
Theoretical Computer Science 408 (2008) 106–115

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Incremental discovery of the irredundant motif bases for all suffixes of a
string in O(n2 log n) timeI

Alberto Apostolico a,b,∗, Claudia Tagliacollo a
a Accademia Nazionale dei Lincei, Rome, Italy
b College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30318, USA

a r t i c l e i n f o

Keywords:
Design and analysis of algorithms
Pattern matching
Motif discovery
Irredundant motif
Base

a b s t r a c t

Compact bases formed by motifs called ‘‘irredundant’’ and capable of generating all other
motifs in a sequence have been proposed in recent years and successfully tested in tasks
of biosequence analysis and classification. Given a sequence s of n characters drawn from
an alphabet Σ , the problem of extracting such a base from s had been previously solved
in time O(n2 log n log | Σ |) and O(| Σ | n2 log2 n log log n), respectively, using the FFT-
based string searching by Fischer and Paterson. More recently, a solution on binary strings
taking time O(n2)without resorting to the FFT was also proposed. In the present paper, we
considered the problem of incrementally extracting the bases of all suffixes of a string.
This problem was solved in a previous work in time O(n3). A much faster incremental
algorithm is described here, which takes time O(n2 log n) for binary strings. Although this
algorithm does notmake use of the FFT, its performance is comparable to the one exhibited
by the previous FFT-based algorithms involving the computation of only one base. The
implicit representation of a single base requires O(n) space, whence for finite alphabets
the proposed solution is within a log n factor from optimality.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In [10,12], innovative notions of pattern saturation and irredundancy have been formulated that conjugate statistical and
syntactic descriptors in a tightly intertwined fashion, thereby reducing the roster of candidates to be extracted and evaluated
in applications of pattern discovery (see, e.g., [13]). A central tool for these developments is the algebraic-flavored notion of a
base of ‘‘irredundant’’ motifs, which denotes a compact subset of the set of all patterns that can be generated by appropriate
combination of any other pattern in the set. To date, few algorithms have been produced for the extraction of a base from a
sequence. Algorithms based on the landmark, FFT-driven string searching algorithm by Fischer and Paterson [7] were given
in [11] and (for a slightly different notion) [9], and exhibit time bounds of O(n2 log n log |Σ |) and O(|Σ |n2 log2 n log log n),
respectively, for an input sequence s of n characters drawn from an alphabetΣ . More recently, a solution taking time O(n2)
on a binary string without resorting to the FFT has emerged [5]. Here we consider the problem of extracting the bases of all
suffixes of a string incrementally. This problemwas solved in previouswork in timeO(n3) [3]. A faster incremental algorithm
is described here, which takes time O(n2 log n) on a binary string. Albeit in a non-trivial way, the algorithm builds on a
criterion developed in [5] for testing the occurrences of certain ‘‘autocorrelations’’ of the input string, as well as on bounds
on the sizes of the occurrence lists of motifs in a base. Although this algorithm does not make use of the FFT, its performance
is comparable to the one exhibited by the previous FFT-based algorithms for computing only one base. As a by-product of

I An extended abstract related to this work appears in the proceedings of WABI 07.
∗ Corresponding author at: Accademia Nazionale dei Lincei, Rome, Italy.
E-mail addresses: axa@cc.gatech.edu, axa@dei.unipd.it (A. Apostolico).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.08.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82553715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:axa@cc.gatech.edu
mailto:axa@dei.unipd.it
http://dx.doi.org/10.1016/j.tcs.2008.08.002

A. Apostolico, C. Tagliacollo / Theoretical Computer Science 408 (2008) 106–115 107

possible independent interest, a bookkeeping is maintained of the occurrence lists of all suffixes of the autocorrelations of
s – aΘ(n3) size collection – within the O(n2 log n) time bound. Finally, we note that while the explicit description of a base
may require Ω(n2) worst-case space, its implicit description only requires space O(n), whence with finite alphabets the
algorithm described in the present paper is within a log n factor from optimality when this kind of description is adopted.
The paper is organized as follows. Upon presenting basic definitions and properties, we highlight our constant-time

occurrence testing.We then describe a basic tool used in our algorithms, which speeds up the computation of the occurrence
lists of all patterns needed in the computation of a base. The application of these constructs to the algorithms are then
detailed. The paper is self-contained and notations largely conform to those adopted in [4,3,5].

2. Preliminaries

Let Σ be a finite alphabet of solid characters, and let ‘•’ 6∈ Σ denote a don’t-care character, that is, a wildcard matching
any of the characters inΣ ∪{•}. A pattern is a string overΣ ∪{•} containing at least one solid character. We use σ to denote
a generic character fromΣ . For characters σ1 and σ2, we write σ1 � σ2 if and only if σ1 is a don’t care or σ1 = σ2.
Given two patterns p1 and p2 with |p1| ≤ |p2|, p1 � p2 holds if p1[j] � p2[j], 1 ≤ j ≤ |p1|. We also say in this case that

p1 is a sub-pattern of p2, and that p2 implies or extends p1. If, moreover, the first characters of p1 and p2 are matching solid
characters, then p1 is also called a prefix of p2. For example, let p1 = ab • •e, p2 = ak • •e and p3 = abc • e • g . Then p1 � p3,
and p2 6� p3. Note that the� relation is transitive. The following operators are further introduced.

Definition 1 (⊕). Let σ1, σ2 ∈ Σ ∪ {•}.

σ1 ⊕ σ2 =

{
σ1, if σ1 = σ2
• , if σ1 6= σ2.

Definition 2 (Extended⊕). Given patterns p1 and p2, p1 ⊕ p2 = p1[i] ⊕ p2[i],∀i, 1 ≤ i ≤min{|p1|, |p2|}).

