
INFORMATION AND COMPUTATION 93, 241-262 (1991)

Completeness in Approximation Classes

PIERLUIGI CRESCENZI *

Dipartimento di Matematica Pura ed Applicata,
Universitri degli Studi dell’Aquila, Coppito. L’Aquila, Ita1.v

AND

ALESSANDRO PANCONESI *

Department of Computer Science,
Cornell University, Ithaca, New York 14850

We introduce a formal framework for studying approximation properties of NP
optimization (NPO) problems. The classes of approximable problems we consider
are those appearing in the literature, namely the class of approximable problems
within a constant E (APX), and the class of problems having a polynomial time
approximation scheme (PTAS). We define natural approximation preserving reduc-
tions and obtain completeness results in NPO, APX, and PTAS. A complete
problem in a class cannot have stronger approximation properties unless P = NP.
We also show that the degree structure of NPO allows intermediate degrees, that
is, if P # NP, there are problems which are neither complete nor belong to a lower
class. c 1991 Academic Press, Inc.

1. INTRODUCTION

The widespread belief that NP-complete problems cannot be solved by
polynomial-time algorithms made researchers look for strategies other than
exact resolution in order to deal with these problems. Since many of the
most important NP-complete problems are the recognition versions of
optimization problems, it is natural to ask the following question: “Can we
devise polynomial time algorithms which always find solutions close to the
optimum?’

Several results are known on the approximability or nonapproximability
of the so-called NP optimization problems (optimization problems whose
recognition version is in NP) when the quality of the approximation is
measured by the relative error. In particular four classes have been
identified (Garey and Johnson, 1979; Papadimitriou and Steiglitz, 1982):

*This work was partly done when both authors were at Dipartimento di Informatica e
Sistemistica, Via Buonarroti 12, 00185 Roma, Italy.

241
0890-5401/91 $3.00

Copyright IT I 1991 by Academic Press. Inc.
All rights of reproduction m any form reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82553455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

242 CRESCENZI AND PANCONESI

(i) Problems which are not approximable in polynomial time unless
P=NP;

(ii) APX: problems which are approximable within some fixed
relative error E > 0;

(iii) PTAS: problems which can be approximated within any E by
algorithms having as input an instance x and E. Such algorithms are called
Polynomial-Time Approximation Schemes and their complexity must be
polynomial in 1x1 for each fixed E.

(iv) FPTAS: problems which can be approximated by Polynomial-
Time Approximation Schemes whose running time is polynomial in both
the size of the input and I/E. These algorithms are called Fully Polynomial-
Time Approximation Schemes.

In spite of some remarkable attempts the reasons that a problem is
approximable or nonapprximable are still not clear (Ausiello, d’Atri, and
Protasi, 1980; Ausiello, Marchetti Spaccamela, and Protasi, 1980; Bruschi,
Joseph, and Young, 1989; Krentel, 1988; Korte and Schrader, 1981;
Orponen and Mannila, 1987; Paz and Moran, 1981). In this paper we are
interested in the problem of determining lower bounds concerning the
approximability of NPO problems; that is, we would like to develop
techniques that would allow us to prove statements such as “If P # NP
then problem F is not in PTAS” or “If P # NP then problem F is not in
APX” and so on. Generally, results of this kind have been obtained via
polynomial reductions mapping an NP-complete problem into the given
optimization problem and showing that the approximability of the latter
would imply the former to be in P. For the class FPTAS, Garey and
Johnson (1979) have developed an alternative approach based on the
notion of strong NP-completeness; an optimization problem whose recogni-
tion version is strong NP-complete is not in FPTAS. Roughly speaking, a
problem is strong NP-complete if its NP-completeness does not depend on
the presence of large weights in the input instance. Here, “large” means
nonpolynomial in the length of the instance. In order to derive similar
criteria for the other classes it seems natural to try to define suitable
concepts of completeness. This approach has been taken by several authors
(Ausiello, d’Atri, and Protasi, 1980; Krentel, 1988; Orponen and Mannila,
1987; Paz and Moran, 1981). In (Krentel, 1988), NPO problems are
treated as functions of the kind f: C* + N and a complextity measure is
introduced along with a reducibility that preserves this measure. The com-
plexity of a function f is given by the number of queries necessary for a
PSAT machine to compute it. The results are elegant but are not related to
approximation. The reason is that MIN TSP and MAX KNAPSACK both
turn out to be complete for NPO, and while the first is nonapproximable

COMPLETENESS IN APPROXIMATION CLASSES 243

unless P = NP, the second enjoys a fully polynomial time approximation
scheme. In general, all the classes of complete problems introduced in
(Krentel, 1988) have both approximable and nonapproximable problems.

In (Orponen and Manilla, 1987), several natural problems are shown
to be NPO complete with respect to some kind of approximation
preserving reduction. In (Papadimitriou and Yannakakis, 1988), a class of
approximable problems is introduced and completeness results are proven.

In the present paper we continue along the same line of research. We
introduce natural approximation preserving reductions and show the
existence of complete problems both in the clases APX and in the class
PTAS.

Perhaps surprisingly, in spite of the fact that APX 2 PTAS and the
reductions we use are very natural, reducibility in PTAS is not a refinement
of that in APX.

