2)}2gn−1(t) = 0,

and, using the standard methods of solving recurrence relations, we readily obtain
(2.17). �

3. Roots of scalar matrices

Theorem 3.1. All solutions of the matrix equation

Xn = kI, (3.1)

where k is an arbitrary non-zero real or complex number, are given by

X = k1/nI, (3.2)

and

X =
[ {k1/n(1 + ρ) + 2u}/2 v{k1/n(1 − ρ) + 2u}/2
{k1/n(1 − ρ) − 2u}/(2v) {k1/n(1 + ρ) − 2u}/2

]
(3.3)

where ρ is any nth root of unity other than 1, and u, v are arbitrary parameters such
that v /= 0. Further, all solutions of the matrix equation

Xn = O, (3.4)

apart from the trivial solution X = O, are given by

X =
[

a b

−a2/b −a

]
(3.5)

where a and b are arbitrary parameters such that b /= 0.

Proof. If µ1 and µ2 are the eigenvalues of any solution X of Eq. (3.1), from Lemma
2.1 we get

Xn = φn−1(µ1, µ2)X − det(X)φn−2(µ1, µ2)I (3.6)

and using (3.1) we get

φn−1(µ1, µ2)X − det(X)φn−2(µ1, µ2)I = kI. (3.7)

If X is a scalar matrix, X = sI so that (3.1) gives snI = kI . If k /= 0, we must have
sn = k and we thus get the solutions (3.2) of (3.1), while if k = 0 we get the trivial
solution of (3.4). If X is not a scalar matrix, it follows from (3.7) that

φn−1(µ1, µ2) = µn−1
1 + µn−2

1 µ2 + · · · + µn−1
2 = 0, (3.8)
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so that µ2 = µ1ρ where ρ is any nth root of unity other than 1, det(X) = µ1µ2 =
µ2

1ρ and (3.7) reduces to µn
1I = kI so that µn

1 = k. There are now two possibilities:

(i) If k /= 0, we get µ1 = k1/n and hence µ2 = k1/nρ. It follows from (3.7) that any
matrix X with eigenvalues µ1 = k1/n and µ2 = k1/nρ is a solution of (3.1). If
we now write

X =
[
a b

c d

]
, (3.9)

we get

a + d = µ1 + µ2 = k1/n(1 + ρ), (3.10)

ad − bc = µ1µ2 = k2/nρ.

Eqs. (3.10) are easily solved for a, b, c, d to get the solution

a = {k1/n(1 + ρ) + 2u}/2,

b = v{k1/n(1 − ρ) + 2u}/2, (3.11)

c = {k1/n(1 − ρ) − 2u}/(2v),

d = {k1/n(1 + ρ) − 2u}/2,

where u and v are arbitrary parameters such that v /= 0 and we thus get the
solutions (3.3) of Eq. (3.1).

(ii) If k = 0, we get µ1 = 0 and hence also µ2 = 0. Thus both eigenvalues of X are
zero and if we take X as in (3.9), we get a + d = 0 and ad − bc = 0 and these
two equations are readily solved for c and d to obtain the solutions (3.5) of Eq.
(3.4). �

4. Roots of non-scalar matrices

Theorem 4.1. If A is a non-scalar matrix with trace p, determinant q and eigen-
values λ1 and λ2 (not necessarily distinct), and the functions φm(λ1, λ2), fn(t),

gn(t) are defined by (2.2) and (2.16), all solutions of the matrix equation

Xn = A, n � 3, (4.1)

are given by

X = {fn(t0)}−1/n(A + t0I ), (4.2)

where t0 is any root of the polynomial equation gn(t) = 0 such that fn(t0) /= 0. Fur-
ther, if the matrix A is non-singular and has two distinct eigenvalues, Eq. (4.1)

has n2 distinct solutions while if A has two coincident eigenvalues, it has n distinct
solutions which are given by

X = n−1(2pn−1)−1/n{2A + (n − 1)pI }. (4.3)



190 A. Choudhry / Linear Algebra and its Applications 387 (2004) 183–192

Finally, if the matrix A is singular and p = 0, Eq. (4.1) has no solutions while if
p /= 0 it has n distinct solutions which are given by

X = p−(n−1)/nA. (4.4)

Proof. Let X be an nth root of the matrix A and let µ1 and µ2 be the eigenvalues
of X. Using Lemma 2.1 we get

Xn = φn−1(µ1, µ2)X − det(X)φn−2(µ1, µ2)I (4.5)

and hence it follows from (4.1) that

φn−1(µ1, µ2)X − det(X)φn−2(µ1, µ2)I = A. (4.6)

Since A is a non-scalar matrix, it follows from (4.6) that φn−1(µ1, µ2) must neces-
sarily be non-zero, and hence there exists a non-zero number s and a number t such
that

X = s(A + tI ). (4.7)

Substituting this value of X in (4.1) and using the relation (2.8), we get

sn{fn(t)A + gn(t)I } = A. (4.8)

Since A is non-scalar, it follows that gn(t) = 0 and snfn(t) = 1. Thus Eq. (4.1)
has finitely many roots all of which are given by (4.2) where t0 is any root of the
polynomial equation gn(t) = 0 such that fn(t0) /= 0.