Definition 3 (Consensus, Meet). Given the patterns p1, p2, the consensus of p1 and p2 is the pattern p = p1⊕ p2. Deleting all
leading and trailing don’t cares from p yields themeet of p1 and p2, denoted by [p1 ⊕ p2].

For instance, aac•tgcta⊕ caact•cat = •a••t•c••, and [aac•tgcta⊕ caact•cat] = a••t•c. Note that a meet may be the
empty word. Let now s = s1s2...sn be a sequence of n overΣ . We use sufi to denote the suffix sisi+1...sn of s.

Definition 4 (Autocorrelation). A pattern p is an autocorrelation of s if p is the meet of s and one of its suffixes, i.e., if
p = [s⊕ sufi] for some 1 < i ≤ n.

For instance, the autocorrelations of s = acacacacabaaba are: m1 = s ⊕ suf2 = s ⊕ suf11 = s ⊕ suf14 = a,
m2 = s ⊕ suf3 = acacaca•a••a, m3 = s ⊕ suf4 = aba, m4 = s ⊕ suf5 = acaca•a, m5 = s ⊕ suf6 = s ⊕ suf9 =
s⊕ suf8 = s⊕ suf10 = s⊕ suf12 = a•a,m6 = s⊕ suf7 = aca•a.

Definition 5 (Motif). For a sequence s and positive integer k, k ≤ |s|, a k-motif of s is a pair (m,Lm), where m is a pattern
such that |m| ≥ 1 and m[1], m[|m|] are solid characters, and Lm = (l1, l2, . . . , lq) with q ≥ k is the exhaustive list of the
starting position of all occurrences ofm in s.

Note that both components concur in this definition: two distinct location lists correspond to two distinct motifs even if
the pattern component is the same; conversely, motifs that have different location lists are considered to be distinct. In what
follows, we will denote motifs by their pattern component alone, when this causes no confusion. Consider s = abcdabcd.
Using the definition ofmotifs, the different 2-motifs are as follows:m1 = abwithLm1 = {1, 5},m2 = bc withLm2 = {2, 6},
m3 = cdwithLm3 = {3, 7},m4 = abc withLm4 = {1, 5},m5 = bcdwithLm5 = {2, 6} andm6 = abcdwithLm6 = {1, 5}.
Given amotifm, a sub-motif ofm is anymotifm′ thatmay be obtained fromm by (i) changing one ormore solid characters

into don’t care, (ii) eliminating all resulting don’t-cares that precede the first remaining solid character or follow the last one,
and finally (iii) updatingLm in order to produce the (possibly, augmented) listLm′ . We also say thatm is a condensation for
any of its sub-motifs.
We are interested in motifs for which any condensation would disrupt the list of occurrences. A motif with this property

has been calledmaximal or saturated. In intuitive terms, amotifm is maximal or saturated if we cannotmake it more specific
while retaining the cardinality of the list Lm of its occurrences in s. More formally, in a saturated motif m, no don’t-care of
m can be replaced by a solid character that appears in all the locations inLm, nor canm be expanded by a pattern prefix or
suffix without affecting the cardinality ofLm.
A motif (m, Lm) is redundant if m and its location list Lm can be deduced from the other motifs without knowing the

input string s. Trivially, every unsaturated motif is redundant. As it turns out, however, saturated motifs may be redundant,
too. More formally:

Definition 6. A saturated motif (m,Lm), is redundant if there exist saturated motifs (mi,Lmi) 1 ≤ i ≤ t , such that

Lm = (Lm1 + d1) ∪ (Lm2 + d2) ∪ · · · ∪ (Lmp + dt)

with 0 ≤ dj < |mj|.

108 A. Apostolico, C. Tagliacollo / Theoretical Computer Science 408 (2008) 106–115

Here and in the following, (L+d) is used to denote the list that is obtained by adding a uniform offset d to every element
of L. For instance, the saturated motif m1 = a•a is redundant in s = acacacacabaaba, since Lm1 = {1, 3, 5, 7, 9, 12} =
(Lm2) ∪ (Lm3) ∪ (Lm4 + 1)wherem2 = acac,m3 = aba andm4 = ca•a.
Saturated motifs enjoy some special properties.

Property 1. Let (m1,Lm1) and (m2,Lm2) be saturated motifs. Then,
m1 = m2 ⇔ Lm1 = Lm2 .

We also know that, given a generic pattern m, it is always possible to determine its occurrence list in any sequence s.
With a saturated motifm, however, it is possible in addition to retrieve the structure ofm from the sole listLm in s, simply
by taking:

m =

[⊕
i∈Lm

sufi

]
.

We also have:
Property 2. Let (m1,Lm1), (m2,Lm2) be motifs of s. Then,

m1 � m2 ⇔ Lm2 ⊆ Lm1 .

Similarly:
Property 3. Let (m,Lm) be a saturated motif of s. Then ∀L ⊆ Lm it is

m �

[⊕
k∈L

sufk

]
.

Let now sufi(m) denote the ith suffix ofm.
Definition 7 (Coverage). The occurrence at j ofm1 is covered bym2 ifm1 � sufi(m2), j ∈ Lm2 + i− 1 for some sufi(m2).
For instance,m6 = aca•awithLm6 = {1, 3, 5, 7} is covered at position 5 bym2 = acacaca•a••a,Lm2 = {1, 3}. In fact, let

m′ be ith suffix of m3 with i = 5, that is, m′ = aca•a••a. Then 5 ∈ Lm2 + 4 and m6 ≺ m
′, which together lead to conclude

