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0. MAIN RESULTS

As a typical example of the existence and non-existence of positive eigen-
values embedded in the continuous spectrum, we consider von Neumann�
Wigner potentials. This is a test of the effectivity of our result obtained in [2].

We consider an eigenvalue problem

H� :=(&2+q(x)) �(x)=*�(x) in Rn, (0.1)

where q(x) satisfies

(Q.1) q(x) is a real-valued continuous function on Rn and

(Q.2) q(x)=&(k sin 2r�r)+O(r&1&=0) as r=|x| � +� (=0>0)

with some real constant k. The potential q(x) is not necessarily spherically
symmetric.

Let H be the unique selfadjoint realization of the above operator in the
Hilbert space L2(Rn). It is well known that the essential spectrum of H
coincides with the real half line [0, +�). Our problem is as follows:

What is the condition on k # R and *>0, under which there
exists q(x) satisfying (Q.1) and (Q.2) such that * is an eigen-
value of H?

In their famous paper [16], von Neumann and Wigner gave an example
of q(x) defined in R3 satisfying (Q.1) and (Q.2) with k=8 such that *=1
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is an eigenvalue of H. Their example (corrected by B. Simon [14]) is

q(x)=
&32 sin r[ g(r)3 cos r&3g(r)2 sin3 r+ g(r) cos r+sin3 r]

[1+ g(r)2]2 ,

g(r)=2r&sin 2r.

Then H has the eigenvalue *=1 with eigenfunction

�(x)=
sin r

r[1+ g(r)2]
# L2(R3).

Moses and Tuan [13] gave another example of q(x) defined in R3

satisfying (Q.1) and (Q.2) with k=4 such that *=1 is an eigenvalue of H.
Their example is

q(x)=
&32 sin r[(r+1�2) cos r&sin r]

[1+ g(r)]2 .

Then H has the eigenvalue *=1 with eigenfunction

�(x)=
sin r

r[1+ g(r)]
# L2(R3).

We can show

Proposition 0.1. For any n # N and any |k|>2, there exists a potential
q(x) satisfying (Q.1) and (Q.2) such that *=1 is an eigenvalue of H.

Proposition 0.2. Let |k|<2. Then for any n # N and any q(x) satisfying
(Q.1) and (Q.2), *=1 is not an eigenvalue of H.

Then what happens for *>0, {1? In the half line case a complete
answer (Proposition 0.3 below) is known [4]; see also [9, 8, pp. 93�95]. In
case n�2 we have Theorem 0.4 below, which is our main theorem.

Proposition 0.3. Let *>0 and k be real constant. Let q(x) be a
real-valued continuous function on [0, �) satisfying

(Q.2)$ q(x)=&(k sin 2x�x)+O(x&1&=0 ) as x � +� (=0>0).

Then the equation

\&
d 2

dx2+q(x)+ �(x)=*�(x) in 0�x<� (0.2)

has a non-trivial solution � # L2([0, +�)) if and only if |k|>2 and *=1.
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Note that Proposition 0.1 concerns some q but Proposition 0.3 does with
any q.

Theorem 0.4. Let n # N be arbitrary. Let

|k|<{*+- *
1+- *2&*+1

(*�1)
(1>*>0).

(0.3)

Then for any q(x) satisfying (Q.1) and (Q.2), *>0 is not an eigenvalue
of H.

Remark 0.5 A. Devinatz, R. Moeckel and P. Rejto [6] show (see also
A. Devinatz and P. Rejto [7]) that any finite closed interval in (0, 1) _
(1, �) contains at most only a finite number of eigenvalues for any k. Also
Ben Artzi and A. Devinatz [5] show that in case q is spherically symmetric
there can exist at most one eigenvalue in (0, �) at 1.