Besides, one of the most relevant results in the paper shows that in all
classes NPO, APX and PTAS there exist intermediate problems which are
neither complete nor in the lower class. This answers a question posed in
(Orponen and Mannila, 1987) on the existence of incomplete problems in
the approximation classes. The significance of this result can be explained
in the following way; usually a problem F in a class, say NPO, is proved
not to be in a lower class, say APX, by proving a statement such as “if
FE APX then P = NP”. The existence of incomplete problems shows that a
proof of nonapproximability does not imply completeness in NPO, and
similarly for the other classes.

Thus our notion of completeness captures a deeper level of structure
than the notion of NP-completeness. In fact, an NP-complete problem,
when considered in its optimization version, can be approximable or not,
complete or incomplete (in our sense).

The paper is organized as follows. In Section 2 we formally define the
classes of approximable and nonapproximable optimization problems and
we introduce special kinds of reduction and, hence, of completeness. In Sec-
tions 3 and 4 we prove completeness results in APX and PTAS; as a by-
product we are able to show that reducibility in PTAS is not a refinement
of reducibility in APX. In Section 5 we show the existence of incomplete
problems with the well known delayed diagonalization technique.

2. A FORMAL FRAMEWORK FOR OPTIMIZATION PROBLEMS

Every known NPO problem F can be characterized by the following
objects:

l A set ZFs 27 of input instances; IF is recognizable in polynomial
time.

244 CRESCENZI AND PANCONESI

l A space DF(x) of feasible solutions on input x. DF(x) is defined by
means of a polynomial predicate rcJx, y) and a polynomial qF(n):

D&l = {Y I x E IF * ~A+~, Y) = true A I yl d qA/x/)).

We assume, without loss of generality, that every input instance has some
feasible solution; that is, for all x E I,, DF(.x) # 0.

l An objective function fi;: I,x DF(x) -+ Q+ u (0); &.(x, y) is com-
putable in polynomial time.

The optimum on input x (max or min) of the optimization problem F is

W,(x) = @U-Ax, Y) I I? E DA-x)).

As an example to explain the previous definition, consider MAX
CLIQUE: the set of input instances ZcLo is the set of all (strings encoding)
undirected graphs G = (V, E). The polynomial predicate rccLo (G, G’) is “Is
G a graph and G’ a clique of G?“. Thus D,,,(G) is the set of all cliques
contained in G. Finally, the o.f. is fcLo (G, G’) = 11 V’ll.

Without any loss of generality we can assume that the predicate rcF
incorporates the test “x E IF?” so we can define

DEFINITION 1. An NPO-problem F is a triple F= (qF, 7cF, fF) where: (i)
qF(n) is a polynomial; (ii) rrF(-x, v) is a polynomial-time decidable
predicate; (iii) the set {x 1 there is a y such that x,(x, y)} is in P; (iv)
fF: IF x DF(x) + Q + u (0) is a polynomial-time computable function.

Definition 1 allows us to associate to any NPO problem F a nondeter-
ministic Turing machine (NTM) N, defined as follows:

guess YE (0, 1}4”‘“”
if nF(x, y) = FALSE then abort

else output fF(x, y)

The above machine has the property that, for every x, y E DF(x) iff there
is a computation path with output fF(x, y). This characterization will turn
out to be useful for proving completeness. Our characterization of NPO in
terms of NDTM’s is different from that of (Krentel, 1988). There, NPO
problems are considered to be functions of the kind f: C* + N; a function
f is in NPO if there exists a NDTM Nf such that, for all x,

f(x) = max{ y I y is the output of a computation path of N/ on input x).

In this characterization there is no clear notion of the set DF(x) of
feasible solutions and of the objective function fp.

COMPLETENESS IN APPROXIMATION CLASSES 245

Going back to our example, the NDTM for MAX CLIQUE is the
following:

guess a subgraph G’ = (V’, E’) of G
if G’ ,is not a clique then abort

else output 11 V’I(

In the sequel we consider only maximization problems. The same results
hold in the case of minimization problems, provided we do minor modihca-
tions to our definitions and proofs.

In order to define classes of approximable NPO problems we need the
notion of relative error; the following is a widely used definition restated by
means of our notation (Johnson, 1974; Garey and Johnson, 1979;
Papadimitriou and Steiglitz, 1982).

DEFINITION 2. Let F be an NPO problem. Given XEZ,, for any
y~D,(x) the error of y with respect to F is

if opt,(x) = 0

opt,(x) -fF(x, y)

oPt&)
otherwise.

This definitions is suited for the maximization case. It should be modified
for the minimization problems.

We can now define classes of approximable problems. With (0, l)e we
indicate the set of rationals in (0, 1).

DEFINITION 3. An NPO problem F is in APX if there exist an E E (0, 1)o
and a polynomial time DTM T such that, for any x E I,, (i) T(x) E DF(x)
and (ii) b(F(x), T(x)) 6 E.

DEFINITION 4. T is a Polynomial-Time Approximation Scheme (ptas) for
F if, for every input (x, E) such that XEZ~, (i) T(x, E) ED,(X); (ii)
b(F(x), T(x, E)) Q E; (iii) T’s complexity is h,(x, E), where h, is polynomial
in 1x1 and arbitrary in l/s.

The definition of h, allows to have complexities such as 1x1 I” or kllE(x(,
which arise in practice (see for example (Hochbaum and Shmoys, 1987;
Papadimitriou and Steiglitz, 1988).

DEFINITION 5. An NPO problem F is in PTAS if there exists a ptas TF
for it.

246 CRESCENZIAND PANCONESI

DEFINITION 6. An NPO problem F is in FPTAS if there exists a ptas
TF for it whose complexity is h,(x, E) = p(x, l/s) where p is a polynomial
in both 1x1 and l/e.

