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We analyze string-theoretic large-field inflation in the regime of spontaneously-broken supergravity with 
conventional moduli stabilization by fluxes and non-perturbative effects. The main ingredient is a shift-
symmetric Kähler potential, supplemented by flux-induced shift symmetry breaking in the superpotential. 
The central technical observation is that all these features are present for D7-brane position moduli 
in Type IIB orientifolds, potentially allowing for a realization of the axion monodromy proposal in a 
string theory compactification. Furthermore, our model is explicit enough to address issues of control 
and moduli stabilization quantitatively. On the one hand, in the large complex structure regime the 
D7-brane position moduli inherit a shift symmetry from their mirror-dual Type IIA Wilson lines. On 
the other hand, the Type IIB flux superpotential generically breaks this shift symmetry and allows, by 
appealing to the large flux discretuum, to tune the relevant coefficients to be small. The shift-symmetric 
direction in D7-brane moduli space can then play the role of the inflaton: While the D7-brane circles a 
certain trajectory on the Calabi–Yau many times, the corresponding F -term energy density grows only 
very slowly, thanks to the above-mentioned tuning of the flux. To be successful our model requires that 
the dilaton, all complex structure moduli and all D7-brane moduli except the inflaton are fixed at leading 
order by fluxes. Then the large-field inflationary trajectory can be realized in a regime where Kähler, 
complex structure and other brane moduli are stabilized in a conventional manner, as we demonstrate 
using the example of the Large Volume Scenario.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The standard theory of cosmological evolution involves a period 
of primordial inflation which, in its simplest realization, is driven 
by the potential energy density of a slowly rolling scalar field, the 
inflaton ϕ . This theory of slow-roll inflation is sensitive to higher-
dimensional operators, thereby probing its UV completion. Conse-
quently, any such inflationary model needs to be implemented in 
a UV-complete theory of quantum gravity, such as string theory.

Models of slow-roll inflation can be classified according to the 
distance the inflaton rolls during inflation and are either of the 
large-field type, �ϕ > Mp , or of the small-field type, �ϕ < Mp . 
While there has been much progress in constructing small-field 
models in string theory (for a review see [1,2]), realizing large-field 
models is notoriously difficult. In field theory, the latter are well 
studied, the prime candidate being chaotic inflation [3]. Crucially, 
in any viable representative of this class of models one needs to 
control all higher-dimensional operators. This is commonly done 
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by imposing a shift symmetry for the inflaton. This symmetry is 
broken, e.g. by a term ∼ m2ϕ2, with m � 1 in units of the reduced 
Planck mass. The shift symmetry is restored in the limit m → 0
and thus the model is technically natural in field theory.

In string theory, however, typical inflaton candidates like D-
brane positions [4,5], Wilson lines [6], and axions generically have 
a field range which is limited to sub-planckian values. The same is 
true for Kähler moduli [7], except where the inflaton is identified 
with a breathing mode of the compact space [8]. Overall, realizing 
large-field models in a UV-complete theory of quantum gravity is 
challenging.

Clearly, there are several proposed ways how one can, despite 
of the limited field range, construct scenarios in string theory 
which are effectively of the large-field type. For example, one may 
consider a large number of axions as in N-flation [9–13] or similar 
proposals [14,15]. However, a recent analysis of an embedding of 
N-flation in Type IIB string theory shows that the number of ax-
ions N has to be as large as 105 [16]. It is questionable if such 
a large number can be attained. A different interesting proposal 
is the use of monodromy to break the periodicity and enlarge the 
field space of an axion [17–20], a mechanism also analyzed in field 
theory [21–24]. These models are plagued by control issues: In the 
original proposal it is a pair of NS5 and anti-NS5 branes which 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. Illustration of the D7-brane position modulus parameter space. Inflation oc-
curs when the D7-brane moves along a one-cycle in the parameter space, which 
need not necessarily be non-trivial in homology.

needs to be embedded in the compact space (see, however, [20]). 
Thus, supersymmetry is broken at the string scale and it is unclear 
whether the description in terms of an effective supersymmetric 
4d action with the anti-branes treated as probes is valid [25].