thatm6 is covered at 5 bym2. An alternate definition of the notion of coverage can be based solely on occurrence lists:
Definition 8 (Coverage). The occurrence at j ofm1 is covered bym2 if there is i such thatLm2 + i ⊆ Lm1 , j ∈ Lm2 + i.
In terms of our running example, we have: 5 ∈ Lm2 + 4 andLm2 + 4 = {5, 7} ⊂ Lm6 = {1, 3, 5, 7}.
A maximal motif that is not redundant is called an irredundant motif. Hence a saturated motif (m, Lm) is irredundant if

the components of the pair (m,Lm) cannot be deduced by the union of a number of other saturated motifs.
We useBi to denote the set of irredundant motifs in sufi. SetBi is called the base for the motifs of sufi. In particular,B is

used to denote the base of s, which coincides withB1.
Definition 9 (Base). Given a sequence s on an alphabet Σ , letM be the set of all saturated motifs on s. A set of saturated
motifsB is called a base ofM iff the following hold: (1) for eachm ∈ B,m is irredundant with respect toB − {m}, and, (2)
let G(X) be the set of all the redundant maximal motifs generated (in the sense of Definition 6) by the set of motifsX, then
M = G(B).
In general, |M| = Ω(2n). However, the base of 2-motifs has size linear in |s|. This follows immediately from the known

result (see, e.g., [3]):
Theorem 1. Every irredundant motif is the meet of s and one of its suffixes.
In the remainder of this paper, treatment will be restricted to 2-motifs. Recall now that in order for amotif to be irredundant
it must have at least one occurrence that cannot be deduced from occurrences of other motifs. In [3], such an occurrence
is called maximal and the motif is correspondingly said to be exposed at the corresponding position. Clearly, every motif
with a maximal occurrence is saturated. However, not every saturated motif has a maximal occurrence. In fact, the set of
irredundant motifs is precisely the subset of saturated motifs with a maximal occurrence. The following known definitions
and properties (see, e.g., [3,11,5]) are listed for future reference.
Definition 10 (Maximal Occurrence). Let (m,Lm) be a motif of s and j ∈ Lm. Position j is a maximal occurrence for m if for
no d′ ≥ 0 and (m′,Lm′)we haveLm′ ⊆ (Lm − d′)with (j− d′) ∈ Lm′ .
For a givenm ∈ B, letLmaxm denote the list of maximal occurrences ofm.

Lemma 1. m ∈ B ⇔ |Lmaxm | > 0.
Lemma 2. If m ∈ B , then j ∈ Lmaxm ⇔ [s⊕ suf(max{j,k}−min{j,k})] = m,∀k ∈ Lm.

Lemma 3.
∑
m∈B |Lm| < 2n.

Lemma 2 shows that in order to checkwhether a position i is amaximal occurrence for an assignedmotif (m,Lm), it suffices
to check the condition [sufi ⊕ sufk] = m,∀k ∈ Lm. Also Lemma 3 [11], which poses a counter-intuitive linear bound on the
cumulative size of the occurrence lists in a base, will play an important role in our construction.

A. Apostolico, C. Tagliacollo / Theoretical Computer Science 408 (2008) 106–115 109

3. The incremental management of motif occurrences

Any approach to the extraction of bases of irredundant motifs must solve the problem of finding the occurrences of
the autocorrelations or meets of the input string s or of its suffixes. This evokes the notable variant of approximate string
searching featuring don’t cares (see, e.g., [1,2,8]), which admits of a classical O(n logm log |Σ |) time solution based on the
FFT [7] (see also [6] for a more recent O(n log n) speedup). Such an FFT-based solution is the one adopted in [11,9], resulting
in an overall time O(n2 log n log |Σ |). The incremental approach in [3] proceeds instead by computing those lists directly
and for consecutively increasing suffixes of each autocorrelation. This produces the base for each suffix of s, at the overall
cost of O(n3) time. In [5], the fact is exploited that all patterns being sought come from the set of autocorrelations of the
same string. In a nutshell, an occurrence ofm = sufi ⊕ sufj at some position k in s induces strong interdependencies among
the number of don’t-cares in each of the three patterns m = sufi ⊕ sufj,m′ = sufi ⊕ sufk and m′′ = sufj ⊕ sufk. For binary
alphabets, with dx denoting the number of don’t cares in x and prefi(x) the prefix of x of length i, the following holds.

Lemma 4 ([5]). Let m = [sufi ⊕ sufj], m′ = pref|m|(sufi ⊕ sufk) and m′′ = pref|m|(sufj ⊕ sufk).

k ∈ Lm ⇔ dm = dm′ + dm′′ .

Thus, following an O(n2) preprocessing of the input string s in which the number of don’t cares in every suffix of each
autocorrelation of s is counted, it is possible to answer in constant time whether any meet occurs at any position of s, just
by checking the balance of don’t cares. We display the proof of Lemma 4 in the Appendix in order to convey the flavor of
these constructions, which are summarized in the following.

Theorem 2. Let s be a binary string of n characters, andm themeet of any two suffixes of s. Following an O(n2) time preprocessing
of s, it is possible to decide for any assigned position k whether or not k is an occurrence of m in constant time.

3.1. Bottlenecks

We now concentrate on designing an algorithm that produces the bases of all suffixes of an input string s. Following an
initial preparation, the algorithm will proceed incrementally on suffixes of increasing length, along the lines of a paradigm
introduced in [3]. At the generic iteration n − i the algorithm builds the base Bi relative to sufi. This base is formed in part
by selecting the elements ofBi+1 that are still irredundant in sufi, in part by identifying and discarding, from the set of new
candidate motifs consisting of the meets of sufi, those motifs that are covered by others. Since the elements in any base
will come frommeets of some of the suffixes of s, a bottleneck for the procedure is represented by the need to compute the
occurrences of all suchmeets. Before entering the details of our construction, we need to examinemore closely the challenge
posed by the incremental management of such meets.
Our algorithm must build the sets Mi =

