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Abstract

The initial value problem for the discrete coagulation—fragmentation system with diffusion is stud-
ied. This is an infinite countable system of reaction—diffusion equations describing coagulation and
fragmentation of discrete clusters moving by spatial diffusion in all sfkceThe model consid-
ered in this work is a generalization of Smoluchowski’s discrete coagulation equations. Existence of
global-in-time weak solutions to the Cauchy problem is proved under natural assumptions on initial
data for unbounded coagulation and fragmentation coefficients. This work extends existence theory
for this system from the case of clusters distribution on bounded domain subject to no-flux boundary
condition to the case of aR¥.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the coagulation—fragmentation equations which are related to
a mean-field model describing coalescence and spontaneous fragmentation of clusters
moving by diffusion in all spac®?, 4 > 1. The model describes the space and time
evolution of a system of a large humber of clusters growing by binary coalescence. The
model is a generalization of the classical Smoluchowski coagulation equations which were
originally introduced to describe the binary coagulation of colloidal particles moving ac-
cording to Brownian motions [27,28]. In this approach, the clusters are assumed to be
composed of a finite number of identical units (monoclusters), and are fully identified by
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their size, that is, the number of monoclusters they are made of. We refer to [8] and [7]
for derivations of the model and physical background. It is worth mentioning here that the
coagulation—fragmentation equations appear in many branches of science, e.g., in aerosol
science [8,24], polymer science [32], biology [22] and astrophysics [23]. We restrict here
to the physical situation in which clusters diffuse according to Fick’s law and this is the
only process which allows them to approach each other sufficiently close, so that they
have a chance to coalesce. The influence of external fields which could induce directional
movements and coalescence of clusters (such as temperature or electric field for charged
particles) are not taken into account. As in most of papers only the process of spontaneous
multiple fragmentation is taken here into account although collisional fragmentation can
also be considered together with coagulation.

Since the original work of Smoluchowski, a number of physical and mathematical stud-
ies have been devoted to the coagulation—fragmentation equations but most of them are
restricted to the case when the spatial fluctuations of clusters are neglected (see, e.g.,
[1,3,8,20] and references therein). Much less attention has been paid to the spatially in-
homogeneous setting, though a reaction—diffusion-type model of diffusive coagulation
was derived in [16] and also considered in [7,25,26]. Within the last decade, the diffusive
coagulation—fragmentation equations on bounded domain have been further studied from a
mathematical point of view in several papers [4,5,15,17,18,30,31] and references therein.

Fori > 1, we denote by; = ¢;(¢t,x) > 0 the concentration (number density) of
i-clusters (that is, clusters composed afits) at timer and positionc. The initial value
problem for the diffusive coagulation—fragmentation system (CFD) reads

daci

5;—¢Aq=m@)nuq+mnxwt (1.1)

ci(0)=co; InRY, (1.2)
where

Ri(c)=K1,(c) — K2i(c) — Fri(c)+ F2,i(c), i>1,
and denoting = (¢;)i>1,

i—1 00
Kl,i(c)zgzaifj,jcifjcja KZ,i(C)ZCiZai,jCja
j=1 j=1
o
F1,i(c) = Bici, Fi(c) = Z BitjBitjiCi+j
j=1
under conventiontha(y; = F1; =0fori = 1. Thereal numbeig > 0, i > 1, denote the
diffusion coefficient of ani-clusters. The coagulation coefficients; = a;; are nonneg-
ative numbers which determine the rate of binary coagulatiorabfisters and-clusters.
The nonnegative real numbeBs (B1 = 0) are fragmentation rates and nonnegative real
numbersg; ;, i, j > 1, determine the average numberjotlusters produced during the
break-up of ari-cluster. The conservation of mass during a fragmentation event implies

i—1
Z]ﬁi,j =i, iz2
=1
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The gain term ; (c), F2,;(c) in theith equation account for the formation otlusters
from smaller pieces and appearance -alusters resulting from fragmentation of larger
clusters, respectively. The loss terikis ; (c), F1,;(c) describe the depletion @fclusters
due to interactions with other clusters and their break-up.