Clearly the following inclusions hold: NPO 2 APX 3 PTAS 2 FPTAS; it
is also well known that these inclusions are strict given the hypothesis
P#NP.

In order to introduce the notion of completeness for our classes, we
now define three kinds of reduction between problems. All of them are
refinements of the following

DEFINITION 7. Given F, GE NPO a reduction from F to G is a triple
(fly f2, c), where

- t, : IF + ZG is polynomially computable;
- rZ(x, y) is a polynomially computable function such that if

y~D~(f,(x)) then t,(x, Y)EDAx);

- c: (0, l)Q’(O, 1)Q.

Roughly speaking, if we want to map F into G we use t, to map instan-
ces of F into instances of G, and t, to map back approximated solutions
of G into approximated solutions of F. The role of c is that of preserving
the quality of the approximation.

The first reduction, called A-reduction, is needed to introduce complete-
ness in NPO.

DEFINITION 8. Let F, G be two NPO problems; F is said to be
A-reducible to G, in symbols F< A G, if there exists a reduction from F to
G such that, for any y E DG(tl (x)):

OG(f, (x)), y) < 8 *W’(x), ~2 (x, Y)) G C(E).

It is easy to show that the previous definition satisfies the following fact.

PROPOSITION 1. if F is A-reducible to G and GE APX, then FE APX.

The above definition allows us to define the notion of NPO-complete-
ness.

DEFINITION 9. A problem GE NPO is NPO-complete if, for any
FENPO, F<, G.

Analogously, we define reductions for the classes APX and PTAS. The
only difference between the reduction in NPO and that in APX concerns
the role of the mapping c:

COMPLETENESS IN APPROXIMATION CLASSES 247

DEFINITION 10. Let F, G be two NPO problems; F is said to be
P-reducible to G, in symbols F6 p G, if there exists a reduction from F
to G such that, for any y E DG(fl (x)),

b(G(f, (xl), Y) G 4~) -W’(x), f,(x, Y)) < 8.

This definition is more general than that used in (Papadimitriou and
Yannakis, 1980), but it serves the same purpose; namely, it preserves
membership in PTAS.

PROPOSITION 2. If F Gp G and G E PTAS then FE PTAS.

DEFINITION 11. A problem GE APX is APX-complete if, for any
FEAPX, FGpG.

In (Orponen and Mannila, 1987), reductions equivalent to GA and < p
are defined but completeness with respect to the latter is not proved.

To define completeness in PTAS we need to modify the function c
substantially

DEFINITION 12. Let F, G be two NPO problems; F is said to be
F-reducible to G, in symbols FdF G, if there exist three functions t, , t,, c
such that

(i) t,, t2 are as in Definition 7,

(ii) c: (0, l)o x I,+ (0, l)o

(iii) for any y~D~(f~(x)) if &(G(t,(x), y)<c(c,x) then rb(F(x),
t*(x, Y))GE,

(iv) the time complexity of c is p(l/e, 1x1), where p is a polynomial,
and

(v) the value of c is l/q(l/&, Ix\), where q is a polynomial.

DEFINITION 14. A problem GE PTAS is PTAS-complete if, for any
FE PTAS, F<, G.

The definition above satisfy the following proposition.

PROPOSITION 3. Zf F<, G and G E FPTAS then FE FPTAS.

The following can also be easily proved.

PROPOSITION 4. The defined reductions are reflexive and transitive.

The reductions we defined are quite natural, nevertheless they are related
in a strange way. As APX I> PTAS it would seem reasonable to assert

248 CRESCENZI AND PANCONESI

“F,<, G implies F<, G”; in other words, the F-reduction should be
definable as a P-reduction with some additional constraint. But this is not
the case; in Section 4 we will show that, surprisingly, any APX problem is
F-reducible to a PTAS-complete problem.

3. APX COMPLETENESS

The aim of this section is to show the APX-completeness of the following
ptoblem, Bounded SAT (BSAT):

Bounded SAT (BSAT).

Instance. A boolean formula cp with variables x,, x, of weights
wi, w, and a separate weight W. The weights must satisfy

w< i Wi<2W.
i=l

Problem. Maximize the following function, defined on the assignments
of cp:

W if cp(7(x I), -., 7(x,,)) = FALSE

i w,7(x,) otherwise.
i=l

Observe that BSAT can be approximated trivially with error 4 (the
assignment xi = 1, 1 < i Q n, has value either W or C;= i wi), and that
approximating it with lower error is NP-hard. The unbounded version of
BSAT, Max Weighted VAR, has been proven NPO-complete with respect
to approximation preserving reductions by (Orponen and Manilla, 1987;
Paz and Moran, 1981).

In order to understand the result concerning BSAT, we first consider the
case of NPO-completeness. For a class that has a machine representation,
a common way of showing completeness is to define a universal machine
for the class. This method also works for NPO. If we consider tuples such
as X= (x, N,, Ok), where N,= (qF, II~, fF), we can define a “universal”
problem U,, , where nU(X, y) is “simulate z~(x, v) for k steps; if k is too
little, reject,” and fU(X, y) is “simulate fF(x, y) for k steps; if k is too little,
output 0.” Clearly, if k is big enough to simulate nondeterministically every
branch of N, we have that U, is exactly the same as F. As a consequence,
if we define t, (x) = (x, NF, Ok), k = pF([xl), where pF is N,‘s polynomial
time bound, and t, as the identity function we can easily show that
&(UN(t, (x)), y) = d(F(x), t, (y)); NPO-completeness follows.