In this letter we propose a novel way to realize large-field in-
flaton in string theory, using the position modulus of a D7-brane 
as the inflaton. Our model features the appealing mechanisms of a 
shift symmetry and a monodromy. Thus, in spirit it is similar to the 
proposals of [17–20], however, with one major advantage: It can 
be described in terms of an effective supergravity lagrangian, as 
we do not break supersymmetry explicitly. Furthermore, a rather 
explicit discussion of moduli stabilization e.g. in the Large Volume 
Scenario [26] is possible.

The basic ingredients of our proposal of large field inflation 
with D7-branes are the following: First, we recall that the Kähler 
potential for a D7-brane modulus features a shift symmetry in the 
vicinity of the large complex structure point. This structure arises 
as the mirror dual version of the shift symmetry enjoyed by a Wil-
son line on a D6-brane in Type IIA string theory at large volume 
[27–30]. Disk-instantons will break the shift symmetry [31], but 
these effects are exponentially suppressed by the volume of the 
disk on the IIA side or, rather, by a complex structure modulus in 
the Type IIB description. The shift symmetry is crucial to avoid the 
supergravity η-problem [4], a mechanism equally important in the 
small-field cousins [32–34] of the model proposed here. Second, in 
the absence of fluxes the D7-brane modulus parametrizes a Rie-
mann surface which generically has one-cycles, such that the field 
space of the modulus is periodic.1 In fact, all we need is a closed 
trajectory along the shift-symmetric direction in the D7-brane po-
sition moduli space. Fluxes will lead to an appearance of the brane 
modulus in the superpotential, such that the periodicity will be 
broken and a monodromy arises.2 Inflation occurs along the shift-
symmetric direction in the D7 moduli space. The situation is illus-
trated in Fig. 1.

Displacing the D7-brane from its minimum leads to F -terms 
in the effective action which generically destabilize the poten-
tial, i.e. they lead to a runaway direction in the Kähler moduli 
space. Therefore, in order to ensure stability of the system during 
inflation, we have to tune the coefficients of the brane-modulus-
dependent terms in the superpotential to small values. Fluxes are 
also employed to fix the dilaton, all complex structure moduli and 
all other D7-brane moduli at leading order. For our model to be 
successful one needs to ensure that the flux superpotential involv-

1 Immediately after this work appeared the possibility of realizing an inflation 
potential on Riemann surfaces was proposed in [35].

2 Inflation using a monodromy in the field space of a D3-brane was analyzed in 
[36]. However, it is acknowledged in that paper that, since the proposal relies on 
the existence of non-trivial one-cycles in the compact space, much of the recent 
progress regarding moduli stabilization is not applicable in that model.
ing the inflaton can be tuned small without destabilizing these 
moduli. This can be viewed as a tuning of complex structure mod-
uli by a suitable choice of fluxes. We assume that the landscape 
will provide a model with this feature and will not discuss this 
tuning in any detail in this letter. Rather, given the very limited 
understanding of large field inflation in string theory, we think it 
is important to investigate whether such models can be realized in 
principle in a string-derived supergravity framework. As a result of 
working in Type IIB string theory, Kähler moduli stabilization can 
be analyzed very explicitly in our model, e.g. in the Large Volume 
Scenario, and gives non-trivial constraints on the size of the over-
all volume of the compact space and the coefficients of the brane 
moduli in the superpotential.

An additional motivation for studying large-field inflation in 
string theory comes from the recent measurement of B-mode po-
larization [37] by the BICEP2 Collaboration. The measured spec-
trum was fit in this reference to a spectrum from primordial 
gravitational waves, generated during an epoch of inflation. The 
corresponding amplitude of the tensor mode perturbations can 
be quantified in terms of the tensor-to-scalar ratio, which was 
quoted as r = 0.2+0.07

−0.05. Such a large value for r forces the inflaton 
ϕ to traverse a super-planckian field range during inflation [38,
39].3 Though the measurement and its attribution to primordial 
gravitational waves should clearly be confirmed independently, it 
certainly encourages our analysis of embedding a large-field model 
of inflation in string theory.

Related results [44–47] appeared immediately before and after 
this work.

2. Ingredients

The low energy effective description of our model is in terms 
of a supergravity lagrangian which is build from a Kähler and su-
perpotential. Let us discuss these two quantities in more detail for 
our model.

