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Abstract

This paper is concerned with the determination of algebraic formulae giving all the solu-
tions of the matrix equation X" = A where n is a positive integer greater than 2 and A is a
2 x 2 matrix with real or complex elements. If A is a2 x 2 scalar matrix, the equation X" = A
has infinitely many solutions and we obtain explicit formulae giving all the solutions. If A is
a non-scalar 2 x 2 matrix, the equation X" = A has a finite number of solutions and we give
a formula expressing all solutions in terms of A and the roots of a suitably defined nth degree
polynomial in a single variable. This leads to very simple formulae for all the solutions when A
is either a singular matrix or a non-singular matrix with two coincident eigenvalues. Similarly
when n = 3 or 4, we get explicit algebraic formulae for all the solutions. We also determine
the precise number of solutions in various cases.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let A be a square matrix whose elements are either real or complex numbers. Any
matrix X such that X" = A is called an nth root of A and the problem of determining
all the nth roots X of a given matrix has been dealt with by many mathematicians
(12,31, [4, pp. 120-122], [5], [6, pp. 231-239], [7], [8, pp. 94-971, [9]). However,
explicit formulae giving X in terms of A and its elements are not generally known.
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Cayley [1] and Sullivan [10] have obtained algebraic formulae giving the square
roots of 2 x 2 matrices and Damphousse [2] has given formulae expressing the nth
roots of non-singular 2 x 2 matrices in terms of transcendental functions.

This paper is concerned with the determination of algebraic formulae giving the
nth roots of 2 x 2 matrices. As algebraic formulae have already been obtained when
n = 2, we obtain formulae, not hitherto obtained, whenever n > 3. We first obtain
explicit algebraic formulae giving the infinitely many nth roots of scalar 2 x 2 matri-
ces. Next, we show that a non-scalar 2 x 2 matrix A has only finitely many nth roots
all of which are given by

X = {fu(t0)} "™ (A + 10]),

where f),(¢) is a suitably defined polynomial and 7 is a root of an nth degree poly-
nomial equation in the single variable ¢ such that f,(f9) #* 0. Thus the problem of
finding all nth roots of a non-scalar matrix is reduced to the simple problem of deter-
mining all roots of a polynomial equation. When A is either a non-scalar non-singular
matrix with two coincident eigenvalues or a non-scalar singular matrix, we deter-
mine all possible values of 7y and thus get explicit formulae for all the nth roots of
A. Similarly when n = 3 or 4, the polynomial equation that determines 7 is solv-
able by radicals and we obtain explicit algebraic formulae for all the cube roots and
fourth roots of a given non-scalar matrix. We give a couple of numerical examples
illustrating the application of the formulae obtained.

We also determine the number of distinct nth roots of non-scalar 2 x 2 matrices.
We show that a non-scalar non-singular matrix has precisely n? distinct nth roots if
the given matrix has two distinct eigenvalues and precisely n distinct nth roots if it
has two coincident eigenvalues. Further, a non-scalar singular matrix has precisely
n distinct nth roots if its trace is non-zero and no solutions if its trace is zero. These
results are different from the conclusion drawn by Damphousse [2, p. 400] that every
non-scalar non-singular 2 x 2 matrix has only n distinct nth roots. In fact, we have
given a numerical example explicitly giving 16 distinct fourth roots of a non-scalar
non-singular 2 x 2 matrix.

In Section 2 we prove some preliminary results, Section 3 deals with the roots of
scalar matrices while Section 4 deals with the roots of non-scalar matrices. Through-
out the paper I denotes the 2 x 2 identity matrix while tr(A) and det(A) denote the
trace and determinant respectively of a matrix A.