Notice that, in the situation described above there are no sources nor sinks of clusters
in the reaction terms. Consequently, the total mass of clusters (the mass of monoclusters
being normalized) defined for> 0 by

(e.¢]
m(t) = Zi/ci(t,x)dx

i=1 Q
is expected to be equal to the initial one, provided the latter is finite. It turns out however
that it is not true in general for several physically relevant coagulation rates and the break-
down of the mass conservation is then related to the so-called gelation phenomenon (see,
e.g.,[10,12,14,21]in the spatially homogeneous case and [10,13]for the diffusive case, and
references given there). In general, we thus only haveitligt< m(0) and this property
suggests a natural functional framework to study (1.1)—(1.2). More precisely, we define the
Banach space

o
X1= :u = (u)i>1. ui € LY(), Zi|ui|L1 <o0o¢,
i=1
endowed with the norm
o0
lula =) iluil2. ue X,
i=1

We also denote byf the positive cone oK, i.e.,
X ={u=@i)i>1€ X1, ui >0a.e.in2}.

Thus, within our setting, the total mass of a solution to (1.1)—(1.2) is nothing but its
X1-norm and the above argument suggests that it stays bounded by the initial one through-
out time evolution. We assume the same assumptions on the growth of coagulation and
fragmentation coefficients as in [17]. Namely,

lim 4 = i BiiPiii g
j—oo ] j—00 1+
Observe that (1.3) excludes the coagulation ratgs=i + j anda; ; = ij, but in-
cludes several cases considered in the literature sueh;as i* + j* anda; ; = (ij)*,
A €[0,1). We remark also that, the existence of solutions (in the sense of Definition 1.1
below) to (1.1)—(1.2) is still an open question when < A(i + j) and only partial results
are known [31]. It is also worth pointing out that in the space homogeneous case the ex-
istence of solutions to the coagulation—fragmentation equations case was proved in [3] for
a; j < i+ j without any growth assumptions on fragmentation rate—a problem still not
solved in the diffusive case.
We use the same notion of solution as in the previous papers [17,19]. In the following,
Q27 denotes the s&0, T) x R for T > 0.

i>1 (1.3)
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Definition 1.1. Let 7, € (0, +-00]. A solutionc = (¢;);»1 to (CFD) on[0, T,) is a mapping
from [0, 7.) in X such that, for eaclt’ € (0, 7,,) andi > 1,

(1) ¢ €C(O, T]; LY(2)),
(2) K1i(c), K2,i(c), F1i(c), F2,(c) € LY(Q27),
(3) ¢; is a mild solution to théth equation in (CFD), i.e., for eacte [0, T],

t

mw=&mmm+/&u—n&@®wa
0

wheres; is the heat semigroup ih(R¢) corresponding to the Laplace operadpn.
We are now in a position to state our result.

Theorem 1.2. Assume that there exisi¥ > 0 such that
O0<d;<D fori>1 (1.4)

andcg = (co;) € Xf. If the kinetic coefficient&s; ;), B;, B;, ; satisfy(1.3) then there exists
at least one solution toCFD) on [0, +00) x R? such that]|c(z)||1 < |lcoll1 for £ > 0.

This theorem extends to dl“ a recent result by Laurencot and Mischler [17] which
concerns existence of weak solutions to (CFD) subject to initial dapéflrand no-flux
condition imposed on the boundary of a bounded donsaitrr R?. By now two ana-
lytic methods of existence proof for (CFD) appeared in the literature. One of them is
based on the contraction argument and can be applied only in the case when the map-
ping ¢ — (R;(c))i>1 is locally Lipschitz continuous in suitable function spaces. This
requirement leads to some restrictions on the growth of coagulation and fragmentation
coefficients which exclude many physically relevant cases. In [2] existence of local-in-
time mass-conserving solution is proved wher= R? for anyd > 1. The solution can be
prolonged for alk > 0 only for one space dimension. We point out that thanks to a very ab-
stract point of view assumed in [2] a continuous model of coagulation—fragmentation with
diffusion is treated in a unified way with the discrete one. Results proved there are based on
theorems which deal with the generation of semigroups in generalized Slobodeckii space
being a subspace of Banach space valued distributions. The contraction mapping method
was also used in [31] in a different function setting for both bounded or unbounded do-
main. In any case additional assumptions on initial data are imposed so this is not enough
to assumeg € X1. On the other hand the solution constructed by means of this method is
mass-preserving and uniquely determined. However, it can be prolongedsfor @lbnly
in some particular cases involving additional restrictions on diffusion coefficients or space
dimension (see [31]).