Proposition 0.2 is nothing but a corollary of Theorem 0.4.
Our main purpose of this paper is to show Theorem 0.4 applying our

result obtained in [2]. This is an improvement of the result of the second
author [15, Example 5.8], who showed that if

|k|<- *2+*,

for any q(x) satisfying (Q.1) and (Q.2), * is not an eigenvalue of H.

Remark 0.6. Assume that in (0.1), q(x) satisfies (Q.1) and

(Q.2)" q(x)=&(ka sin 2ar�r)+O(r&1&=0 ) as r=|x| � +� (=0>0)

instead of (Q.2) with some constant a>0. Then putting x$=ax and omit-
ting the $ we have (0.1) with * replaced by *�a2 and with q(x) satisfying
(Q.2). Thus we may replace (Q.2) and * with (Q.2)" and *�a2, respectively,
in Propositions 0.1�0.3 and Theorem 0.4.

1. PROOF OF PROPOSITIONS 0.1 AND 0.3

Proposition 0.1 can be easily shown from Proposition 0.3 as follows.

Proof of Proposition 0.1. Let |k|>2 and let �(x) be a spherically
symmetric function and put

u(r) :=r(n&1)�2�(x).
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Then Eq. (0.1) with *=1 and q(x)=&(k sin 2r�r) reduces to

&u"(r)+{&
k sin 2r

r
+4&1(n&1)(n&3) r&2= u(r)=u(r),

which has a non-trivial solution u # L2([1, +�)) by Proposition 0.3 so
that � # L2([x # Rn | |x|>1]). Let R1>1 be a constant such that �(x){0
on |x|=R1 . Let �� (x) be a smooth function such that �� (x){0 for |x|�R1

and �� (x)=�(x) for |x|>R1 . Put

q~ (x) :={1+(2�� )(x)��� (x)
q(x)

for |x|�R1

for |x|>R1 .

Then q~ (x) and �� (x) satisfy all the requirements of Proposition 0.1.

Remark 1.1 We can prove Proposition 0.1 directly without the help of
the if part of Proposition 0.3. Noting the argument given in the proof of
Proposition 0.1, it suffices to construct a non-trivial function u(r) # L2([1, �))
and a real valued continuous function q(r) in [1, �) satisfying (Q.2)$ and

&u"(r)+[q(r)+4&1(n&1)(n&3) r&2] u(r)=u(r), r # [1, �). (1.1)

This can be achieved as follows.
Let : be a positive constant. In case k>2, we put

g(r) :=2r&sin 2r=4 |
r

0
sin2 t dt,

w(r) :=(1+ g(r):)&k�(4:),

u(r) :=w(r) sin r.

Then by (1.1) we have

q(r)+4&1(n&1)(n&3) r&2

=1+
u"
u

=2
w$
w

cos r
sin r

+
w"
w

=
&4k sin r

(1+ g(r):)2

_[(g2:&1+ g:&1) cos r&(1+k�4) g2:&2 sin3 r+(:&1) g:&2 sin3 r].
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In case k<&2 we put

g(r) :=2r+sin 2r=4 |
r

0
cos2 t dt,

w(r) :=(1+ g(r):)k�(4:),

u(r) :=w(r) cos r.

By a similar calculation, we have

q(x)+4&1(n&1)(n&3) r&2

=
&4k cos r

(1+ g(r):)2

_[(g2:&1+ g:&1) sin r&(k�4&1) g2:&2 cos3 r&(:&1) g:&2 cos3 r].

In both cases, we have q(r)=&kr&1 sin 2r+O(r&1&min[:, 1]) as r � +�
since :>0, and we have u(r) # L2([1, �)) since :>0 and |k|>2.

Note that in case n=3, the modification near the origin is not necessary.
In this case, putting k=8 and :=2, we have the von Neumann and
Wigner example, and putting k=4 and :=1, we have the Moses and Tuan
example.

In order to prove Proposition 0.3, it is sufficient to show the following
two propositions.

Proposition 1.2. Let *{1. Then Eq. (0.2) has no non-trivial solution in
L2([0, �)).