2.1. Shift-symmetric Kähler potential

The Kähler potential for a D7-brane deformation modulus is 
given by K ⊃ − ln(−i(S − S) − kD7(u, u; c, c)) [48,49]. Here, S =
C0 + i/gs is the axio-dilaton and u denotes complex structure mod-
uli. This Kähler potential arises in the weak-coupling limit from the 
F-theory Kähler potential for the fourfold complex structure mod-
uli, given by

K = − ln

(∫
Ω4 ∧ Ω4

)
, (1)

where Ω4 is the holomorphic (4, 0)-form of the fourfold. In the 
weak-coupling limit this becomes [50]

K gs�1 = − log
(
(S − S)πA(u)Q ABπ B(u) + f (u, u; c, c)

) + . . . ,

where πA(u) are the periods of the threefold, i.e. integrals of the 
holomorphic (3, 0)-form over a symplectic basis of three-cycles 
with intersection matrix Q AB . Furthermore, f (u, u; c, c) is some 
function involving brane and complex structure moduli, but not 
the axio-dilaton. The above expression holds up to corrections 
which are suppressed at large Im(S) = 1/gs .

Under mirror symmetry [51], this Kähler potential is identi-
fied with the Kähler-moduli Kähler potential of the mirror fourfold 
which is known, at large volume, to involve the volume moduli 
of the fourfold, but not the corresponding axions. I.e. the Kähler-
moduli Kähler potential is shift-symmetric at large volume. Thus, 

3 See, however, [40–43].
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via mirror symmetry we expect that (1) takes the shift-symmetric 
form

K LCS = − ln

(
κi jkl

4!
(
zi − zi)(z j − z j)(zk − zk)(zl − zl) + . . .

)
,

in the large complex structure limit [52,53], which is indeed ex-
plicitly visible in the expressions derived in [54]. Here, κi jkl is the 
self-intersection matrix of the mirror fourfold divisors, zi are the 
complex structure moduli of the fourfold, and the ellipses denote 
corrections to this shift-symmetric structure.

In the weak coupling limit, one of the zi is identified with 
the axio-dilaton S , others are identified with D7-brane position 
moduli cp , and the rest are complex structure moduli ua of the 
threefold. Writing down the brane moduli dependence explicitly, 
we expect the structure

K LCS
gs�1 = − ln

(
κ

(1)

abc

3! (S − S)
(
ua − ua)(ub − ub)(uc − uc)

+ κ
(2)

abpq

4!
(
ua − ua)(ub − ub)(cp − cp)(

cq − cq) + . . .

)
,

where ellipses can include terms up to quartic order in cp . Iden-
tifying one of the cp with the deformation modulus c of the 
D7-brane with which we would like to realize inflation and in-
tegrating out all other moduli, we conjecture the following general 
structure for the Kähler potential

K = − ln

(
A + iB(c − c) − D

2
(c − c)2 + . . .

)
, (2)

where A, B, D ∈ R. This arises by starting from a generic polyno-
mial of degree four in (cp −cp) and assuming that all brane moduli 
except for one (which we call c) are stabilized at a high scale. 
Then, replacing all the heavy fields by their vacuum values, terms 
up to quartic order in (c − c) appear. In (2) only the constant, the 
linear, and the quadratic term are displayed.4 These three terms 
suffice to stabilize (c − c) in a minimum away from zero, even for 
a brane-independent superpotential, which is all we need in our 
analysis. Though generically present, higher powers in (c − c) will 
not alter our conclusions, but only slightly complicate the analy-
sis. In the following we therefore work with (2), disregarding the 
ellipses. Note that inflation proceeds in a direction in field space 
which is orthogonal to (c − c).

A prominent example, where the shift-symmetric structure of 
the Kähler potential is explicitly visible, is F-theory on K 3 × K 3
[55,56]. In the orientifold limit the model is described by Type 
IIB string theory compactified on K 3 × T 2/Z2 with D7-branes and 
O7-planes wrapping K 3. The parameter space of c is thus T 2/Z2, 
which is depicted in Fig. 2. A linear term ∼ (c − c) is not present 
in this example, but we think that this is a special feature of the 
K 3 manifold.

Assuming that we make all the zi of the fourfold homoge-
neously large in the large complex structure limit, we expect the 
scalings A ∼ Im(z)4, B ∼ Im(z)3, D ∼ Im(z)2. Here we have treated 
the axio-dilaton, the complex structure moduli of the threefold, 
and all brane coordinates except for c on similar grounds. This is, 
of course, a very coarse approximation. As a first estimate, how-
ever, this is certainly a valid assumption.