In order to take into account unbounded coagulation—fragmentation coefficients and
initial conditions in XIF one considers weak solutions in the sense of Definition 1.1. In
this case the compactness method has been used. The weak solution is constructed as the
limit of solutions to some finite systems of reaction—diffusion equations being defined as a
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suitable truncation of the original system (1.1). This method ensures neither uniqueness of
solution nor mass conservation even if kinetic coefficients warrant both properties in space
homogeneous case. Its proof relies on the construction of a sequence of approximating
solutions to finite (truncated) systems related to the original one and on the observation that
the sequences of reaction terms in ttreequationj > 1, are weakly compact in1(£27).

It then allows passing to the limit in each reaction term and conclude that the limit of the
approximating sequence is a solution to (CFD). It is worth noticing that by obvious reasons
componentwise compactnesglif(0, 7; L1(R?)) of approximating sequence of solutions
requires additional arguments with respect to the case of a bounded domain. In the next
section we prove a compactness result which provides us with a tool to handle the case of
unbounded domain without making use of weighted spaces.

Recently, some results has been obtained on the approximation of solutions to diffu-
sive coagulation—fragmentation equations by means of the stochastic particles approxima-
tion [6] (see also [11] and much earlier work [16]). In [6] clusters distribution in all space
R4 has been considered with probability measur&érin the place of Lebesgue measure
which is considered in this work.

2. Proof of Theorem 1.2

In this section, we fixo = (co,;) € X{ andT > 0.
We say that a subset of L1(R?) (L1(0, T; L1(R?))) hasu-propertyif

T
lim sup / |f(x)|dx=0 lim sup/ / |f(t,x)|dtdx=0],
R=oorea R—+00 pep

{Ix|>R} 0 {lx|>R}
respectively.
We shall consider the initial value problem
v —Av=f in LY®R?), v(0) = vo. (2.1)

Given f € L1(0, T; LY(RY)) andvg € L1(R?) there exists the unique mild solutiane
C([0, T1; LY(RY)) (see, e.g., [29]). For subsels c L(RY) andI; c L0, T; LY(R?))
let

M c ([0, T1; RY)

denote the set of all mild solutionsto (2.1) corresponding t¢ andvo ranging in/y
and I, respectively. We are now in a position to state a compactness result which plays a
crucial role in the proof of Theorem 1.2. It is based on the following classical result.

Proposition 2.1. Let A be a bounded subset Bf-1(R?) enjoying u-property. Thed is a
precompact set i1 (R?).

Theorem 2.1. Suppose thalp ¢ LY(R?) and I, ¢ L1(0, T; LY(R?)) are bounded sets. If
I and Io have u-property thed is precompact in.2(0, 7; L1(R9)).
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Proof. The boundedness @ and/; implies existence of a constaptsuch that
[ f1L10.7: L2y T V0l L1(RA) < V- (2.2)
Let us first consider nonnegative data> 0, vg > 0. For any positive functioh we put
h" =r A (xBo.rh),

whereB(0, r) is a ball centered at 0 of radiusThen f” € L¥(R?) N L7 (0, T; L? (R%)),
vo € L¥(R?Y) N LP(R?) and fr — f, vh — vo asr — +oo for eachp € [1, 00). Let
ur € C([0, T1; LAR?)) N WiE2(10, T1; L2(R?) N L2 (10, T1; H2(R?)) be the L2-strong
solution to the regularized problem

ury — DAu, = ", ur(0) =y, (2.3)

Notice that by the maximum principke. > 0. Let us choose a smooth functiénR —
[0, 1] such that

O(s)=0 forse(—o0,1] and O(s)=1 fors>2

Then there exists a constafig > 0 such thatd’(s)| < Co for s € R. Now for/ > k > 0
and anyx € R¢ we define

2 2
01 (x) _9<'£'2) e(";—zl—:a) (2.4)

For convenience, in the sequel, we shall wi¥té(|x|?/k?) and V6(|x[?/1? — 3) to de-
note thex-derivative of the functionr — 6(|x|%/k?) andx — 6(|x|?/I? — 3), respectively.
Notice thatdy ; € C5°(R?), suppy,; C {x € R?: k <|x| < +/51} and