COMPLETENESS IN APPROXIMATION CLASSES 249

However, much more can be proved; by modifying Cook’s proof of the
NP-completeness of SAT slightly, it is possible to prove NPO-completeness
for Max Weighted Var (Krentel, 1988; Paz and Moran, 1981). By
modifying other NP-completeness proofs, natural problems can be proved
NPO-complete. For example, the following theorem is from Orponen and
Mannila’ (1987).

THEOREM 1. TSP and 01-Znteger Programming are NPO-complete.

In APX the situation is considerably different because we do not have a
machine model to simulate. How can we enumerate the class? FE APX if
there are a NDTM for it and a polynomial time T approximating F. The
right idea seems be to to consider tuples such as (x, E, T, N,, Ok), where T
is an s-approximating algorithm for N,. In doing so we have to face two
kinds of problems: (i) we cannot know in advance whether T approximates
N,; (ii) since a problem in APX can be approximated by any E E (0, 1) we
have to “map” all the E’S into one fixed aO.

We start by defining our “universal” problem U,,, by means of a non-
determinsitic algorithm; from its definition it will be clear that U, is a
NPO problem.

The inputs for the algorithm are of the form X= (x, E, T, N,, Ok), where

- T is a polynomial-time deterministic TM,

- N, is a NPO problem, that is, a triple N,= (qF, zF, fF),

- Ok is a padding of k O’s, E is a rational in (0, 1): and x is an input
for T and N,.

On input X= (x, E, T, N,, Ok) the machine for U, performs the following
nondeterministic algorithm. The algorithm is divided in two parts: the first,
the Trunk, is deterministic while the second, the Branches, is nondeter-
ministic.

DEFINITION OF U,.

Trunk. For k steps do the following: if 7cF(x, T(x)) =TRUE then set
t =fF(x, T(x)). If k is too small abort computation (X is not a valid input
instance).

Branches. Simulate nondeterministicalfy k steps of N,. If k is too small
output the value A(X) + t; otherwise output A(X) + min{ t/(1 -E),
fF(x, y)}. Note that in the latter case y~D,(x). The value A(X) is a non-
negative, polynomially computable function whose value will be specified
later.

Note that if we perform the Trunk, U, outputs at least the value
A(X) + t; moreover opt,,(X), U,‘s optimum value, is bounded in terms of

250 CRESCENZI AND PANCONESI

t. In the next lemma we show how A(X) and t are used to show APX
membership of U,.

LEMMA 1. U, is in APX.

Proof: In this lemma we specify the value of A(X), which appeared in
the above definition of U,,,. We want to show that the following is a
$-approximated algorithm for U, :

if k is big enough to perform the Trunk, output T(x).

What we have to show is that c?(U, (X), T(x)) < 4.
Let m(X) = A(X) + t and M(X) = A(X) + t/(1 -a). By definition of U,

we have m(x) d opt UA (X) < M(X) and hence

In order to define A(X) we distinguish two cases:

(i) [.s%f]. We set A(X)=O, we have &‘(U,(X), T(x)),<&<&

(ii) [E> $1. In this case A(X) is “responsible” for the ratio
(M(X) - m(JY))/M(X) being less than or equal to i. We define A(X) in such
a way that

WX) -WY = t E 1

mm ‘4(X)(1 - E) + t = 2’

that is,

2&- 1
A(X) = t-i-y.

Thus A(X) is polynomially computable in 1x1 and we know it is always
the case that d(U, (A’), T(x)) < i. 1

LEMMA 2. U, is APX-complete.

Proof: Given any FE APX there must be a pair T, 6 such that T
b-approximates F. Let pT, pF be the polynomial bounds of T and N,. We
have to exhibit a P-reduction F Gp U, . Given x define k = max { pF(IX/),
PT(ixi ,>, and

t,(x) = (x, 6, T, N,, Ok) 2’ X.

COMPLETENESS IN APPROXIMATION CLASSES 251

The size of k is big enough to simulate N,, hence D”,(X) = DF(x); as
a consequence we can define tz to be the identity t,(x, y) = y.

By our choice of k and since T b-approximates F, we have
optU,(X),<A(X)+opt,(x) and hence

&-(UA Pa7 Y) =
OPtAx) --f&T Y)

A(X) + OPtAX) .

From the definition of P-reduction we have to find a function C(E) that
for all E’S satisfies

b(U, (X), y) < 4~) *W’(x), Y) < 6.

Suppose then that

We want to define C(E) in order to satisfy the above implication.
From the definition of A(X) we consider two cases. If A(X)=0 it is

enough to set C(E) = E; otherwise (we simplify the last inequality)

WTx), Y)Gc(E) (s+ 1)

= C(E) (
t 26-l

p-+1
opt,(x) 1 - 6 >

6
<C(E) - 1-S’

Then, in order to have b(F(x), y) <E we set

1-s
C(E) = - &

6 .

Since (1 - 6)/d is a constant of the reduction process the above is a valid
P-reduction. #

We can now state

THEOREM 2. BSAT is APX-complete.

ProoJ We have already observed that BSAT is in APX. We reduce U,
to BSAT via a P-reduction R = (t, , tZ, c).