{
[sufi ⊕ sufj],∀j > i

}
and Bi ⊆ Mi as i goes from n − 1 down to 1

through the main cycle. For the generic iteration, this entails, in particular, to update the lists of occurrences ofMi+1 ={
[sufi+1 ⊕ sufj],∀j > i+ 1

}
and Bi+1 ⊆ Mi+1 in order to produce those ofMi as well as Bi ⊆ Mi. As there are possibly

O(n2) occurrences to update at each of the n− 1 iterations, this task is a major potential source of inefficiency, even though
it is not difficult to see that the lists do not need to be built from scratch at each iteration [3]. In fact, consider a generic
motif m = [sufi ⊕ sufj] and let m′ = [sufi+d ⊕ sufj+d],m′ ∈ Mi+d, be the motif such that m = σ {•}d−1m′. Then, the set of
occurrences ofm is determined by scanning the list of occurrences ofm′ and verifying the condition s[i] = s[k−d] for every
k ∈ Lm′ . This is accomplished in constant time per update. Still, for any of the setsM under consideration∑

m∈M

|Lm| = O(n2).

Thus, the method costs O(n2) per iteration, and O(n3) in total. Our goal is to set up a more prudent organization of the data,
leading to a global cost O(n2 log n), amortized over all iterations. This seems counterintuitive, since there is no way around
listing all occurrences in all lists in less than cubic space. However, we can take advantage of the dynamics undergone by
our list and make do with a partially implicit representation. In order to proceed, we need some auxiliary developments.

3.2. Earliest index and the persistence of an occurrence

It is a crucial consequence of Theorem 2 that once the don’t cares have been tallied for all suffixes of each meet of s then
it takes only constant time to determine whether or not an arbitrary position k is an occurrence of m, m being the meet of
an arbitrary pair of suffixes of s. Although the same could be done on-the-fly with no penalty, we will assume for simplicity
that a trivial, O(n2) pre-processing phase has already been performed to determine the number (and individual ‘‘pedigree’’)
of don’t cares in each [s ⊕ sufi] (i = 1, 2, . . . , n), and concentrate on computing the occurrences of every pairwise suffix
meet.

Definition 11 (Earliest Index). Letm be a meet of s and 1 ≤ j ≤ |s|, and let sufk(m) indicate as usual the k-th suffix ofm. The
earliest index Imj of m at j is I

m
j = min{k : (j− |m| + k) ∈ Lsufk(m)}.

110 A. Apostolico, C. Tagliacollo / Theoretical Computer Science 408 (2008) 106–115

That is, starting at some occurrence j of the last solid character ofm, the index Imj is k if sufk(m) is the longest suffix ofm
ending at j (m[k] 6= s[j− |m| + k]).
Consider now a generic meet m = [s ⊕ sufi]. Knowing the earliest index relative to m at every position j of s, we also

know that for l ≥ Imj , position j − |m| + l must be included in the list of occurrences of sufl(m) , whereas for l < I
m
j the

position j− |m| + l is not an occurrence of sufl(m).

Lemma 5. Let m = [s⊕ sufi] and 1 ≤ j ≤ |m|. Computing Imj , the earliest index of j relative to m, takes time O(log n).

Proof. The computation is carried out by straightforward binary search. At the generic step, we check that j − |m| + k is
an occurrence of sufk(m); if this is the case, we proceed with the next longer suffix in the recursion, otherwise with the
next shorter one. The cost of the step is that of determining whether a given position is an occurrence for a certain meet of
two suffixes of s, which Theorem 2 affords in constant time. Through the O(log n) steps, the computation of Imj takes thus
O(log n). �

This immediately yields:

Corollary 1. Computing the earliest indices of all meets of s at all positions 1, 2, . . . , |s| = n takes time O(n2 log n).

Corollary 1 is a crucial handle for our speedup, which nevertheless requires a few additional observations. First, recall
that the motifs that survive each round of updates are essentially a subset of the current version ofM: their respective lists
are sublists of the original ones. Upon updating, each surviving occurrence in a list will retain its original starting position,
up to an offset which is uniform for all fellow survivors. Bymaking the convention that the elements in a list are represented
by their ending, rather than their starting position and keeping track of lengths we will never need to rename the survivors.
Moreover, the occurrences that do not survive will never be readmitted to any list. Finally, because the baseBi comes only
frommeets of sufi, then at iterationn−i, we only need, in addition toBi+1, the lists in the set:Mi =

{
[sufi ⊕ sufj],∀j > i

}
.We

will see next that, under our conventions, these lists can bemade readily available throughout, at a total cost ofO(n2 log n). In
fact, a stronger construct can be established,whereby all setsMj

i = {[sufi ⊕ sufk],∀k 6= i, k ≥ j} can be implicitlymaintained
with their individual lists throughout, for each j ≤ i, at the overall cost of O(n2 log n) instead of O(n3). The remainder of the
section is devoted to substantiate this claim.

3.3. Monitoring the life span of an occurrence: Panpipes

At the iteration for sufi the list for the genericmeetm of swill appear as partitioned into sections, as follows. The currently
open section contains the ending positions in sufi of occurrences of suffixes ofm that fall still short of their respective earliest
indices. The remaining sections are called closed and assigned to various lengths, as follows: the section assigned to length
` stores the ending positions, if any exist, of the occurrences in sufi of suffixes ofm of length ` that cannot be prolonged into
occurrences of length `′ > `. A list will be initialized as soon as the rightmost two replicas in s of the last solid character of
its meet are found. Let these positions be k and h > k, respectively. These two entries k and h are dubbed open and appended
to the open list of name j = (h − k). New entries are added to the open list while longer and longer suffixes of the input
string s are considered. At the iteration for sufi, i is added to the open section of the all lists of meets having s[i] as their last
character. At that point, a ‘‘sentinel’’ pointer is also issued from the positions i − |m| + Imi of s to this entry in the list. The
role of each sentinel is to gain access to its corresponding entry when the latter ‘‘decays’’ at iteration k = i − |m| + Imi , as
a consequence of the corresponding occurrence becoming ‘‘too short’’ to survive. At that point, the entry i is taken out of
the open section of the list and moved to the closed section assigned to lengthm− Imi . In conclusion, the list assigned tom
undergoes ‘‘refresh cycles’’ as longer and longer extensions provoke the defection of more and more entries from the open
to the closed length sublists and new, shorter suffix occurrences are discovered and added to the open list.
For eachmeetm, the list assigned tom is partitioned into sublists arranged in order of decreasing length,with the length of