SUPPVh;, C {x e RY: k < x| < V2k} U {x e RY: 21 < |x| < V/5l). (2.5)
Multiplying (2.3) by 6, ; then integrating ovel0, 1) x R? and using (2.3)—(2.5), we obtain

2
/ur(t x)@kl(x)dx—i—/ / Vu V9(|k| )d dt

R? 0 (k<IxI<V2K)
t
|x|?
+ VurVG Tz —3)dxdr
0 (21 1x|<VBl)
t
:/vS(x)Gk,ldxdt+//f(r,x)9k,l(x)dxdr. (2.6)
R4 0 R4

To find L1-estimate orVu, let us note that’” being the solution corresponding g €
LYRYHNL2RY) and /" € L1(0, T; LY(RY)) N L2(0, T'; L2(R%)) coincides with the mild
solution

t

(1) = E #, v6+/E(t—s) *y fT(s)ds, t>=0, (2.7)
0
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whereE is the Gauss—Weierstrass kernel corresponding to the Laplace operatos Bor
we have also

t
Vi, (1) = VE %, v6+/VE(t—s) * f7(s)ds. (2.8)
0

Taking into account that the functian— |VE(z, -)| 1re) belongs toL?(0, T) for p €
[1, 2) and using Young’s inequality we conclude that

IVitrl 10,7 10y < C1(1f" | 120,75 12 ey + 1001 L2 ra)) < Cay,s (2.9)

whereCy = C1(T, d). Letting f" — f, vy — vo asr — +oo and making use of (2.6)
and (2.7) we obtain

ur —v inC([0,T]; RY),
Vu, — Vv in L}0, T; LY(R?)).
Moreover, by (2.9),
Vvl < C1y. (2.10)

We may now replace, in (2.6) byv. Then fixingk we shall lef — +o0 in (2.6). To this
end we notice that for eadhe R we have

|x|2 2Co d
‘Vé’(? < x| 2 RY,
and hence
2
/ / vuve(u - 3) dxdt < 2fc0c1— (2.11)
0 (2<IxI<V5l)

Using Lebesgue’s dominated convergence theorem we arrive from (2.6){wiéplaced
by v) at

/v(t x)@(' lz)dx
k2

R4

:/vo (' '2)d +//f(r x)9<| |2>dxdt

Rd 0 R4

T 2
+/ / Vo ve('kl )d dr.
0 (k<IxI<V2Kk)

Since the last term can be estimated in a similar way as that in (2.11) we obtais-foy
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T
/ v(t, x)dx < / vo(x)dx—i—/ / | f(z,x)|dxdt
{lx|>~/2k} {lx|>k} 0 {Jx|>k}
22
22y 012

Notice that we have used in the first term the nonnegativity.ofih order to consider
the general case we consider dafa, vot+) and(f-, vo—) separately, wher¢, = f v 0
and f_ = —(f A 0). Consequently, (2.12) holds for both. andv_. As Iy and/; have
u-propertywe conclude that gives > 0 there existsRs such that for alb € M,

sup lu(r, x)|dx <. (2.13)
te[0,T]
|)C|>R5

To show thatM is a precompact set int(0, T; L1(R%)) we shall apply Theorem 2.6.1
from [29]. Taking into account accretivity and maximality properties of the Laplace oper-
ator in L1(R?) we only have to check that given> 0 there exist®), c L1(R?) such that
for eachv € M there exists a measurable subggt. in [0, '] such that E, .| < ¢ and
v(r) € Q. for eachv € M andt € [0, TI\E,. .. From (2.2), (2.8) and (2.10) it follows that
there is a constartt,, such that

|U|L1(0,T;W1»1(Rd)) < Cy. (214)
Let us define

M={v@t) veM, te[0,T]}

andy (1) = (1)l w1 (gay for almost allr € [0, T]. Now lete > 0 be fixed and fow € M
we set

Eye={te[0,T]: y(1) > Cpet}.
Owing to (2.14) we obtain

T

T
|Ey.e| = / Xit: g (1)>Cpe=1} dt < C;lS/W(t) dt <e.
0 0

Next we put

0. ={we WHRY): |wlyrigey < Cpe N M.

Thanks to (2.13) the se¥ has u-property and consequently by Proposition @,lis
a precompact set iR?. Finally we notice thab(r) € Q, forall v e M andt € [0, TNEy ¢
which completes the proof.O

We shall need the following auxiliary fact.