252 CRESCENZI AND PANCONESI

Let X= (6, X, T, N, Ok) be the given instance of U,. Recall that, by
definition of U,, m(X)=A(X)+tdopt.,~(X)~A(X)+t/(l--)=M(X),
and that, by definition of A(X), M(X) < 2m(X).

We know that, for all feasible solutions y E D,, (X), fU,, (X, y) < M(X).
This implies that to output any value fu, (X, y) we need at most p + 1 tape
cells vO, up, where p = Llog M(X) J.

By Cook’s construction, given X and the NDTM for U,, we can
construct in polynomial time a boolean formula dx such that

where zp is an assignment to the set of variables y’ and u’= (I$,, v;}.
From the construction, it also follows that it is possible to recover y from
ty in polynomial time.

We define the boolean formula of the BSAT instance to be cp = z A dx,
where z is a new variable. The only nonzero weights are ~(0:) = wi = 2’ and
w(z) = 2M(X). Finally, we set the value W to be equal to 2M(X). This ends
the construction of tl(X). Note that we have a (one-to-one and onto)
correspondence between feasible solutions y of U, of cost u and satisfying
assignments t, for 40 of cost WS u. What we constructed is a valid BSAT
instance, since

w< w+ f Wj< W+2kqX)=2W.
i=O

We define

tz(X 7.“) =
T/t (Xl if cp(z,(z, y’, 0’)) = FALSE

Y otherwise

where TA is the $-approximated algorithm for U,, and where y is the
feasible solution of U, computed from t,. Finally, we define, for any E < 1,
C(E) = E/5.

To complete the proof we have to show that, for any E < 1 and for any
assignment z of cp,

If cp(z) = FALSE then b(BSAT((p), 7) 2 $ > C(E), and hence the implica-
tion is trivially satisfied. Otherwise, we have that fBSAT(~, 7.“) =
W+fuAW, Y)= W+fu,(X, t2(X, 7,)) and hence

~(BSA’UP), 7.“) = oPtu,(X)-SU”(X, t*(X 7’))sC(E)

w + opt “” (X)
9

COMPLETENESS IN APPROXIMATION CLASSES 253

which implies

4. PTAS COMPLETENESS

According to the same line of the preceding section we will show that the
following problem, Linear BSAT (LBSAT), is PTAS-complete:

Linear BSAT

Instance. A
Wl 3 “., w, and a

(LBSAT). \
boolean formula cp with variables x,, x, of weights
separate weight W. The weights must satisfy

Problem. Maximize the following function, defined on the assignments
of $9:

W if 47(x1), 7(x,)) = FALSE

i wi7(xi) otherwise.
i= 1

We can modify the definition of U, to get a complete problem for PTAS;
let us call it U,. Up is defined in the same way as U, except that in the
Trunk, on input X= (x, 6, T, NF, Ok), T(x, 6) is simulated instead of T(x).
In order to show membership in PTAS for U, we have to modify the
function A(X); this is done in the next lemma.

LEMMA 3. U, is in PTAS.

ProoJ We have to show that U, has a polynomial-time approximation
scheme, that is, an algorithm T that given any E is able to &-approximate
Up in time h,(X, E), where h, is polynomial in 1x1 and arbitrary in l/e. The
way to obtain this is to define A(X) in such a way that if we want to

M3/93.‘2-3

254 CRESCENZIAND PANCONESI

approximate Up with an error smaller than l/IX/ then l/& is so large as to
allow a deterministic simulation of the NDTM for U, in polynomial time.

As in Lemma 1, let M(X) = A(X) + t/(1 - 6) and m(X) = A(X) + t.

Polynomial Time Approximation Scheme for U,

Input. X= (x, 6, T, N,, Ok) and E’ is the wanted approximation.

l If k is large enough to perform the Trunk compute
E= (M(X) - m(X))/M(X); abort otherwise (X is not a valid input).

. If E< E’ then output 7(x, 6); otherwise simulate Up on input X
deterministicalZy and print an optimal solution y*, i.e., U,(X, y*)=
oPtu,W).

We now show that for any input (X, E’) this algorithm approximates Up
within E’ in time polynomial in 1x1 and exponential in E’. Note that,
similarly to the U, case, d(U,(X), 7(x, 6)) < E. There are two possibilities;
the first is when Ed&‘. In this case, since b(U,(X), T(x, 6)) GE, and the
complexity of the Trunk is linear, the algorithm works.

The second case is when E > E’. We shall define A(X) to manage this case
properly. A few calculations show that E = G?/(A(X)(1 - 6) + t); if we define
A(X) in such a way that E= l/IX/, that is,

A(X) =
ff~l-v-1)

l-6 ’

we have that E > E’ * l/s’ > 1x1. Clearly, A(X) is polynomially computable.
Note now that in order to simulate Up deterministically we need k2k d

1x1 21X’ < 1x1 2 “” steps. In other words, if E > E’ we can simulate Up deter-
ministically in time polynomial in 1x1 and exponential in l/s’. Hence our
algorithm is a polynomial-time approximation scheme. 1

THEOREM 3. U, is PTAS-complete.

Proof. Given any FE PTAS we have to exhibit an F-reduction
witnessing F& U,. Let TF be the polynomial time approximation
scheme for F and pF, h, the complexities of NF and T,. Define
X=t,(x)=(x, 4, TF, N,, Ok), where k=max{p,(lxl), h,($, [xl)}. Note
the complexity given by h,; by our choice of 6 = i, k is a polynomial value
in 1x1 no matter what h, is (any other fixed rational in (0, 1) would be as
good as 4). This choice also implies that A(X) = t([XI- 2). The other two
parts of the F-reduction are defined as

- tz (x, y) = y; recall that by our choice of k we have enough time to
simulate both TF and N, and hence D,,(X) = DF(x);

COMPLETENESS IN APPROXIMATION CLASSES 255

- c(x, E) = E/(1x1 - 1). This is a valid definition for c since both its
complexity and its value are polynomial in l/s and (X).