4 Note that linear terms in (c − c) will typically arise from mixed terms of type 
(cp − cp)(c − c).
Fig. 2. Illustration of the D7-brane position modulus parameter space in the example 
of F-theory on K 3 × K 3, which reduces to Type IIB string theory on K 3 × T 2/Z2 in 
the weak coupling limit.

2.2. Superpotential

The F-theory superpotential is given by

W = NiΠi(z),

where the Ni are flux quantum numbers and Πi(z) is the period 
vector of the fourfold. The latter is schematically given by

Π(z) ∼ (
1, zi, κi jkl z

i z j, κi jkl z
i z j zk, κi jkl z

i z j zkzl)
up to corrections. Thus, again focusing on the dependence on one 
brane modulus c, the superpotential will be a polynomial in c up 
to and including quartic order. Here, we wish to construct a model 
of quadratic inflation which we can accomplish if c only appears 
up to quadratic order in W . This can be achieved in two ways. For 
one, we expect that there are background manifolds, where the 
mirror intersection matrices κi jkl take a form such that terms of 
order c3 and c4 are absent in the period vector. As an example let 
us once more mention the compactification of F-theory on K 3 ×
K 3 where precisely this structure arises. Secondly, even if some 
components of the period vector contains cubic and quartic terms 
in c, it is possible that they do not appear in W . By setting the 
appropriate flux contributions in the flux vector Ni to zero, one 
can in principle enforce that terms cubic and quartic in moduli do 
not enter W . However, it remains to be checked that such a flux 
choice can be made while also requiring that fluxes fix all complex 
structure moduli, the dilaton as well as all brane moduli except c.

To summarize, by either choosing the background geometry or 
fluxes appropriately, we can arrive at

W = W0 + αc + β

2
c2, (3)

where α, β depend on fluxes. As outlined in the introduction, 
we need to tune |α| and |β| to small values in order for the in-
duced F -terms to be small enough not to interfere with moduli 
stabilization during inflation. The merit of our model is that it in-
deed admits a rather explicit discussion of moduli stabilization and 
therefore, non-trivial constraints on α and β are obtained and re-
ported in the subsequent sections.

3. The model

Given the Kähler potential (2), supplemented by the Kähler 
moduli part, i.e.

K = −2 lnV − ln

(
A + iB(c − c) − D

2
(c − c)2

)
,

and the superpotential (3), supplemented by instanton corrections 
on small blow-up cycles
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W = W0 + αc + β

2
c2 + e−2π Ts ,

we can now write down the F -term potential:

V F = eK (
K Tγ T δ DTγ W DTδ W − 3|W |2 + K cc|Dc W |2). (4)

Here, the Tγ are complexified Kähler moduli whose real part mea-
sures the size of a four-cycle of the threefold in units of the string 
length. Furthermore, V is the volume of the threefold. As usual, the 
complex structure moduli, the axio-dilaton and almost all brane 
moduli are assumed to be stabilized by their respective F -terms, 
with the exception of c whose F -terms we included explicitly 
in (4). The reason for doing so is the very weak dependence of 
W on c which, due to the shift symmetry in the Kähler potential, 
leaves Re(c) as a flat direction in a first approximation.

Owing to the fact that the Kähler metric is block-diagonal in the 
Kähler and complex structure moduli, no terms with mixed deriva-
tives in c and Tγ appear in (4). Therefore, in the first two terms 
we can formally substitute W̃0 = W0 + αc + β

2 c2 and the no-scale 
structure leads to a cancellation of the leading-order terms in Tγ . 
Thus, the third term in (4) is dominant and stabilizes Im c with a 
mass mIm c ∼ |W0|/V . It will also give rise to the leading contribu-
tion to the inflaton potential.

Now, Kähler moduli stabilization proceeds as in the plain-
vanilla Large Volume Scenario [26], giving rise to an AdS minimum 
which scales as ∼ −|W̃0|2/V3. This minimum is then uplifted to 
a Minkowski minimum via one of the various proposed uplifting 
mechanisms.