Lemma 2.3. Let {u": n > 1} be a sequence df2-strong solutions to the initial value
problem

uy — Au+gu=f, u(0)=uo, (2.15)
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such thatf, g anduo are a.e. nonnegative functions. Moreoverjfet I, g € Iy, ug € I,
wherely, I,, (Ip) are bounded subsets af(0, T; LY(RY)) (L1(R?)), respectively. Ifi ¢

and o have u-property then the sét = {gu: u is a solution to(2.15) andg € I,, f € Iy,
ug € Ip} too.

Proof. By the maximum principle: is nonnegative. Multiplying (2.15) by (2.4) and pro-
ceeding as in (2.6), (2.11) and (2.12) we arrive at the following inequality:

T
/ u(t,x) dx+/ / g(t,x)u(t,x)dxdt

{Ix|>v/2k} 0 {lx|>v2k)
T
const
< / uo(x)dx—i—/ / ‘f(t,x)|dxdt+T,
{lx[>k} 0 {|x|>k}

whence we deduce tha;t has u-property which completes the proofa

Now we proceed to the proof of Theorem 1.2. We want to underline at this point that we
adopt here the method used in [17] in the case of (CFD) on bounded domain with no-flux
boundary condition. Therefore we pay more attention on steps of proof in which the lack
of boundedness of the domain plays a role.

Proof of Theorem 1. The proof consists of 4 steps.

Stepl. Approximation (truncated system).

We first define a sequence of solutions to finite reaction—diffusion system obtained from
(1.1)—(1.2) by a suitable truncation (see [17]). BoE 3 we put

Ny _Jaij+% ifGvH<N,

" 0 if (Vv j)>N, (2.16)
B; ifi <N,

BN = ! (2.17)
0 ifi>N,

and fori > 1,
¢ AN ifi<N,

N
Co;i = 2.18
%o ifi > N. (2.18)
Next we consider the system oN2equations
e —diach = RM (™) in (0, +00) x RY, (2.19)
N0 =cy; InRY, (2.20)

for 1 <i < 2N, wherecV = (cV);>1, c¥ =0fori > 2N andRY is equal tor; with (a; ;)
and(B;) replaced b)(a,{",.) and(BiN). After suitable modifications related to the fact that
the domain of: is unbounded we may use now Lemma 2.2 from [30] to conclude that there
exists a unique global-in-time solution to (2.19)—(2.20) such that each compongéhisf
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bounded inL.> (R4) N L1(R?). It is worth noticing that the.>-bound of each component
(which is needed for the global in time existence of solution) depends here in general on
N in contrast to [30] where the existence of a solution wWiffi-bounded components was
studied. To show th&.>°-bound by means of Lemma 2.2 in [30] one has to check the
following technical condition: for each> 1 there exists; > 0 such that

BjBji <viaij forj>i+1,

which extends hypothesis (H1) from [30] on the case of multiple fragmentation. It is easily
seen that the condition is satisfied by (2.17) and (2.18). Using equality (2.2) from [30]
and (2.20), we also obtain

sup V1 < fleolls, (2.21)
te[0,4+00)
uniformly with respect tav.
Step2. L1-bound and u-property of reaction terms.
In what follows we denote by;, i > 1, a sequence of generic constants such that for
fixedi, C; does not depend oM. It follows from (1.3) that for each > 1 there is a constant
C; such thatforj > 1,

N N
aV. B! .13.+.).
ti,l + B[N + l-ijj l.]z
J 1+

Owing to (2.21) and (2.22) we obtain foe> 1,

Ci. (2.22)

N,/ .N N
[F1 €D 10 1@y T 172 |10, 00Ray < G (2.23)

N

N N
Z“i,/‘j
j=1

Now we may proceed in the same way as in [17] using induction argument starting from
i = 1. The induction step is based on the following observation:

<G (2.24)
L1(0,T; LL(RY))

i
fori>1, K q1(c™) <Y Ky (™). (2.25)
j=1

Consequently we obtain that for eack 1,

IR | 107211y < Ci- (2.26)
We next claim that for each> 1 the set

{RN(c"): N >3} has u-property (2.27)

One proceeds by induction using similar arguments as before. We consider first the case
i =1. From (2.22) it is easily seen that for each 1,