We have now to show that, for every E,

Simple calculations yield

a(u (x) y)=oPt&+f,(x, Y)
P 3

4X) + opt&) .

Then saying that

is equivalent to saying that

ff(W), b(X, Y)) = opt,(x) -f&7 Y)
optI4x)

<c(s.E)(--$$+l)

6c(x,4(yJ+l).

Substituting in the last expression the values of A(X) and c(x, E) yields
our conclusion, namely d(F(x), tz (x, y)) < s. 1

COROLLARY 1. LBSAT is PTAS-complete

Prooj To show LBSAT E PTAS is very easy. The definition of LBSAT
is such that the value W always ensures an error less than or equal to l/n.
If an approximation E c l/n is wanted then 2’l” > 2” and we can find the
optimal assignment deterministically in polynomial-time.

We now reduce Up to LBSAT via an F-reduction R = (t, , f2, c). The
proof follows very closely that of the APX-completeness of BSAT.

Let X= (6, x, T, N, Ok) be the given instance of Up. By definition of
U,, m(X) = A(X) + t <opt,,(X) < A(X) + t/(1 - 6) = M(X), and, by defini-
tion of A(X),

WV IP-II -=-.
m(x) IWII - 1

It follows that M(X) < 2m(X) whenever ([XII > 2.

256 CRESCENZIANDPANCONESI

Let p = Llog M(X) J. As in the proof of Theorem 2, we can construct a
boolean formula cp = z A #x(y’, u’) in polynomial time that mimics the
behaviour of U,(X). Let n be the number of variables in cp, n is polynomial
in))Xl). The only non zero weights of variables in cp are W(Z) =
2(n - 1) M(X) and w(o,!) = uli = 2’, 1 <id p. Finally, we set W= W(Z). This
defines t,(X), which is a valid LBSAT instance.

As in Theorem 2, there is a bijection between YE D,, of cost
f,,(X, y) = u and satisfying assignments zy for cp of cost W+ u. We then
define C(E, X) = E/(4n - 2) and

t, (X T.“) = T(x) if cp(z,(z, y’, u’)) = FALSE
Y otherwise.

In order to show that

we distinguish two cases. If t, satisfies cp the implication follows from the
fact that fLssAT(% T.,)= W+fu,K y)= W+fup(X f2W, T,)). If 5 does
not satisfy q then g(LBSAT(q), T) 2 1/(4n - 2) > C(E) and the above
implication holds trivially. We can conclude that U, <p LBSAT. 1

Theorem 3 has another interesting corollary.

DEFINITION 14. The closure of a class V sNP0 with respect to a
reduction <R is the set

C(%‘, Go)= {FI~GEV such that FGR G}.

This is a restatement in our framework of the notion of closure of a class
of languages with respect to a reduction.

COROLLARY 2. C(PTAS, 6 r) includes APX.

Proof Observe the role of 6 = i in the proof of Theorem 3; as already
pointed out any other rational in (0, 1) could be used. In fact, if FE APX
can be approximated within some sF the proof of Theorem 3 with 6 = .sF
shows that F is F-reducible to U,. 1

The intuitive reason for this to happen is that the function c in the defini-
tion of P-reduction must be independent of 1x1 in order to respect time
bounds. On the other hand, in the F-reduction c can be polynomially
dependent on 1x1. For this very same reason we have that the inclusion of
Corollary 2 is proper. To see this, pick some FE NPO - APX whose o.f.
has value either 0 or 1 (for example, the characteristic function of SAT)

COMPLETENESS IN APPROXIMATION CLASSES 257

and F-reduce it to any PTAS problem with o.f. bounded in terms of p([xl),
where p is a polynomial (for example a suitable version of U,); the reduc-
tion is possible since the definition of F-reduction allows c(x, a) = l/p(1x1).

5. THE EXISTENCE OF INTERMEDIATE DEGREES

A natural theoretical quastion to ask in our framework is whether,
assuming P #NP, incomplete problems can exist; by using delayed
diagonalization (see (Ladner, 1975; Homer, 1986)) we are able to show
two different versions of this fact, namely

THEOREM 4. Zf P # NP, there is u NPO problem INT such that

- INT$APX,

- INT is not NPO-complete, and

- INT is APX-hard via P-reductions.

THEOREM 5. If P # NP, there is a NPO problem INT’ such that:

- INT’ 4 APX,

- INT’ is not NPO-complete, and

- INT’ is not APX-hard via P-reductions.

These and the followng theorems are interesting because they explain the
difference between showing that a given problem is not approximable (or,
more in general, that is does not have some approximation property) and
showing that it is complete. In particular they show that NPO-complete-
ness is not a consequence of the proof of statements such as “if FE APX
then P = NP” usually used to show nonapproximability of problems.
Moreover, Theorem 5 shows that there are problems with a quite
counterintuitive characteristic; even if they are strong enough to be non-
approximable they are not able to represent “weaker” problems, namely
those in APX.