the open list set conventionally equal to n, and the items inside each sublist are in turn sorted in order of ascending position.
The collective list will be referred to as the panpipes of m, after the ancient musical instrument it resembles, sketched in
Fig. 1. For any integer ` ≤ n − 1, tallying the current size of all the occurrences of suffixes of m not longer than ` is like
stabbing the set of degrading pipes with an orthogonal stick, striking at a height of ` from the base, and then counting how
many were hit. Standard balanced tree implementation of the list with its subsections supports each of:

• insertion of an element in the open section;
• demotion of an element to the closed section of a given length;
• line stabbing at any height, or tallying elements of a given minimum length;

in O(log n) time each.

Theorem 3. Maintaining the panpipes of all distinct meets of s consecutively at sufi, for i = n − 1, n − 2, . . . , 1 takes overall
time O(n2 log n).

A. Apostolico, C. Tagliacollo / Theoretical Computer Science 408 (2008) 106–115 111

Fig. 1. Panpipes: the longest pipe stores the open section of the list, then shorter and shorter pipes hold shorter and shorter suffixes of the same meet.

Proof. It takes O(n2 log n) computation to determine Imj for all j’s andmeets of s. Then, refer to the preceding description for
theupdates. Each oneof theO(n) candidate occurrences of eachof theO(n)meets is inserted in the open sub-list exactly once,
and then possibly moved from there to a specific length list once and forever. This accounts for O(n2) panpipes primitives
in total, at an individual cost of O(log n) each, which yields a total complexity of O(n2 log n). �

Corollary 2. The sequence of setsMi =
{
[sufk ⊕ sufj],∀k ≥ i, j > k

}
(i = n − 2, n − 3, . . . , 1), each with its occurrence lists

and individual list cardinalities can be consecutively generated one from the other in overall time O(n2 log n).

Proof. Following all necessary preprocessing, and with m denoting the generic meet of s, just let sufi(m) first ‘‘inherit’’ the
whole list of sufi+1(m) (that is,Lsufi(m) = Lsufi+1(m)− 1), and then use the sentinels at i to access and eliminate from that list
all occurrences j− |m| + i such that Imj = i. �

4. Computing the bases of all suffixes of a string

We are ready to detail the generic iteration of the algorithm. Iteration n− iwill determine the baseBi for sufi, so that in
particular the base of s itself will be available after n iterations. The input for this iteration is as follows:

• The setMi+1 of meets of sufi+1 each with its individual occurrence list.
• The baseBi+1, represented by the collection of patterns onΣ∪{•} eachwith its list of occurrences in sufi+1, withmaximal
occurrences tagged.

The output of the iteration areMi andBi, in the same representation.
Recall that at any time the collective size of all lists in any given setBi is linear in n− i, by virtue of Lemma 3. This is not

necessarily true of the collective size of the lists ofMi. However, these sets possess each at most n− 1 meets. Each iteration
of the main cycle consists of the two phases:

• Phase 1: extract fromBi+1 the motifs that are still irredundant in sufi;
• Phase 2: identify all new irredundant motifs.

We describe these two phases in succession.

4.1. Phase 1 — ComputingBi+1 ∩Bi

This phase consists of identifying themotifs ofBi+1 that are still irredundant in sufi. Two distinct events may lead amotif
m inBi+1 to become redundant:

(1) m is covered by a new motif discovered at the current iteration;
(2) m is covered by the occurrence starting at i of some other element ofBi+1.

It is convenient to single out from Bi+1 the motifs that exhibit a new occurrence starting at i, and handle them separately
from the rest. This enables us to search for the motifs ofBi+1 that are still irredundant in sufi, among motifs:

• [1(a)] with an occurrence starting at i;
• [1(b)] without an occurrence starting at i.

These two cases differ on the basis of how a maximal occurrence is covered. If a motifm that becomes redundant in sufi
has an occurrence starting at i and maximal occurrence j in sufi+1, this means that m ≺ m′ for some m′with j ∈ Lm′ . In
the second case, as it shall be seen later in detail, such a motif becomes redundant because some other motif extends its
maximal occurrence j by adding a solid character σ = s[i] at position j− i+ 1.
Since the two phases operate on distinct sets of motifs (respectively with and without an occurrence at i), they can be

handled independently upon separating their respective inputs. Alternatively, the entire Bi+1 is fed as input to Phase 1(a)

112 A. Apostolico, C. Tagliacollo / Theoretical Computer Science 408 (2008) 106–115

and the output of this phase will be the input of Phase 1(b). Whereas the preliminary separation reduces the input size for
either phase, deciding for each motif of Bi+1 whether or not it has an occurrence at i induces an extra cost O(|Bi+1|). The
second approach also requires some partitioning, but this can be performed on a smaller input in between phases or at the
end. The approach described next uses preliminary partitioning. The second approach is left for an exercise.