We are now interested in the c-dependence of the resulting 
terms, as inflation occurs along Re(c). It is clear that the terms 
from −|W̃0|2/V3 are subleading in the inverse overall volume 
with respect to the terms from the third term in (4). Therefore, 
the leading order potential for the inflaton Re(c) is contained in 
eK K cc|Dc W |2. We thus find that the dominant potential for (both 
Im(c) and) Re(c) has a minimum at the supersymmetric locus 
Dc W = 0. Including subleading terms, the minimum of the po-
tential for c will not occur at the supersymmetric locus anymore. 
However, as the resulting corrections to both the inflaton poten-
tial as well as to mIm c will be subleading, it is sufficient for our 
purposes to work with the leading order result. Furthermore, we 
find that all terms involving the inflaton Re(c) are proportional to 
the flux-dependent parameters α and β . In order for the inflaton 
potential not to interfere with the volume stabilization we need 
to tune |α| and |β| to small values. This ensures stability in the 
Kähler moduli directions along the whole inflaton trajectory.

One crucial fact for the viability of the Large Volume Scenario 
is the existence of the ‘extended no-scale’ structure [57–59] which 
ensures that loop corrections are subleading with respect to the 
α′ 3-corrections [60] used to stabilize the overall volume. In the 
above references it is generally assumed that complex structure 
moduli, the axio-dilaton and all brane moduli are integrated out 
at a higher scale. More generally, the extended no-scale structure 
persists even if the low energy theory includes a complex scalar 
which does not appear in the superpotential and which has a 
shift-symmetric component in the Kähler potential, such that this 
component remains light. This is demonstrated explicitly in [34]. 
Clearly, in our setting this structure will be broken by the ex-
plicit dependence of the superpotential on c. However, since the 
extended no-scale structure is restored in the limit of vanishing α
and β , the breaking will be small in the limit of small |α| and |β|
and the overall picture remains consistent.
3.1. Minimizing the potential

Let us analyze the stabilization of c in more detail. We will 
work in the limit of small |α| and |β| throughout. From Dc W = 0
we obtain the equation

α + βc

W0 + αc + β
2 c2

= iB − D(c − c)

A + iB(c − c) − D
2 (c − c)2

. (5)

In the following we will write c = x + iy with x, y ∈ R. At 0th order 
in α and β , the left-hand-side of this equation vanishes and y is 
stabilized at

y0 = B

2D
. (6)

Furthermore, we observe that the RHS of (5) is purely imaginary. 
Requiring the real part of the LHS to vanish leads, in 1st order in 
α and β , to

x0 = Im(βW 0)y0 − Re(αW 0)

Re(βW 0)
.

Thus, recalling the scaling of A, B , and D with Im(z) we find 
y0 ∼ x0 ∼ Im(z). These expressions will be corrected at higher or-
der in α and β . However, since these coefficients have to be tuned 
to small values anyhow, for our purposes the above analysis is suf-
ficient.

3.2. Computing the mass

We now compute the mass for the inflaton. As motivated above, 
the mass term will arise from |Dc W |2. Furthermore, since Dc W =
0 in the minimum, it suffices to expand this term in leading order 
in the variation of the real part of c, i.e. in δx. Furthermore, since 
stabilization enforces Kc = Wc/W (cf. (5)) and the latter scales lin-
early with α and β , displacing x from its minimum simply gives

δDc W = δ(Kc W + Wc) 
 δWc = βδx

in linear order in α and β , leading to

eK K cc|β|2δx2 + higher order in α,β, δx.

Now, δx is related to the inflaton via canonical normalization. The 
kinetic term for δx is contained in Kcc|∂c|2. Recalling the scaling 
Kcc ∼ Im(z)−2 and eK ∼ Im(z)−4, we find

m2
ϕ ∼ 1

V2

1

Im(z)4
Im(z)2 Im(z)2|β|2 = |β|2

V2
,

where the two factors of Im(z)2 come from canonically normaliz-
ing the inflaton and from the K cc factor in the F -term potential, 
respectively. Interestingly, Im(z) does not appear in m2

ϕ .

4. Phenomenology

The phenomenology of quadratic inflation is, of course, well 
known [3]. Let us briefly recall the basic statements. For a potential 
V = m2ϕ2 the slow-roll parameters are determined as

ε = 1

2

(
V ′

V

)2

= 2

ϕ2
,

η = V ′′

V
= 2

ϕ2
.

The spectral index can be expressed in terms of these two quanti-
ties as

ns − 1 = −6ε + 2η = − 8
2
.

ϕ
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Since this quantity is measured to be 
 −0.04 [61], the field dis-
placement at the beginning of the last ∼ 60 e-folds of inflation is 
determined to be ϕ2 
 200. The tensor-to-scalar ratio is thus fixed 
as

r = 16ε 
 0.16.