Proof of Theorem 4. Let Ti, .sj, Ak be enumerations of polynomials time
deterministic Turing machines, rationals in (0, 1), and A-reductions,
respectively. Then let U, be the NPO-complete problem informally intro-
duced at the beginning of Section 4; since it is possible to reduce every
FE NPO to U, in such a way that b(UN(tl (x)), v) = B(F(x), t,(x, y)) we
have that U, is also APX-hard with respect to P-reductions. Finally,
let U, and TA be the APX-complete problem of Section 4 with its
;-approximated algorithm.

258 CRESCENZI AND PANCONESI

The theorem relies on the possibility of defining the new problem INT
partly as U, and partly as U,. INT is defined as 17, in order to be
nonapproximable, and as U, in order to be incomplete.

We are going to define INT in terms of a countably infinite sequence of
problems. Let zi < z2 < . . . < zi < ... be a countably infinite sequence of
strings in Z*. We start off by defining a sequence of NPO problems:

INT(1, x) = U,(x)

INT(2K, x) =
I

INT(2k - 1, x) if x<zzkpl

U,(x) if zzkpl<x

INT(2k + 1, x) =
INT(2k, x) if x < zzk

u/t (xl if zzk<x.

Then, we define INT as follows:

INT(x) =
INT(2K, X) if z~~-~<x<z~~
INT(2k + 1, x) if z~~<x<z~~+~.

This definition of INT is equivalent to

INT(x) = U,(x) if z~~-~<x<z~~

UA (xl if zlk<X<zzk+r.

In order to show that INT satisfies the claim of the theorem we intro-
duce the following “even” predicates:

CZk (x) = TRUE iff k = (i, j) and TJx) does not approximate
INT(ZL, x) within sj; i.e., I(INT(2k, x), Ti(x)) > Ej.

We know that C,,(x) is true infinitely often. The reason is that U, is not
approximable (if P # NP) and therefore Ti fails to approximate U, within
sj for infinitely many x’s Note now that INT(2k, x) is the same as U,
except on an initial segment of Z*.

Similarly, consider the “odd” predicates:

f&+ i(X) = TRUE iff Ak= (fik, trk, ck) fads at X. That is, if
w = fik(X) then b(INT(2k + 1, w), TA(w)) < f, and b(U,(x),

Again, we know that C,,, I (x) is true infinitely often. To see this, note
first that INT(2k + 1, x) is the same as U,(x) almost always, and hence it
is approximable within 1 with a polynomial time algorithm that uses TA
and a finite table. If C,,, , (x) were false almost always, we could

COMPLETENESS IN APPROXIMATION CLASSES 259

approximate U, within c,(i) with the algorithm fZk(x, T, (2ik(x))) and a
finite table.

In order to define INT we need a polynomial time TM D such that

l range(D) = l*,

l Vk 3x: Czk(x) = TRUE A D(x) = lZk, and

l Vk3x:C 2k+1(x)=TRuE A D(x)= lZk+‘.

The proof that such a machine exists is in Lemma 4 below. If we now
define

we have that

z,=min(x 1 D(x)= lk+‘J

9 Vk:z2k-,Gx<z2k*D(x)= lZk-‘, and

. tlk:z2k<x<z2k+,*D(X)=12k.

As a consequence, the following is an equivalent definition of INT:

INT(x) = UN(X) if ID(x)1 is even

u‘4 (xl if (D(x)1 is odd.

Since D is a polynomiaf-time DTM, INT is an NPO problem. INT is the
problem we were looking for. From the definition of D and the predicates
Ck, it follows that INT is neither NPO-complete nor in APX.

Finally, INT is APX-hard via P-reductions because both U, and U, are
APX-hard, and we can tell which of the two INT(x) is in polynomial time
by running D(x). 1

We now prove the existence of the machine D.

LEMMA 4. There is a polynomial-time computable function D(x) such
that

l range(D) = 1 *,

l Vn 3x: C,(x) = TRUE A D(x) = 1”.

Proof. We inductively define points xk and zk:

6) x1 =min{x I C,(x)=TRUE}. Set z, =Orl, where t, is the time
(i.e., number of steps) needed to find x, by following this procedure: test
C, (x) for increasingly larger x’s.

(ii) xk=min(x 1 C,(x) A x>zk-i}. Set zk=O’t, where tk is the time
needed to find xk by following this procedure: test C,(x) for increasingly
larger x’s provided that x > zk _ , .

260 CRESCENZIAND PANCONESI

Our machine D acts as follows: on input x, for 1x1 steps look for
20, 21, . ..> . let zk be the largest, output I“+ ‘.

By definition, D is a polynomial-time Turing machine such that
D(x) = I’+’ whenever z-k 6 x < zk+, . Moreover, for each k we have
zk6Xk+l<zk+I. From the discussion of Theorem 4 it follows that there
are infinitely many zk’s, hence the claim. 4

Proof of Theorem 5. In this proof we have to diagonalize over three,
rather than two conditions. We need the following ingredients: G, an NPO-
complete problem; A, an APX problem which is approximable within 4 by
TA but not approximable within f (since it does not have to be complete
it is easy to construct such a problem); P, a PTAS problem with its poly-
nomial-time approximation scheme T,; T,, A,, Pi, &j enumerations of poly-
nomial time deterministic Turing machines, A-reductions, P-reductions,
and rationals in (0, l), respectively. Finally, we need three kinds of
predicate; C& and C;k + , are as C2k and C2k + , in Theorem 4. The new
predicates C;, + 2 ensure that INT’ is not APX-hard:

c;k+Z (X)= TRUE iff Pk = (tlkr &, ck) f& t0 reduce A
to INT’ at point x. That is, if MI = t,,(x) then there
exists a y~D,~~~(w) such that &‘(INT’(w),y)dc,(j) and
&(4x), Y) > i.