2. Preliminaries

In this section we prove two lemmas. The first lemma gives for an arbitrary 2 x 2
matrix A and an arbitrary integer m > 3, a formula expressing A” in terms of A, [/
and symmetric functions of the eigenvalues of A. The second lemma gives for an
arbitrary non-scalar 2 x 2 matrix A, an arbitrary positive integer n and a variable ¢,
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a formula expressing (A + t7)" in terms of A, I and two functions f,(¢) and g, (¢).
We also obtain several formulae concerning the functions f;, (¢) and g, (¢).

Lemma 2.1. If A is any arbitrary 2 x 2 matrix with eigenvalues )1 and A, (not
necessarily distinct), then for any positive integer m > 3,

A" = Gm—1(h1, A2)A — det(A)m—2(r1, A2) 1, 2.1
where

G (M1, A2) = A AT A o A 2.2)
If A is a singular matrix, then for any positive integer m > 2,

A" = {r(A)Y" AL (2.3)

Proof. Let p be the trace and ¢ the determinant of the matrix A so that A1 and A;
satisfy the characteristic equation of A, that is, the equation

A —pr+qg=0. (2.4)
Thus A1 + > = p and LAy = ¢, and it follows from the well-known Cayley—Ham-
ilton theorem that

A2 =pA—ql. (2.5)

By multiplying (2.5) by A, and replacing A% by pA — g1 on the right-hand side of
the resulting equation, it is readily verified that (2.1) holds for m = 3. We assume
that (2.1) holds for any arbitrary integer m, and multiplying (2.1) by A, we get

Am+l — (Aqn—l + )\’1"_2)\2 N kgn—l)AZ
—det(A) (A2 A g 4 -+ A7) A, (2.6)

so that on using the relations A| + Ay = p, A1A2 = g = det(A) and (2.5), we get on
simplification

A" = ¢, (01, A2)A — det(A) 1 (M1, M), 2.7)

and the result follows by induction.

If A is a singular matrix, det(A) = 0 and the eigenvalues of A are 0 and tr(A) so
that (2.3) follows from (2.1), (2.2) and (2.5).

We note that ¢, (A1, A2), which is a symmetric function of the roots of equation
(2.4), can be expressed in terms of p and g for all positive integers m. Table 1 gives
the values of ¢, (A1, Ap) interms of p and ¢ form = 1,2,...,10. O

Lemma 2.2. If A is any arbitrary non-scalar 2 x 2 matrix with eigenvalues A and
A2 (not necessarily distinct), trace p, and determinant q, and t is an arbitrary vari-
able, then for any positive integer n,

(A+1D" = fu(HA+ gn()], (2.8)
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Table 1
Values of ¢y, (A1, 22)

m d)m()\h )‘2)

1 P

2 P’ —q

3 P> —2pq

4 pt=3p%q+ 42

5 S —4p3q+3pq®

6 6 _ 5ptq +6p242 — ¢

7 T —6p3g +10p3q* — 4pg®

8 P —7p%q +15p*q% —10p%¢> + ¢*

9 p° —8p7q +21p7¢% —20p°¢> + 5pg*
10 p10*9p8q+28p6q2*35p4q3+15p2q4*q5

where the functions f,(t), gn(t) and their respective derivatives with respect to t
satisfy the following relations:

far1(t) = Qt + p) fu(t) = (% + pt + q) fu—1(D), (2.9)
g1 () = (2t + p)gn(t) — (% + pt + @) gn—1(1), (2.10)
qfa—1(t) = —gn(t) + 1801 (1), (2.11)
gn1(t) = fu(®) = (t + p) fuo1(D), (2.12)

f1() = nfu_1(0), (2.13)

gn(t) = ngn—1 (1), (2.14)

M) + gn() = (t +1)", (2.15)

where A is any eigenvalue of A. Further, when n > 3,

n
fo@=nt"" 4, Copt" P+ D i Cn 1 (s 2
m=3 (2.16)

n
gn(t) = " — nC2qtn_2 —q Z nCn®m—2(A1, AZ)tn_m,

m=3

where ¢y (A1, A2) = AT + AT7]X2 + -+ 4+ AJ. Finally if the matrix A has two coin-
cident eigenvalues, then for any positive integer n,

fa®) =nQt + py"tj2nt, 2.17)
gn() = 2t + p)" 12t — (n — 1)p}/2".