Proposition 1.3. Let *=1. Then Eq. (0.2) has no non-trivial solution in
L2([0, �)) if and only if |k|�2.

The next lemma is a special case of [4, Theorem 2.1], from which
Proposition 1.2 follows easily, since q(x) satisfies the conditions (i)�(iii) of
g if *{1. (If *=1, the function g2(x) does not exist.)

Lemma 1.4. Let *>0. Assume that

(i) g(x) is a real valued continuous function in [1, �);

(ii) the integrals

|
�

x
g(t) dt, g1(x)=: |

�

x
g(t) cos 2 - * t dt, g2(x) :=|

�

x
g(t) sin 2 - * t dt

exist;

(iii) |
�

1
| g(t) gi (t)| dt<� (i=1, 2).

352 ARAI AND UCHIYAMA



Then for any non-trivial solution �(x) of the equation

&�"(x)+ g(x) �(x)=*�(x) in x�1, (1.2)

there exist constants A, B with A>0 such that

�(x)=A cos(- * x+B)+o(1), �$(x)=&A - * sin(- * x+B)+o(1)

as x � �.

We owe the next lemma to Atkinson [4, Theorem 4.9, Remark in Sect. 1.3]
to prove Proposition 1.3.

Lemma 1.5. Assume that

(i) h1(x)>0 is a real-valued C1 function in [1, �);

(ii) ��
1 h1(t) dt=�, ��

1 h1(t)2 dt<� and ��
1 |h$1(t)| dt<�;

(iii) h2(x) is a real-valued continuous function of class L1([1, �)).

Then the equation

&�"(x)&[h1(x) cos 2x+h2(x)] �(x)=�(x) in x�1 (1.3)

has two solutions �1 , �2 such that

�1(x)=exp _1
4 |

x

1
h1(t) dt&{cos \x+

?
4++o(1)=

�2(x)=exp _&
1
4 |

x

1
h1(t) dt&{cos \x&

?
4++o(1)=

as x � �.

Let h1(x)=|k|�(x+(?�4) sgn k) in (1.3), where sgn k means the sign of
k. Then the above lemma shows that Eq. (1.3) has no non-trivial solution
in L2([1, �)) if and only if |k|�2. On the other hand changing the
variable from x+(?�4) sgn k to new x in (1.2) with *=1, we have
Eq. (1.3). Hence we have Proposition 1.3.

2. PROOF OF THEOREM 0.4

The following is a simplified version of [2, Theorems 1.1 and 1.3]; see
also Remark 1.3(3) and Remark 1.4(2) there.
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Proposition 2.1. Let q1(x) # C1(Rn) and q2(x) # C0(Rn) be real-valued
bounded functions. We consider the equation

(&2+q1(x)+q2(x)) �(x)=0 in Rn. (2.1)

Assume that there exist some bounded smooth real-valued functions _(r) and
'(r) and some positive constants $ and { satisfying

_(r)�$; (2.2)

'(r)�2; (2.3)

lim sup
r � �

[r�rq1(x)+'(r) q1(x)+_(r)&1 | rq2(x)&Q$(r)|2]<0, (2.4)

where �r=��(�r), Q(r) :=4&1('(r)&_(r));

rq2(x)&Q$(r) is bounded ; (2.5)

lim
r � �

exp \|
r

1

{&'(t)
t

dt+=0; (2.6)

exp \&|
r

1

_(t)+'(t)
2t

dt+ � L1(1, �). (2.7)

Then Eq. (2.1) has no non-trivial L2(Rn) solution.

Let _0 , '0 , u, v be real constants satisfying

{_0+'0�2,
2 |u|<_0 ,

'0>0, _0>0,
'0+2 |v|�2,

(2.8)

and let { be a constant satisfying 0<{<'0 . We put

_(r) :=_0+2u cos 2r, '(r) :='0+2v cos 2r.