On the other hand, the measured value for the amplitude of cur-
vature perturbations determines [61]√

V

2ε
= 5.1 · 10−4,

which leads to m 
 0.5 · 10−5.
This can be translated into requirements on our stringy model 

of large field inflation. In particular,

mϕ = |β|
V

!= 0.5 · 10−5. (7)

This is, however, not the only constraint which mϕ has to satisfy. 
As mentioned before, in order not to interfere with Kähler moduli 
stabilization we require

m2
ϕϕ2 
 0.5 · 10−8 � |W0|2

V3
(8)

along the whole inflationary trajectory.
To give a few specific numbers, let us choose V = 103. This de-

termines, via (7), |β| = 0.5 · 10−2. Then, (8) is satisfied for |W0| =
10. But this is by no means the only possible realization: Another 
choice is V = 102, leading to |β| = 0.5 · 10−3 and |W0| = 1. Admit-
tedly, for these parameter values our model is close to the limits 
of control. Thus a more detailed analysis of the relevant scales and 
masses involving all numerical factors would be desirable, but is 
beyond the scope of this letter.

For example, one could worry whether α′ corrections become 
important for the values of V above. The size of these corrections 
can be determined from the ratio between the volume and its 
leading correction as in K = −2 ln(V + ξ/2). As it turns out, mak-
ing this ratio substantially larger than unity is not a very strong 
constraint on the volume. Admittedly, we did not check higher or-
der corrections.

4.1. Stability during inflation

During inflation, the real part of c traverses a large distance in 
field space. We should thus make sure that the stabilization of the 
imaginary part is not significantly affected by this field displace-
ment. Recall that the kinetic term for x = Re(c) reads

Kcc(∂δx)2 ∼ (∂δx)2

Im(z)2
.

At the beginning of the last N 
 60 e-folds of inflation, the canon-
ically normalized inflaton ϕ takes the value ϕN 
 14, giving

δxN ∼ 14 · Im(z).

Now consider the stabilization equation (5). One can easily con-
vince oneself that, writing y = y0 + δy, the consistency require-
ment |δy| � y0 is satisfied as long as

14|β| Im(z)2

|W0| � 1.

Choosing β = 0.5 · 10−3 and |W0| = 1, Im(z) is constrained as

Im(z) < 12. (9)
This potentially presents a conflict with the large complex struc-
ture limit. However, since the suppression of the correction terms 
is of exponential nature, even in view of (9) one can choose z large 
enough in order to suppress these corrections.

4.2. Cubic and quartic terms

Beyond the mass term the inflaton potential will also exhibit 
cubic and quartic terms in δx. Expanding the potential (4) in δx
about the minimum one finds

V ∼ |β|2δx2

V2 Im(z)2

{
1 +O

(
α3

βW 2
0

,
α2c0

W 2
0

,
αβc2

0

W 2
0

,
β2c3

0

W 2
0

)
δx

+O
(

α2

W 2
0

,
αβc0

W 2
0

,
β2c2

0

W 2
0

)
δx2

}
. (10)

The above is derived by first expanding (4) in both δx and δy about 
c0 = x0 + iy0. Further we solve Dc W = 0 for y = y0 + y1 to first 
order in α, β . Eq. (10) is finally obtained by substituting δy = y1.

Here we examine the relevance of the cubic and quartic terms 
at the onset of the last 60 e-folds of inflation at δxN ∼ 14 · Im(z). As 
|c0| ∼ Im(z) we find that the parametrically most important term 
is

V ⊃ |β|2
V2 Im(z)2

O
(

β2c2
0

W 2
0

)
δx4. (11)

Terms involving α are not dangerous as we can always tune α
independently of the phenomenological discussion above. For |β| =
0.5 ·10−3 and |W0| = 1 we find that, if we set Im(z) ∼ 10, the term 
(11) becomes comparable to the mass term at the onset of the last 
60 e-folds:

|β|2|c0|2
|W0|2 δx2

N ∼ 0.25 · 10−6 · 102 · 200 · 102 ∼ 1.

For larger δx we then transition to a regime where the potential 
is dominated by the quartic term. However, such a large Im(z) is 
close to the upper bound (9). For Im(z) < 10, the quartic term is 
still subleading compared to the mass term at δxN . In this case the 
quartic term in (10) can be made comparable again by choosing an 
appropriate value for α. Such corrections to the inflaton potential 
have been discussed recently in [62].