Proof. Using the Cayley—Hamilton theorem we get
A2 =pA—ql, (2.18)
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and for m > 3, Lemma 2.1 gives

A" = 1M1, 22) A — qm—2(h1, A2) 1, (2.19)
where ¢, (A1, A2) = AT + )L’l"_lkz +--- 4+ A5'. Now using the binomial expansion
of (A 4 ¢I)", and substituting the values of various powers of A given by (2.18) and
(2.19), we obtain the relation (2.8), and for n > 3, we obtain the relations (2.16).
Further, (A 4+ t1)" = (A 4+ tI)""'(A +t1) so that

Fn@A+ gn ()] = {fu—1(1)A + gn-1()I}A + 1) (2.20)
which, on using (2.18), reduces to

{fn(@) =t + p)fa1(t) — gn-1(1)}A
={=8n () —qfu—1(t) +18n-1()}1. (2.21)

Since A is a non-scalar matrix, it follows that
gn(t) = _an—l(t) + tgn—l(t)a

and the relations (2.11) and (2.12) follow readily. If E is the translation operator
defined for any function v, (¢) by Ev, () = ¥,+1(t), we may write the relations
(2.22) as follows:

(E_t_p)fn—l(t)_gn—l(t) =Oa (223)
qfn—1(t) + (E —1)gn—1(1) =0,
and eliminating g,_1(¢) from the equations (2.23), we get

{E* — 2t + p)E + 1>+ pt + q} fu_1(t) = 0, (2.24)
and the relation (2.9) follows. The relation (2.10) is obtained similarly. Further, on
differentiating both sides of (2.8) with respect to 7, we get

n(A+1D)""" = fi(A+ g, (0] (2.25)
or,

n{ fumt (DA + gu1 (D) = (A + g, (D] (2.26)
and, since A is a non-scalar matrix, the relations (2.13) and (2.14) now follow readily.

If A is any eigenvalue of A so that A> — pA 4 ¢ = 0, we obtain from (2.22) the
recurrence relation

Afa() + gn (1) = (1 + M)A fu—1(1) + gn—1(1)). (2.27)

When n = 1, we get from (2.8), A+1tI = f1(t)A + g1(¢)1I so that fj(tr) =1 and
g1(t) = t, and now the recurrence relation (2.27) leads to

M () + gn (@) =t + 1" Of1(0) + g1(1)), (2.28)

and hence we get the relation (2.15).



188 A. Choudhry / Linear Algebra and its Applications 387 (2004) 183-192

Finally if the matrix A has two coincident eigenvalues, we must have ¢ = p?/4,
and the recurrence relations (2.9) and (2.10) may be written as

(E =@+ p/2P fur (1) =0, (2.29)
{E—(t+ p/2DV gn1(1) =0,

and, using the standard methods of solving recurrence relations, we readily obtain
(2.17). O

3. Roots of scalar matrices

Theorem 3.1. All solutions of the matrix equation

X" =kl, (3.1
where k is an arbitrary non-zero real or complex number, are given by

X =k, 3.2)

and

X:[ kY"1 + p) + 2u}/2 v{k‘/"(l—p>+2“}/2} (3.3)

k71— p) —2u}/Quv) K" (1 + p) —2u}/2

where p is any nth root of unity other than 1, and u, v are arbitrary parameters such
that v # 0. Further, all solutions of the matrix equation

X" =0, (3.4)

apart from the trivial solution X = O, are given by
a b
X = |:—a2/b ap :| (3.5)
where a and b are arbitrary parameters such that b # 0.