Then

Q$(r)=(u&v) sin 2r, _(r)+'(r)=_0+'0+2(u+v) cos 2r

and it is easy to see that the assumptions in Proposition 2.1 except (2.4)
and (2.5) are satisfied since

|
r

1
t&1 cos 2t dt=_ 1

2t
sin 2t&

r

1

+|
r

1

1
2t2 sin 2t dt

is a bounded function of r # [1, +�).
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According to the idea of [15, Example 5.8], we put

{
q1 :=&(k+s)

sin 2r
r

&*,

q2 :=s
sin 2r

r
+O(r&1&=0 ) as r � �

with some real constant s. Then Eq. (0.1) reduces to Eq. (2.1).
We can easily see that (2.5) holds.
Let us check the assumption (2.4). We may assume 0<=0�1 in (Q.2)

without loss of generality.

r�rq1+'(r) q1+_(r)&1 |rq2&Q$|2

=r _&2(k+s)
cos 2r

r
+(k+s)

sin 2r
r2 &

&('0+2v cos 2r) _(k+s)
sin 2r

r
+*&

+_(r)&1 |s sin 2r+O(r&=0 )&(u&v) sin 2r| 2

=&2(k+s) cos 2r&*('0+2v cos 2r)

+_(r)&1 (s&u+v)2 sin2 2r+O(r&=0)

=&_(r)&1 [(2u cos 2r+_0)[2(k+s+v*) cos 2r+'0*]

&(s&u+v)2 (1&cos2 2r)]+O(r&=0)

=&_(r)&1 [[(s&u+v)2+4u(k+s+v*)] cos2 2r

+2[(k+s+v*) _0+u'0 *] cos 2r+_0'0 *&(s&u+v)2]+O(r&=0).

We put

f (X ) :=[(s&u+v)2+4u(k+s+v*)] X2

+2[(k+s+v*) _0+u'0 *] X+_0'0*&(s&u+v)2.

Then (2.4) is satisfied if and only if

f (X)>0 for any X # [&1, 1]. (2.9)
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We claim

Proposition 2.2. Let real numbers k and *>0 be given. The following
three assertions are equivalent.

(1) There exist real constants s, u, v, _0 and '0 such that

q1=&(k+s)
sin 2r

r
&*,

q2=s
sin 2r

r
+O(r&1&=0 ) as r � �,

_(r)=_0+2u cos 2r and '(r)='0+2v cos 2r

satisfy the assumptions of Proposition 2.1.

(2) There exist real constants s, u, v, _0 , and '0 saysfying (2.8)
and (2.9).

(3) * and k satisfy (0.3).

The preceding argument guarantees the equivalence of the assertions (1)
and (2). We will show the equivalence of the assertions (2) and (3) in the
followings. Then as a corollary, we have Theorem 0.4.

We put f (X ) in the form

f (X)=AX2+2BX+C,

where

A :=(s&u+v)2+4u(k+s+v*),

B :=(k+s+v*) _0+u'0*,

C :=_0'0 *&(s&u+v)2.

Lemma 2.3. The inequality (2.9) holds if and only if one of the following
holds:

(a) f (1)>0, f (&1)>0 and A�C

(b) C>0 and B2<AC.

Note that in case (b), the condition f (\1)>0 holds automatically, and
that (a) and (b) are not mutually exclusive.
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Proof. We have the following:

(i) Let A�0. Then f (X ) is concave and we can see that (2.9) holds
if and only if f (1)>0 and f (&1)>0.

(ii) Let 0<A�B (0<A�&B ). Then the axis of the parabola
y= f (X ) lies in the left(right) side of the line X=&1(X=1). (2.9) holds if
and only if f (&1)>0 ( f (1)>0), and then f (1)>0 ( f (&1)>0) also holds
(respectively).

(iii) Let |B|<A. Then the axis of the parabola lies in &1<X<&1,
and (2.9) holds if and only if B2<AC, and then C= f (0)>0.