4.3. Corrections

So far we have completely neglected the mirror-dual version of 
the Type IIA worldsheet instanton corrections to the Kähler po-
tential. These are expected to give oscillatory contributions at the 
order

∼ e−2π y0
|W0|2
V2

to the F -term potential. Thus, in view of (6), they are exponentially 
suppressed in the limit of large complex structure. Furthermore, 
loop corrections due to the exchange of Kaluza–Klein modes be-
tween branes [63,64,58,59] will also lead to periodic corrections, 
roughly at the order

∼ {α,β} · |W0|2
V8/3

.

The induced corrections can be parametrized at leading order as

V = m2ϕ2 + γ cos

(
ϕ + δ

)
. (12)
f
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The phenomenology of such a periodic modulation of a mono-
mial inflaton potential, in particular their effect on the power spec-
trum and the bispectrum, was investigated for axion monodromy 
inflation (i.e. with a linear rather than a quadratic potential) in 
[65] and more generally in [66,22]. Since the axion decay constant 
is small, roughly bounded by f � 1/4π (see [67] and references 
therein), during the initial observable e-folds the inflaton typically 
crosses more than one period of the oscillatory piece in (12). Thus, 
if present and sufficiently large, the oscillatory features leave their 
imprint in the observable CMB modes. An explicit computation of 
the oscillatory terms in our model and a detailed analysis of the 
observational implications along the lines of [22] would be in-
teresting, but is beyond the scope of this letter. In any case, the 
periodic modulations become small in the limit of large Im(z) and 
small |α| and |β|.

5. Conclusions

In this paper, we have outlined a scenario which has the po-
tential to realize large-field inflation in Type IIB string theory. Its 
description in 4d supergravity in principle allows moduli stabiliza-
tion as well as issues of control to be addressed quantitatively. 
More specifically, our inflaton is a D7-brane position modulus with 
shift-symmetric Kähler potential. This shift symmetry is inherited 
from the shift symmetry of a D6-brane Wilson line in the mirror-
dual Type IIA model. Furthermore, since this latter shift symmetry 
requires large volume, we need to be at large complex structure in 
our Type IIB scenario. Shift-symmetry-breaking corrections to the 
Kähler potential are exponentially suppressed in the large periods 
of the complex-structure and D7-brane moduli space. Hence, they 
are relatively easy to control.

The inflaton potential is quadratic at leading order. It is induced 
by the flux-superpotential which also depends on D7-brane posi-
tions. The coefficients of the relevant terms in the superpotential 
depend on complex structure moduli and other D7-brane posi-
tions. They can hence be tuned to be small, given a sufficiently 
large flux discretuum. As a result, the coefficient of the quadratic 
inflaton potential (i.e. the inflaton mass) can be made small.

Clearly, going to a large VEV of the D7-brane position is impos-
sible within the standard D7-brane moduli space, which is rather 
small. However, the natural periodicity of this space is broken 
by the flux mentioned above, such that a non-trivial monodromy 
arises. Thus, large-field inflation arises because a D7-brane circles 
a closed trajectory in its moduli space many times, thereby slowly 
growing a significant contribution to the F -term potential.

Our parametric analysis demonstrates that the above-mentioned 
flux-tuning allows us to prevent this contribution from destabiliz-
ing other moduli. We analyzed a concrete example based on the 
Large Volume Scenario, where the most dangerous destabilization 
direction is that of the overall volume. However, a tuning of the 
coefficients to about 10−3 of their natural value, combined with 
an overall superpotential W0 ∼ 1 and a volume V ∼ 102, allows us 
to escape destabilization.

Finally, we have also analyzed naively sub-leading (in the fine-
tuned small coefficients) effects which correct the quadratic form 
of the potential. Very interestingly, it turns out that some of these 
effects can become considerable in the region of inflation relevant 
for the presently observed CMB perturbations.

Many open questions had to be left for future work. They in-
clude an explicit demonstration of the flux-based tuning, a more 
detailed phenomenology of the inflationary potential, the combi-
nation of our D7-brane inflation scenario with other Kähler moduli 
stabilization mechanisms, and the discussion of corrections associ-
ated with the uplifting contribution.
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