Proof. If 1 and p are the eigenvalues of any solution X of Eq. (3.1), from Lemma
2.1 we get

X" = ¢n_1(u1, p2)X — det(X)pn—2 (i1, na)l (3.6)
and using (3.1) we get
Gn—1(p1, p2)X — det(X)p—2 (1, p2)l =kl. (3.7

If X is a scalar matrix, X = s so that (3.1) gives s"1 = kI. If k & 0, we must have
s" = k and we thus get the solutions (3.2) of (3.1), while if £k = 0 we get the trivial
solution of (3.4). If X is not a scalar matrix, it follows from (3.7) that

Guot (1, 1) = W P 4T =0, (3.8)
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so that o = w1 p where p is any nth root of unity other than 1, det(X) = pujus =
M%p and (3.7) reduces to u{ I = kI so that /| = k. There are now two possibilities:

(i) Ifk # 0, we get o1 = k'/" and hence s = k'/" p. It follows from (3.7) that any
matrix X with eigenvalues 11 = k'/” and puy = k'/"p is a solution of (3.1). If
we now write

a b
X_|:c d], (3.9)
we get
a+d=pu+p2=k""(1+p), (3.10)

ad —be = pyps = k¥ "p.
Egs. (3.10) are easily solved for a, b, c, d to get the solution

a={k""(1+ p) +2u}/2,

b= vk (1 = p) +2u}/2, (3.11)
c={k""(1 = p) —2u}/Qv),

d = {(k""(1 + p) —2u}/2,

where u# and v are arbitrary parameters such that v = 0 and we thus get the
solutions (3.3) of Eq. (3.1).

(1) If £ = 0, we get u1 = 0 and hence also wy = 0. Thus both eigenvalues of X are
zero and if we take X as in (3.9), we geta + d = 0 and ad — bc = 0 and these
two equations are readily solved for ¢ and d to obtain the solutions (3.5) of Eq.
(3.4). O

4. Roots of non-scalar matrices
Theorem 4.1. If A is a non-scalar matrix with trace p, determinant q and eigen-

values L1 and )> (not necessarily distinct), and the functions ¢, (,1, A2), fu(t),
gn(t) are defined by (2.2) and (2.16), all solutions of the matrix equation

X"=A, n>=3, 4.1)
are given by
X = {fu(t0)} "V (A + 10D), (4.2)

where tq is any root of the polynomial equation g,(t) = 0 such that f,(to) # 0. Fur-
ther, if the matrix A is non-singular and has two distinct eigenvalues, Eq. (4.1)
has n? distinct solutions while if A has two coincident eigenvalues, it has n distinct
solutions which are given by

X=n'Qp" Y V244 @ - D)pl}. (4.3)
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Finally, if the matrix A is singular and p = 0, Eq. (4.1) has no solutions while if
p # 0 it has n distinct solutions which are given by

X = p~(n=Diny, (4.4)

Proof. Let X be an nth root of the matrix A and let ;| and u, be the eigenvalues
of X. Using Lemma 2.1 we get

X" = ¢p_1(u1, p2)X — det(X)pn—2(p1, p2)l (4.5)
and hence it follows from (4.1) that
Gn—1(1, H2)X — det(X)dp—2(1, n2)l = A. (4.6)

Since A is a non-scalar matrix, it follows from (4.6) that ¢, _{ (@1, p®2) must neces-
sarily be non-zero, and hence there exists a non-zero number s and a number ¢ such
that

X =s(A+1tl). 4.7)
Substituting this value of X in (4.1) and using the relation (2.8), we get
s"{fn(A + gu()I} = A. (4.8)

Since A is non-scalar, it follows that g,(r) =0 and s” f,,(r) = 1. Thus Eq. (4.1)
has finitely many roots all of which are given by (4.2) where £ is any root of the
polynomial equation g, (#) = 0 such that f;(#p) # 0.