4.1.1. Phase 1(a)
Since we know the name (meet-id, list-head) and length of the motif inBi+1 to be checked, we can compute the position

at which an occurrence at iwould end, and then check (or compute from scratch) the earliest index of that position relative
to the meet name. Therefore, separating from Bi+1 the motifs with an occurrence at i takes at most O(|Bi+1|). With B ii+1
denoting the subset of Bi+1 containing such motifs, the goal is then that of determining B ii+1 ∩ Bi. This set exhibits some
important properties, which are derived next.

Lemma 6. Let B j be the set of irredundant motifs with an occurrence at j, andMj the set of meets [sufj ⊕ sufk],∀k 6= j. Then
B j ⊆Mj.

Proof. Let m be an element of B j. From Lemma 1, m must have at least one maximal occurrence k. If k = j then
m = [sufj ⊕ sufl],∀l ∈ Lm. If this is not the case, it follows from the maximality of the occurrence at k that m =
[sufk ⊕ sufl],∀l ∈ Lm, which holds in particular for l = j. �

Lemma 6 is useful when searching irredundant motifs of which a specific occurrence is known, since it restricts the set
of candidates to a linear subset of all pairwise suffix meets. In particular, the lemma can be used to determine which ones
among the old motifs having an occurrence at i conserve their irredundancy in sufi.

Corollary 3. Let, as earlier,Mi denote the set of meets [sufi ⊕ sufk],∀k > i. Then(
B ii+1 ∩Bi

)
⊆Mi.

Proof. From Lemma 6. �

In order for amotif inBi+1 to stay irredundant in the transition from sufi+1 to sufi, at least one of its maximal occurrences
in sufi+1 must be preserved also in sufi.

Lemma 7. Let m ∈ Bi+1. Then

m ∈ Bi ⇔ ∃k 6= i : k ∈ Lmaxm .

Proof. This holds clearly for a motif ofBi+1 with no occurrence at i, since irredundancy presupposes a maximal occurrence.
Assume then a motif of Bi+1 having i as its sole maximal occurrence. Then, m = [sufi ⊕ sufk],∀k ∈ Lm. Let k ∈ Lm be a
maximal occurrence of m in sufi+1. Since k ∈ Lm, we have m = [sufi ⊕ sufk], so that k is a maximal occurrence of m in sufi
as well. �

Therefore, no motif of the old base can preserve its irredundancy by having i as its solemaximal occurrence. On the other
hand, preserving irredundancy for an old motif does not necessarily require a maximal occurrence at i. These properties
suggest that the redundancy of a motif m ∈ Bi+1 can be assessed by scanning maximal occurrences of m and deciding
which ones among them are still maximal in sufi. If the maximal occurrences ofm are already known in sufi+1, all that is left
is to check maximality with respect to the new occurrence at i.

Lemma 8. m ∈ Bi+1, i ∈ Lm, and m ∈ Bi ⇔ ∃k ∈ Lmaxm such that m = [sufi ⊕ sufk].

Proof. Immediate from Lemma 7. �

In conclusion, the bulk of Phase 1(a) consists of scanning the maximal occurrences of each m ∈ Bi+1 also occurring
at i and determining whether at least one such occurrence stays maximal. Maximal occurrence j stays maximal in sufi iff
[sufi ⊕ sufj] = m, a condition that can be tested by comparing the number of don’t cares respectively inm and [sufi ⊕ sufj],
given that m occurs at i and j. Alternatively, this condition can be checked by comparing the occurrence lists of m and
[sufi ⊕ sufj]. In fact, since both i and j are inLm, it must be that

m � [sufi ⊕ sufj] ⇔ L[sufi⊕sufj] ⊆ Lm.

Hence, in order to checkwhether [sufi⊕sufj] andm coincide it suffices to check the condition: |L[sufi⊕sufj]| = |Lm|, Note that,
as a by-product, either method inductively maintains knowledge of the maximal occurrences for all motifs in the setsB.

Lemma 9. Phase 1(a) takes time O(n).

Proof. For any j > i, we identify [sufi ⊕ sufj] from our knowledge of i, j, and of their difference. In fact, the latter identifies
a specific meet of s. Let now m ∈ B ii+1. For every maximal occurrence j of m it takes constant time to compare don’t cares
or list sizes for m and [sufi ⊕ sufj]. By Lemma 3, the size of all lists of in a base cumulates to less than 2n, whence the total
number of occurrences that need to be checked is O(n). �

A. Apostolico, C. Tagliacollo / Theoretical Computer Science 408 (2008) 106–115 113

4.1.2. Phase 1(b)
Recall that the task of this phase is the identification of the motifs that stay irredundant in sufi among the elements of

Bi+1 with no occurrence at i. The identification of these motifs is rather straightforward once it is observed that the only
way in which such a motifmmay become redundant in sufi is for it to be covered, in its maximal occurrences in sufi+1, by a
motifm′ = σ(•)dmwith an occurrence at i.

Lemma 10. If m′ ∈Mi covers m ∈ Bi+1, i /∈ Lm, then m′ = σ(•)dmwhere σ = s[i] and d ≥ 0.

Proof. Occurrence j ∈ Lmaxm loses maximality if ∃k ∈ Lm such that [sufi ⊕ sufi+k−j] � m, where it is assumed w.l.o.g. k > j.
Since j is a maximal occurrence ofm in sufi+1, then [sufk⊕ sufj] = m and the only possibility is [sufi⊕ sufi+k−j] = s[i](•)dm,
where d = j− i. �

The elimination from Bi+1 of the motifs m /∈ Bi without an occurrence at i is done by checking for every maximal
occurrence of m whether it can be extended in such a way as to lose maximality. The procedure terminates as soon as an
occurrence that stays maximal is met, or when all maximal occurrences have been obliterated.

Lemma 11. Phase 1(b) takes time O(n).