Assume that (2.9) holds. If A�|B|, then by (i) and (ii), f (\1)=
A+C\2B>0, which with A�|B| implies A�C. Thus (a) holds. If
A>|B|, then by (iii), (b) holds.

Conversely, assume (a). If A�|B|, then by (i) and (ii), (2.9) holds. If
A>|B|, then by A�C we have C>0 and B2<AC, so by (iii), (2.9) holds.
It is obvious that (b) implies (2.9).

We will show the following two lemmas, which yield the equivalence of
the assertions (2) and (3) in Proposition 2.2.

Lemma 2.4. There exist real constants s, u, v, _0 , and '0 satisfying (2.8)
and (a) in Lemma 2.3 if and only if * and k satisfy (0.3).

Lemma 2.5. There exist real constants s, u, v, _0 , and '0 satisfying (2.8)
and (b) in Lemma 2.3 if and only if * and k satisfy (0.3).

In the proof of the above two lemmas, we will use implicitly

Lemma 2.6. Let f1(x) and f2(x) be real valued continuous functions
defined in an open interval I and satisfy

f1(x)< f2(x) for any x # I. (2.10)

Let + be a real constant. Then there exists x # I such that f1(x)<+< f2(x)
if and only if

inf[ f1(x) | x # I]<+<sup[ f2(x) | x # I]. (2.11)

Proof. The only if part is obvious. In order to prove the if part, assume
(2.11). Then the sets G1=[x # I | f1(x)<+] and G2=[x # I | +< f2(x)] are
non-empty and open by the continuity of f1(x) and f2(x). Since G1 _ G2=I
by (2.10), we have G1 & G2 {< by the connectivity of I.
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Proof of Lemma 2.4. We put

S :=s+v and K :=k+v*&v.

Then the arbitrariness of s reflects to the arbitrariness of S and we have

f (X )=AX2+2BX+C,

A=(S&u)2+4u(K+S),

B=(K+S) _0+u'0*,

C=_0 '0*&(S&u)2.

Since

f (\1)=(_0\2u)['0*\2(K+S)]

and _0\2u>0 by (2.8), the condition f (\1)>0 is equivalent to

&'0 *�2&K<S<'0 *�2&K. (2.12)

The condition C�A is equivalent to

S2�_0'0*�2&2uK&u2. (2.13)

The real number S satisfying (2.12) and (2.13) exists if and only if one
of the followings holds:

K+'0*�2�0 and (K+'0 *�2)2<_0'0*�2&2uK&u2, (2.14)

|K |<'0*�2 and _0 '0*�2&2uK&u2�0, (2.15)

K&'0*�2�0 and (K&'0 *�2)2<_0'0*�2&2uK&u2. (2.16)

In case (2.14), we have K+'0*�2�0 and

�1&(u; _0 , '0)<K+'0*�2<�1+(u; _0 , '0),

where we put

�1\(u; _0 , '0) :=&u\- '0*(_0 �2+u).

We can see

inf[�1&(u; _0 , '0) | 2 |u|<_0]=�1&(_0 �2; _0 , '0)=&_0 �2&- _0 '0*,

sup[�1+(u; _0 , '0) | 2 |u|<_0]��1+(0; _0 , '0)>0
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so that there exists u satisfying 2 |u|<_0 and (2.14) if and only if

&(_0+'0*)�2&- _0'0*<K�&'0*�2.

The second condition of (2.15) holds with u=0 so that there exists u
satisfying 2 |u|<_0 and (2.15) if and only if |K|<'0 *�2.

In case (2.16), we have K&'0*�2�0 and

�2&(u; _0 , '0)<K&'0*�2<�2+(u; _0 , '0),

where we put

�2\(u; _0 , '0) :=&u\- '0*(_0 �2&u).