2N
FY 4+ F, <G Y je¥ in(0.7) xR (2.28)
=1
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Thus, in order to show that each fragmentation term has u-property it remains to prove that
the set

2N
{ch?’: N > 3, has u-property (2.29)
=1

Indeed multiplying'th equation in (2.19) byéy ; (see (2.4)) and then using equality (2.2)
from [30] we find

2N 2N
/chj.v(t,x)ek,,(x)dx=/chf.’(t,x)9k,,(x)dx

R4 Jj=1 R4 Jj=1

t
+//id,~Ac§V(t,x)9k,ldxdr. (2.30)
0 R4

We next integrate by part in the last term and llet- co using similar arguments as
in (2.12). It finally yields

2N N _ |x|2 2N N _ |x|2
| S ieteni(5)an= [ et (1 ) as

R4 Jj=1 R4 j=1
'
N - 1x]?
+ idic;' (t,x) A0 = dxdt. (2.31)
0 R4
Since

ad (B 2 2d g (12N | AP (12
k) k2 k k4 k)
using nonnegativity oil"’ (1.4), (2.21) and (2.5) we deduce that faz (O, T'],

2N 2N
. ) (2d +8)C,D
/ E ]c;y(t,x)dxz / E ]c(])\{j(x)dx—i—TTOHcoHl, (2.32)

{Ix|>/2k} j=1 {lx|>ky /=1

whereCj is a constant such that'| +16”| < Co- Now it is enough to observe that

2N
: D ey Nz 3} (2.33)
j=1

has u-property and consequently (2.29) follows from (2.32) and (2.33). In view of (2.28)
we deduce that each fragmentation term has u-property. Taking into account (2.24) we may
apply Lemma 2.3 to conclude that

{K31(c™): N >3} has u-property (2.34)
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It then follows from (2.25) tha{thz(cN): N > 3} has u-property as well. Now using again

Lemma 2.3 and (2.24) we infer thang(cN): N > 3} enjoys u-property and further
we proceed by induction far> 3 making use of (2.25) in the induction step. It proves
claim (2.27).

Step3. L1-strong compactness of each componer(tﬁf)i>1.

Taking into account (2.26), (2.27) and (2.33) we may apply Theorem 2.2 to each
equation in (2.19). Consequently for eack 1, {c{": N > 3} is a precompact set in
L0, T; LY(R?)). Using the diagonal process we deduce that there is a subsequence of
(c™) (not relabeled) and e Xf such that for each> 1,

N —> ¢ inLY0,T; LY(RY)) and a.e. in0, T) x RY. (2.35)
From (2.35), (2.16), (2.17) and (1.3) we next deduce that for each,

F(cV)y = Fri(e) in L0, T; LYRY)), (2.36)

F(cY) = Fai(c) in L0, T; LYRY)), (2.37)

N 00

Za{?]jcjy — Zai,jcj in Ll(O, T; Ll(Rd)), (2.38)

j=1 j=1

Step4. Weak-compactness it of reaction terms and passing to the limit.

It remains passing to the limit in coagulation terms. To this end we first show that all
nonlinear terms are weakly precompact in the spak@®, 7'; L1(R?)). We begin with the
first equation. In order to use the Dunford—Pettis theorem (see, e.g., [9]) we have to show
firstly that

: givene > 0 there exists > 0 such that/[,; K2, (cV (1, x)) dx dt <e,

(2.39)
providedE is a measurable subset@ 7) x R¢ and|E| < 8,

and secondly tha{U(éYl(cN): N > 3} has u-property. The latter requirement has been just
shown in (2.27) and (2.39) was originally proved in [17]. Note that for the last step one
needs (2.38). Next by induction we show that all coagulation terms are weakly precompact
in L0, T; LY(R%)). Taking now into account almost everywhere convergence of reaction
terms resulting from (2.35) and Vitali’'s theorem we conclude that for a subsequence (not
relabeled) and each> 1,

KMy > K1i(e),  K9i(eV) = Ka(0),
strongly in L1(0, T; LY(R?)). Using also (2.36), (2.37) and (2.35) we may pass to the
limit in each equation thanks to continuous dependence of mild solutions on data. At last

notice that timel" > 0 was taken arbitrary so, the solution may be prolonged far:alD.
It completes the proof. O
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