Proof. Since each m to be checked is in Bi+1, then the total number of motif occurrences of which the possible extension
into i needs to be checked is O(n). Checking for extensibility of an occurrence is easily done in constant time. �

4.2. Phase 2 — Identifying the new irredundant motifs

Recall that by new irredundantmotifs wemean those elements ofBi that did not belong toBi+1. Lemma 6 prescribes that
these motifs are to be identified among the elements ofMi = {[sufi ⊕ sufj],∀j > i}. Indeed, to be irredundant these motifs
must have a single maximal occurrence at position i in case they already hadmultiple occurrences in sufi+1; otherwise, they
must have precisely two occurrences, both occurrences being maximal. Let then

B̃ =Mi − (Bi+1 ∩Bi)

be the set of the candidate new irredundant motifs. Since i is the only possible maximal occurrence of any motifm ∈ B̃, we
must check which ones among old and new motifs with an occurrence at i can cover this occurrence of m. The way this is
done is based on the following properties.

Lemma 12. Let m1,m2 ∈ B̃ and let j 6= i ∈ Lm1 ∩ Lm2 , |Lm1 | < |Lm2 |. Then, m2 /∈ Bi.

Proof. Observe first that it is impossible for both motifs to be irredundant in sufi. In fact, since they do not belong to the old
base they would have to have maximal occurrences at i. But if this holds for m1 then [sufi ⊕ sufj] = m1,∀k ∈ Lm1 , whence,
in particular, [sufi ⊕ sufj] = m1. Likewise, it must be [sufi ⊕ sufk] = m2,∀k ∈ Lm2 , hence [sufi ⊕ sufj] = m2 = m1. Assume
then w.l.o.g. that onlym2 is irredundant. Then, [sufi ⊕ sufk] = m2,∀k ∈ Lm2 and thus [sufi ⊕ sufj] = m2. Since i, j ∈ Lm1 we
have [sufi ⊕ sufj] � m1 and thus |Lm2 | ≤ |Lm1 |, which contradicts the hypothesis. �

Lemma 13. Let mnew ∈ B̃,mold ∈ B ii+1 ∩Bi, and j 6= i ∈ Lmnew ∩ Lmold , |Lmold | < |Lmnew |. Then, mnew /∈ Bi.

Proof. As was already argued, if mnew ∈ Bi then its occurrence at imust be maximal, hence [sufi ⊕ sufj] = mnew . We have
then againmnew � mold which generates the contradiction |Lmnew | ≤ |Lmold |. �

In conclusion, in order to check for irredundancy of the elements of B̃, it must be checked for every suchmotifmwhether
it is covered by another motif of B̃ or by some old irredundant motif which is still irredundant in sufi. Let m1,m2, . . . ,ml
(l ≤ n) be the motifs to verify. They all come in the form [sufi ⊕ sufk] for some k > i. Considering m1 = [sufi ⊕ sufk1]
with Lm1 = {i, k1, k2, ..., kr}, the motifs that can possibly obliterate m1 are [sufi ⊕ sufj], j ∈ Lm1 , j 6= i, j 6= k1. Taking
m′ = [sufi ⊕ sufk2] as the first motif to be considered, we check the condition |Lm1 | ≥ |Lm′ |. Note that having chosen m

′ as
[sufi ⊕ sufk2] where both i and k2 are occurrences for m1, we must have |Lm1 | ≥ |Lm′ |. If |Lm1 | = |Lm′ |, then m1 = m

′ and
m′ is excluded from further analysis. If |Lm1 | > |Lm′ |, then m1 is obliterated by m

′ and thus mmust be eliminated since it is
redundant. The procedure is repeated with the surviving motif until all redundant motifs have been eliminated.

Lemma 14. Phase 2 correctly identifies all new irredundant motifs.

Proof. We need first to establish that the described approach is correct. Indeed, assume that the k-th iteration is handling
themotifmwith an occurrence at j, and that the pairm,m′ = [sufi⊕ sufj] is checked, wherem′ had been already considered
during some previous iteration h < k. Two situations are possible:

(1) m′ had been eliminated at iteration h. In this case, there must be a motif covering m′ at i, whence that motif will also
cover the occurrence at i ofm. Thus,m can be eliminated at the current iteration.

(2) m′ has been previously checked but not eliminated. This means thatm′ ∈ Bi. Sincem andm′ share an occurrence other
than i it must bem /∈ Bi, so that also in this casem can be eliminated at the current iteration. �

Lemma 15. Phase 2 takes time O(n).

114 A. Apostolico, C. Tagliacollo / Theoretical Computer Science 408 (2008) 106–115

Proof. Following each one of the comparisons, the procedure eliminates a distinct meet of sufi from further consideration.
Since there are O(n) such meets, we also have O(n) iterations, each requiring constant time to compare the cardinalities of
two lists. �

Theorem 4. The irredundant motif bases of all suffixes of a binary string can be computed incrementally in time O(n2 log n).

Proof. By the preceding properties and discussion. �

5. Concluding remarks

Several issues are still open. Notable among them are the existence of an optimal algorithm for general alphabets, and of
an optimal incremental algorithm for alphabets of constant or unbounded size.

Acknowledgements

The first author’s work was supported in part by the Italian Ministry of University and Research under the Bi-National
Project FIRB RBIN04BYZ7, and by the Research Program of Georgia Tech. The work was carried out in part while visiting
the Institute for Mathematical Sciences, National University of Singapore in 2006, and the Shanghai CAS-MPG Partner
Institute for Computational Biology between the Chinese Academy of Sciences and the GermanMax Planck Society in 2007,
with support provided by those Institutes. The second author’s work was carried out in part while visiting the College of
Computing of the Georgia Institute of Technology.