We can see

inf[�2&(u; _0 , '0) | 2 |u|<_0]��2&(0; _0 , '0)<0,

sup[�2+(u; _0 , '0) | 2 |u|<_0]=�2+(&_0 �2; _0 , '0)=_0 �2+- _0'0*

so that there exists u satisfying 2 |u|<_0 and (2.16) if and only if

'0 *�2�K<(_0+'0 *)�2+- _0 '0*.

Therefore the real number u satisfying 2 |u|<_0 and one of (2.14)�(2.16)
exists if and only if

&�3(_0 ; '0)<K<�3(_0 ; '0), (2.17)

where we put

�3(_0 ; '0) :=(_0+'0*)�2+- _0'0*.

Since �3 is a monotone increasing function of _0 , there exists a real
number _0 satisfying 0<_0�2&'0 and (2.17) if and only if (2.17) holds
with _0=2&'0 . Remembering the definition K=k+v*&v, we have

&�3(2&'0 ; '0)&(*&1)v<k<�3(2&'0 ; '0)&(*&1)v.

There exists a real number v satisfying |v|�1&'0 �2 and the above
inequality if and only if

|k|<�3(2&'0 ; '0)+|*&1| (1&'0 �2)

={*+- (2&'0) '0 *
2&'0&*+'0*+- (2&'0) '0*

for *�1,
for 1>*>0.
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When '0 runs over 0<'0<2, the last side of the above formula takes its
maximum value *+- * or - *2&*+1+1 at '0=1 or at '0=1&
(1&*)�- *2&*+1, if *�1 or 1>*>0, respectively. Thus, there exists a
real number '0 satisfying 0<'0<2 and the above inequality if and only if
k satisfies (0.3), and we complete the proof of Lemma 2.4.

Proof of Lemma 2.5. We put S� :=S&u=s&u+v. Then the arbitrari-
ness of s reflects to the arbitrariness of S� . The condition C>0 is written as

S� 2<_0 '0*. (2.18)

The condition B2<AC is written as

_2
0(K+S� +u)2&2u(_0'0 *&2S� 2)(K+S� +u)+S� 4&_0'0*S� 2+(u'0 *)2<0,

that is,

F&(u; S� , _0 , '0)<K<F+(u; S� , _0 , '0), (2.19)

where we put

F\(u; S� , _0 , '0) :=_&2
0 [(_0('0*&_0)&2S� 2)u\- D]&S� ,

D(u; S� , _0 , '0) :=S� 2(_2
0&4u2)(_0 '0 *&S� 2).

In order for K satisfying (2.19) to exist, it must be D>0, which is equiv-
alent to S� {0 by (2.8) and (2.18).

We put

u\ :=\
_0('0*&_0)&2S� 2

2 - ('0*&_0)2+4S� 2

=\
_0

2
}

_0('0*&_0)&2S� 2

- 4S� 2(_0'0*&S� 2)+[_0('0 *&_0)&2S� 2]2
.

Then |u\ |<_0 �2 by (2.18) and S� {0. Now vary u on |u|<_0 �2 by (2.8),
and F\(u; S� , _0 , '0) takes at u=u\ its supremum�infimum value

G\(S� ; _0 , '0) :=\1
2 - ('0*&_0)2+4S� 2&S� ,

respectively. So we have

G&(S� ; _0 , '0)<K<G+(S� ; _0 , '0).
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Since G\(S� ; _0 , '0) is a non-increasing function of S� , its supremum�
infimum is given at S� =�- _0 '0 *{0 by (2.18), respectively, and

G\(�- _0'0*; _0 , '0)=\[(_0+'0*)�2+- _0'0 *]

leads (2.17). The argument following (2.17) in the proof of Lemma 2.4
proves the present lemma, again.

3. RESULTS ANALOGOUS TO PREVIOUS CRITERIA

Let

q(x)=V1(x)+V2(x)+V3(r), (3.1)

where V1(x) # C 1(Rn), V2(x) # C0(Rn), and V3(r) # C0(R) are real-valued
functions. We put

Q(r)=|
r

1
tV3(t) dt.