We will now determine the number of distinct solutions of (4.1). If A is a non-
scalar non-singular matrix and A1 # Ap, using (2.15) we get for any n, the two rela-
tions

)\lfn(t)‘i‘gn(t):(t‘f‘)tl)n’ (4.9)
M fu() + gn(t) = (t +22)",

and it now follows that f,(¢) and g, (¢) cannot have a common root. Thus if g, (f9) =
0, we will necessarily have f, () # 0. Next we note that if g, () = 0 has a repeated
root 79, then g, (f9) = 0 and g, (19) = 0, and from (2.14) we get g,—1(fo) = 0 so that
it follows from (2.11) that f,,_(f9) = 0 and hence from (2.12) we get f,(tp) =0
which is a contradiction. Thus g, (f) = 0 cannot have a repeated root and since g, ()
is a polynomial of degree n in ¢, the equation g, (#) = 0 has n distinct roots. More-
over, for each such root #y, { f, (to)}_l/ " takes n distinct values, and thus each root 7
of g,(¢) = 0 leads to n distinct solutions of (4.1). Any two solutions of Eq. (4.1) are
of the type s1(A + #11) and s (A + 2 1) and they can be equal if and only if 51 = 57
and t; = 1, but these conditions do not hold. Thus a non-scalar non-singular matrix
A with two distinct eigenvalues has exactly n? distinct nth roots.

If A is anon-scalar non-singular matrix with two coincident eigenvalues, the func-
tions f,(¢) and g,(¢) are given by (2.17). Thus there is only one admissible root of
the equation g, (#) = 0, namely o = (n — 1) p/2, for which f; (tp) # 0 and with this
value of 1y, (4.2) yields exactly n distinct nth roots of A which are given by (4.3).
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If A is a non-scalar singular matrix, ¢ = 0 and from (2.16) we get g, () =t" so
that 7o = 0. Since g = 0, the eigenvalues of A are 0 and p, and hence it follows from
(2.16) that f,(to) = p"~'. If p = 0 then f,(f) = 0 and hence we get no solutions
while if p # 0 then f,, (o) # 0 and substituting 7o = 0 and f,,(t) = p"~! in (4.2),
we get n distinct solutions which are given by (4.4). U

Corollary 4.2. If a non-scalar matrix A has distinct eigenvalues and w denotes a
primitive cube root of unity, the 9 cube roots of A are given by

X =@ +3pto+p* — )" P(A+10D), (4.10)
where ty takes any of the three values

P+ (P* =4 )q/2' P +{(p = (p* —49)D)g/2) P®, @11
where k = 0, 1, 2, while the 16 fourth roots of A are given by

X = {413 + 6p13 + 40> — o+ p° —2pq} A+ 10D, (4.12)
where ty takes any of the four values

—q'?+Qq = pg'»'? —¢'? — 2q = pg'/H)'2, @4.13)
q'"? +Qq+pg"»H'? ¢ =g+ pg'/H'. '
Proof. When n = 3 or 4, the equation g,(#) = 0 is a cubic or a quartic equation
which is solvable by radicals using standard methods. A direct application of solution
(4.2) of Theorem 4.1 yields the solutions of the equations X> = A and X* = A as
stated above.

Finally we give a couple of numerical examples to illustrate the use of the formu-
lae obtained above.

. 125 7
The non-singular matrix [_7 39

] has two coincident eigenvalues and, using

. . . 153/80  7/80
(4.3), its only real fifth root is readily found to be |:_7 /80 167 /80]'
—179 390

The 16 fourth roots of the matrix |:_1 30 276

i| are found using (4.12) to be the

following matrices:
-1 6 - 6i —-17 30 —17i 301
+ |—2 6:| , E |:—2i 6i] o E [—10 18:| , E [—IOi 18ii| ’

:I:_—9~|—81 18 — 12i N 8+9i —12—18i
|—6+4i 12-6i |’ 4461 —-6-—12i|°

[9+8 —18—12i 8—9i —12+18i O
[6+4i —12—6i |’ 4—-61 —64+12i |
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