Appendix. Proof of Lemma 4

We first show that ifm has an occurrence at k it implies the claim. Under such hypotheses, we have i, j, k ∈ Lm, whence,
by Property 3, also m � m′ = pref|m|(sufi ⊕ sufk). Similarly, it must be m � m′′. Considering then homologous positions in
m,m′ andm′′, the following holds:

- Ifm[l] = σ then, fromm � m′ andm �,m′′, we getm′[l] = m′′[l] = σ .
- Ifm[l] = • ⇔ sufi[l] 6= sufj[l], and one of the following two cases is possible:
(1) m′[l] = σ ⇔ sufi[l] = sufk[l] ⇔ sufj[l] 6= sufk[l] ⇔ m′′[l] = •.
(2) m′[l] = • ⇔ sufi[l] 6= sufk[l] ⇔ sufj[l] = sufk[l] ⇔ m′′[l] = σ .
The last one is summarized bym[l] = • ⇔ m′[l] 6= m′′[l]. Note that, sincem′ andm′′ both result from ameet of sufk with
some other suffix of s, thenm′[l] 6= m′′[l] impliesm′[l] = • orm′′[l] = •.

Thus, in correspondencewith every don’t-care ofm, only one of the patternsm′ andm′′will have a don’t-care. Since every
solid character of m must also appear in homologous positions in both m′ and m′′, we have that the total number of don’t
cares inm′ andm′′ equals the don’t cares inm.
To prove the converse, we show that if k is not an occurrence of m then this infringes the claimed relationship. Assume

then k /∈ Lm. Hence, ∃l such that m[l] = σ and sufk[l] 6= σ . Since m[l] = σ , it must be sufi[l] = σ and sufj[l] = σ , whence
m′[l] = • = m′′[l]. Upon re-examining the distribution of don’t cares inm′ andm′′ with respect tom, we have the following
cases:

- m[l] = σ . This splits into:
(1) m′[l] = σ ⇔ m′′[l] = σ .
(2) m′[l] = • ⇔ m′′[l] = •.
- m[l] = •. There is no change with respect to the first part of the proof.

We see thus that the difference with respect to the assumption k ∈ Lm is posed by some solid characters in m that
become don’t care inm′ andm′′. Every don’t-care inm is balanced by corresponding don’t cares inm′ andm′′. However, we
must now add to the equation a positive contribution that amounts to twice the number of positions of sufk that cause a
mismatchwithm. In other words, when k /∈ Lm we have dm < dm′ + dm′′ , hence dm 6= dm′ + dm′′ . �

References

[1] Alfred V. Aho, Algorithms for finding patterns in strings, in: Handbook of Theoretical Computer Science (vol. A): Algorithms and Complexity, 1990,
pp. 255–300.

[2] Alberto Apostolico, Zvi Galil, Pattern Matching Algorithms, Oxford University Press, New York, 1997.
[3] Alberto Apostolico, Laxmi Parida, Incremental paradigms of motif discovery, Journal of Computational Biology 11 (1) (2004) 15–25.
[4] Alberto Apostolico, Pattern discovery and the algorithmics of surprise, in: P. Frasconi, R. Shamir (Eds.), Artificial Intelligence and Heuristic Methods
for Bioinformatics, IOS Press, 2003, pp. 111–127.

[5] Alberto Apostolico, Claudia Tagliacollo, Optimal extraction of irredundantmotif bases, in: G. Lin (Ed.), Proceedings of COCOON 07, in: Springer Lecture
Notes in Computer Science, LNCS, vol. 4598, 2007, pp. 360–371.

[6] Richard Cole, Ramesh Hariharan, Verifying candidate matches in sparse and wildcard matching, in: STOC ’02: Proceedings of the Thiry-Fourth Annual
ACM Symposium on Theory of Computing, 2002, pp. 592–601.

A. Apostolico, C. Tagliacollo / Theoretical Computer Science 408 (2008) 106–115 115

[7] Michael J. Fischer,Michael S. Paterson, Stringmatching and other products, in: R. Karp (Ed.), Proceedings of the SIAM–AMSComplexity of Computation,
American Mathematical Society, Providence, RI, 1974, pp. 113–125.

[8] Gonzalo Navarro, A guided tour to approximate string matching, ACM Computing Surveys 33 (1) (2001) 31–88.
[9] Johann Pelfrêne, Saïd Abdeddaïm, Joël Alexandre, Extracting approximate patterns, Journal of Discrete Algorithms 3 (2–4) (2005) 293–320.
[10] Laxmi Parida, Algorithmic techniques in computational genomics, Ph.D. Thesis, Department of Computer Science, New York University, 1998.
[11] Nadia Pisanti, Maxime Crochemore, Roberto Grossi, Marie-France Sagot, Bases of motifs for generating repeated patterns with wild cards, IEEE/ACM

Transactions on Computational Biology and Bioinformatics 2 (1) (2005) 40–50.
[12] Laxmi Parida, Isidore Rigoutsos, Aris Floratos, Dan Platt, Yuan Gao, Pattern discovery on character sets and real-valued data: Linear bound on

irredundant motifs and an efficient polynomial time algorithm, in: Symposium on Discrete Algorithms, 2000, pp. 297–308.
[13] Jason T.L.Wang, Bruce A. Shapiro, Dennis Elliot Shasha, Pattern Discovery in Biomolecular Data: Tools, Techniques and Applications, Oxford University

Press, 1999.

	Incremental discovery of the irredundant motif bases for all suffixes of a string in O (n2logn) time
	Introduction
	Preliminaries
	The incremental management of motif occurrences
	Bottlenecks
	Earliest index and the persistence of an occurrence
	Monitoring the life span of an occurrence: Panpipes

	Computing the bases of all suffixes of a string
	Phase 1 --- Computing Bi+1Bi
	Phase 1(a)
	Phase 1(b)

	Phase 2 --- Identifying the new irredundant motifs

	Concluding remarks
	Acknowledgements
	Proof of Lemma 4
	References