We will now determine the number of distinct solutions of (4.1). If A is a non-
scalar non-singular matrix and λ1 /= λ2, using (2.15) we get for any n, the two rela-
tions

λ1fn(t) + gn(t) = (t + λ1)
n, (4.9)

λ2fn(t) + gn(t) = (t + λ2)
n,

and it now follows that fn(t) and gn(t) cannot have a common root. Thus if gn(t0) =
0, we will necessarily have fn(t0) /= 0. Next we note that if gn(t) = 0 has a repeated
root t0, then gn(t0) = 0 and g′

n(t0) = 0, and from (2.14) we get gn−1(t0) = 0 so that
it follows from (2.11) that fn−1(t0) = 0 and hence from (2.12) we get fn(t0) = 0
which is a contradiction. Thus gn(t) = 0 cannot have a repeated root and since gn(t)

is a polynomial of degree n in t , the equation gn(t) = 0 has n distinct roots. More-
over, for each such root t0, {fn(t0)}−1/n takes n distinct values, and thus each root t0
of gn(t) = 0 leads to n distinct solutions of (4.1). Any two solutions of Eq. (4.1) are
of the type s1(A + t1I ) and s2(A + t2I ) and they can be equal if and only if s1 = s2
and t1 = t2, but these conditions do not hold. Thus a non-scalar non-singular matrix
A with two distinct eigenvalues has exactly n2 distinct nth roots.

If A is a non-scalar non-singular matrix with two coincident eigenvalues, the func-
tions fn(t) and gn(t) are given by (2.17). Thus there is only one admissible root of
the equation gn(t) = 0, namely t0 = (n − 1)p/2, for which fn(t0) /= 0 and with this
value of t0, (4.2) yields exactly n distinct nth roots of A which are given by (4.3).
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If A is a non-scalar singular matrix, q = 0 and from (2.16) we get gn(t) = tn so
that t0 = 0. Since q = 0, the eigenvalues of A are 0 and p, and hence it follows from
(2.16) that fn(t0) = pn−1. If p = 0 then fn(t0) = 0 and hence we get no solutions
while if p /= 0 then fn(t0) /= 0 and substituting t0 = 0 and fn(t0) = pn−1 in (4.2),
we get n distinct solutions which are given by (4.4). �

Corollary 4.2. If a non-scalar matrix A has distinct eigenvalues and ω denotes a
primitive cube root of unity, the 9 cube roots of A are given by

X = (3t2
0 + 3pt0 + p2 − q)−1/3(A + t0I ), (4.10)

where t0 takes any of the three values

{(p + (p2 − 4q)1/2)q/2}1/3ωk + {(p − (p2 − 4q)1/2)q/2}1/3ω2k, (4.11)

where k = 0, 1, 2, while the 16 fourth roots of A are given by

X = {
4t3

0 + 6pt2
0 + 4(p2 − q)t0 + p3 − 2pq

}−1/4
(A + t0I ), (4.12)

where t0 takes any of the four values

−q1/2 + (2q − pq1/2)1/2, −q1/2 − (2q − pq1/2)1/2,

q1/2 + (2q + pq1/2)1/2, q1/2 − (2q + pq1/2)1/2.
(4.13)

Proof. When n = 3 or 4, the equation gn(t) = 0 is a cubic or a quartic equation
which is solvable by radicals using standard methods. A direct application of solution
(4.2) of Theorem 4.1 yields the solutions of the equations X3 = A and X4 = A as
stated above.

Finally we give a couple of numerical examples to illustrate the use of the formu-
lae obtained above.

The non-singular matrix

[
25 7
−7 39

]
has two coincident eigenvalues and, using

(4.3), its only real fifth root is readily found to be

[
153/80 7/80
−7/80 167/80

]
.

The 16 fourth roots of the matrix

[−179 390
−130 276

]
are found using (4.12) to be the

following matrices:

±
[−1 6
−2 6

]
, ±

[ −i 6i
−2i 6i

]
, ±

[−17 30
−10 18

]
, ±

[−17i 30i
−10i 18i

]
,

±
[−9 + 8i 18 − 12i
−6 + 4i 12 − 6i

]
, ±

[
8 + 9i −12 − 18i
4 + 6i −6 − 12i

]
,

±
[

9 + 8i −18 − 12i
6 + 4i −12 − 6i

]
, ±

[
8 − 9i −12 + 18i
4 − 6i −6 + 12i

]
. �
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