INT’ is defined in the following way:

On input x, INT’ is the same as G if ID’(x)1 = 0 (mod 3), as A
if ID’(x)1 E 1 (mod 3), and as P if ID’(x)1 ~2 (mod 3),

where D’ is a polynomial Turing machine defined analogously to the D of
Theorem 4, and whose construction is hence omitted. 1

By similar arguments we can show this general theorem:

THEOREM 6. Let %, Y be two classes among NPO, APX, PTAS,
FPTAS with Y E X. Given GE Y and H X-complete it is possible to build
F which is not .%--complete but belongs to ?Z -Y. Moreover it is possible to
make it either Y-hard or not.

The proof is omitted because it can be obtained by the same techniques
as those of the previous lemma and theorems.

6. CONCLUDING REMARKS AND OPEN PROBLEMS

We defined natural approximation preserving reductions and proved
completeness in the classes APX and PTAS for weighted versions of SAT.

COMPLETENESS IN APPROXIMATION CLASSES 261

We also illustrated a certain “pathology” of the F-reduction with respect to
the A-reduction: the closure of PTAS with respect to the F-reduction
strictly includes APX.

Then we proved the existence of incomplete problems. This result
illustrates how rich is the structure of NPO: problems whch are NP-com-
plete in their recognition version behave differently in their original
optimization form with respect to both approximation properties and com-
pleteness in the approximation classes.

Some interesting questions can now be posed. Are there natural complete
problems in APX and PTAS? Similarly, are there natural incomplete
problems? In this latter case “natural” has a somewhat wider interpretation
than in the former question: we ask if it is possible to show, under some
complexity theoretic assumptions, the existence of incomplete problems
without making use of diagonalization, in particular whether some
weighted version of SAT can be proved incomplete.

ACKNOWLEDGMENTS

We thank Giorgio Ausiello and Pekka Orponen for many helpful discussions and sugges-
tions. We also thank the unknown referees for suggesting several improvements, both in the
contents of the paper and in the style of our presentation. Finally, we are indebted to Phokion
Kolaitis for pointing out a mistake in Theorem 2.

RECEIVED September 19, 1988; FINAL MANUSCRIPT RECEIVED May 30, 1990

REFERENCES

AUSIELLO, G., D’ATRI, A., AND PROTASI, M. (1980), Structure preserving reductions among
convex optimization problems, J. Comput. Sysfem Sci. 21, 136153.

AUSIELLO, G., MARCHETTI SPACCAMELA, A., AND PROTASI, M. (1980), Toward a unified
approach for the classification of NP-complete problems, Theoret. Compur. Sci. 12, 83-96.

BRUSCHI, D., JOSEPH, D., AND YOUNG, P. (1989) “A Structural Overview of NP Optimization
Problems.” Computer Science Technical Report 861, University of Wisconsin-Madison.

COOK, S. A. (1971), The complexity of theorem-proving procedures, in “Proceedings, 3rd
ACM Symposium on Theory of Computation,” pp. 151-158.

GAREY, M. R. AND JOHNSON, D. (1979) “Computers and Intractability: A Guide to the
Theory of NP-Completeness,” Freeman, San Francisco.

HOMER, S. (1986), On simple and creative sets in NP, (1986). Theoret. Compuf. Sci. 47,
169-180.

HOCHBAUM, D. AND SHMOYS, D. (1987), Using dual approximation algorithms for scheduling
problems: Theoretical and practical results, .I. Assoc. Comput. Much. 34, 144162.

IBARRA, 0. H., KIM, C. E., (1975), Fast approximation for the knapsack and sum of subset
problems, J. Assoc. Compul. Mach. 22, 463468.

JOHNSON, D. (1974), Approximation algorithms for combinatorial problems, J. Comput.
System Sci. 9, 256-278.

262 CRESCENZI AND PANCONESI

KRENTEL, M. W. (1988), The complexity of optimization problems, J. Comput. System Sci. 36,
49&509.

KO~TE, 8. AND SCHRADER. R. (1981), On the existence of fast approximation schemes, in
“Nonlinear Programming 4” (0. L. Mangasarian, R. R. Meyer, and S. M. Robinson, Eds.),
Academic Press, New York.

LADNER, R. (1975), On the structure of polynomial time reducibility, J. Assoc. Comput. Mach.
22, 155-171.

ORPONEN, P. AND MANNILA, H. (1987), “On Approximation Preserving Reductions: Complete
Problems and Robust Measures” Technical Report, University of Helsinki.

PAZ, A. AND MORAN, S. (1981), NP-optimization problems and their approximation, Theoret.
Cornput. Sri. 15 251-277.

PAPADIMITRIOU, C. AND STEIGLITZ, K. (1982), “Combinatorial Optimization: Algorithms and
Complexity,” Prentice-Hall, Englewood Cliffs, NJ.

PAPADIMITRIOU, C. AND YANNAKAKIS, M. (1988), Optimization, approximation, and com-
plexity classes, in “Proceedings, 20th ACM Symposium, Theory of Computation,”
pp. 229-234.

SAHNI, S. K. (1976), Algorithms for scheduling independent tasks, J. Assoc. Comput. Mach.
23, 116-127.

