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Griinbaum’s conjecture on the existence of k-chromatic graphs of degree k 

and girth g for every k > 3, g > 3 is disproved. In particular, the bound ob- 
tained states that the chromatic number of a triangle-free graph does not exceed 
[3(0 + 2)/4], where D is the graph’s degree. 

All graph-theoretic concepts, which are not defined further, are taken 
from [6, 111. By graphs we mean nondirected graphs without loops and 
multiple edges. 

Let G(a, g, x) be a graph of degree o(G(o, g, x)) = c, girth g(G(a, g, x)) = g 
and chromatic number x(G(u, g, x)) = x. Zykov [12], Tutte [3], and 
Mycielsky [9] showed that an upper bound for x(G) depending only on the 
graph’s density (clique number) y(G) does not exist. Moreover, Erdiis [4], 
and afterward Lovasz [7] constructively, have proved that for every x > 2, 
g > 3, and some u there exists a G(u, g, x). 

Chvatal [2] constructed an example of a G(4, 4, 4). Griinbaum conjectured 
[5] that given any x = u 3 3, g 3 3, there exists a G(u, g, x); i.e., the bound 
given by Brooks’ theorem cannot be sharpened for graphs of arbitrarily 
large girth. In the same paper [5] Griinbaum has constructed an example of 
a G(4, 5, 4). 

But further, we prove a bound for x(G) depending on u(G) and v(G), 
which leads to a contradiction with Griinbaum’s conjecture when u > 7 and 
g 3 4. 

In recent years a series of papers has appeared (see [l]) dealing with the 
generalization of the chromatic number notion as the point partition numbers 
L+(G) of the graph G. 
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DEFINITION 1. Graph G is called k degenerated if its Vizing-Wilf number 
W(G) = maxCpCG rninUEY(,,) (T&U) < k; i.e., every (induced) subgraph 
G’ of G contains a vertex of degree less than k. 

DEFINITION 2. OLD is the smallest number of k-degenerated subgraphs 
which cover the Y(G). 

Obviously a,(G) = x(G). The quantity a,(G) is known as the point arbori- 
city of the graph G. 

Further, beside the trivial bound C+(G) < La(G)/k] + 1 we need the 
following. 

LEMMA 1 [l]. I f  q(G) < o(G), 3 < a(G) > 2k, then Q(G) < [u(G)/k]. 

LEMMA 2 [8]. Let a(G) + 1 = C,“=, (q + l), ui being nonnegative 
integers, and n >, 1. Then there exists a covering of V(G) by n subgraphs Gi 
of the graph G, such that u(GJ < ui , 1 < i < II. 

Remark 1. lx] and [xl denote, respectively, lower and upper integers 
of x. 

Remark 2. At first we did not know about Lovasz’s result, and in proving 
our theorem used a similar but more general result, obtained independently. 

LEMMA 2’. Let Ciclfi(u) > u(v) for every v E V(G); then there exists a 
coloring c: V(G) w  I such that every vertex v is adjacent, with fewer than 
fCcW,(v) vertices colored by c(v). 

THEOREM. Let u(G) > 3, k 3 1. Then 

dG) < lb(G) - lb(G) + llitt + 1W6-I + 1, 

where 
t = max(3,2k, Lq$G)/k] * k}. 

Proof. Let s = [[u(G) + l]/(t + l)], r = u(G) + 1 - s(t + 1). Then 
a(G) + 1 = s(t + 1) + r and, by Lemma 2, the vertices of G can be covered 
by s + 1 subgraphs G, , Gz ,..., G,,, which have 

u(G) < t, if 1 < i < s; 

<r-l, if i=s+l. 

By Lemma 1, using q(G) < t, we have 

4Gi) G rtlkl, if 1diG.s; 

< 1 + \(r - 1)/k], if i = s + 1. 
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Consequently, 

i=l 

+ I 1 I u(G) f 1 
I I 

+ o(G) - (t + 1) . lIu(G) i ll/(f + I)1 
t+ 1 k I 

+ 1 

=I 
u(G) t+l t u(G) + 1 

k i k IHI k t+l II 
+ 1 

It is easily seen that t/k is an integer, therefore [(t + 1)/k] ~ [t/k] = l/k, 
which completes the proof. 

COROLLARY 1. If C is a connectedgraph and is not an odd cycle (o(G) ,) 2) 
then 

x(G) < u(G) - I 
u(G) - maxi& v(G)1 

1 + max(3, g?(G)} I ’ 

This disproves the conjecture made in [5]: 

COROLLARY 2. /fa(G) > 7 and v(G) < [[u(G) - 1]/2], then x(G) < u(G). 

COROLLARY 3. Ifg4G) < 3, then x(G) < [3[o(G) + 11/41. 

Remark 3. After this article was submitted for publication we learned 
that the results of Corollaries l-3 had been obtained independently by 
P. A. Catlin. 

The authors would like to draw attention to the following general problem, 
already mentioned by Vizing [lo]: Find the exact upper bound for x(G) 
depending on u(G) and y(G) or g(G) and describe all the extremal graphs. 

. It seems to us that the following is true. 

Conjecture. If u(G) > 9, and y(G) < o(G), then x(G) < a(G). 
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