We assume

V1(x) is a bounded function, (3.2)

lim sup
|x| � �

V1(x)=0, (3.3)

L :=lim sup
r � �

r�rV1(x)<�, (3.4)

K :=lim sup
r � �

|rV2(x)|<�, (3.5)

M :=lim sup
r � �

Q(r)&lim inf
r � �

Q(r)<1. (3.6)

Note that we have L�0 by (3.3) and (3.4).
Many authors gave a number 4�0 as a function of K, L, and M such

that if *>4, then * is not an eigenvalue of the operator H defined by (0.1)
and (3.1); see [3, Remark 1.2]. So we remark that the smaller 4, the better
results for non-existence of eigenvalue of H we have.

Kato [11] considered the case V1(x)#V3(r)#0 and gave

4K=K2.
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Agmon [1] considered the case V3(r)#0 and K=0 . Applying his result
we have

4A=
L
2

.

Eastham and Kalf [8, p. 187] considered the case V3(r)#0 and gave

4EK=
1
2

[K2+L+- K2(K2+2L)]=_K+- K2+2L
2 &

2

.

Khosrovshahi et al. [12] gave under the condition M<4&1

4KLP=max {_K+- K2+2L(1&2M)
2(1&2M) &

2

,
2K2+L(1&4M)

2(1&4M)2 = .

Kalf and Kumar [10] gave under the condition M<2&1

4KK=_K+- K2+2L(1&2M)
2(1&2M) &

2

.

The authors [3] have given

4AU=
1
2

}
1

1&M2 [K 2+L+- K2(K2+2L)+L2M 2].

We can show that 4KLP�4KK�4AU .
Let q(x) be the one satisfying (Q.1) and (Q.2). We put

V1(x)=&(k+s+t)
sin 2r

r
,

V2(x)=
s sin 2r

r
+O(r&1&=0),

V3(r)=
t sin 2r

r

with some real constants s and t satisfying |t|<1. Then (3.1)�(3.6) are
satisfied by L=2 |k+s+t|, K=|s| and M=|t|.

Remembering that we aim at getting a small 4, we denote by 4
*

=
4

*
(s, t; k) one of the above 4's coresponding to the above decomposition

of q(x) and by 40

*
(k) the infs, t 4

*
(s, t; k), where s and t run over a set
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specified below and * stands for one of K, A, EK, KLP, KK and AU. Even
in the case that s and�or t are fixed (e.g., 4K), we use the notations
4

*
(s, t; k) in order to unify the notations and in order to recognize the

points (s, t) where the infimums are attained. We remark again that if
*>40

*
(k), then * is not an eigenvalue of H with any q(x) satisfying (Q.1)

and (Q.2).
We will show

40
K(k)=4K (&k, 0; k)=|k| 2, (3.7)

40
A(k)=4A(0, 0; k)=|k|, (3.8)

40
EK(k)={4EK (&k, 0; k)=k2

4EK (0, 0; k)=|k|
for 1�|k|,
for |k|�1,

(3.9)

40
KLP(k)={

4KLP(0, &k; k)=0

4KLP(&k, 0; k)=k2

4KLP(0, 0; k)=|k|

for |k|< 1
4 ,

for 1
4�|k|�1,

for |k|�1,

(3.10)

40
KK (k)={

4KK (0, &k; k)=0

4KK (&k, 0; k)=k2

4KK (0, 0; k)=|k|

for |k|< 1
2 ,

for 1
2�|k|�1,

for |k|�1,

(3.11)

40
AU (k)=

4AU (0, &k; k)=0 for |k|<1,

(3.12)

lim
t � &1�k\0

4AU (&k&t, t; k)=k2&1=0

for k=\1,

4AU (&k+1�k, &1�k; k)=k2&1

for 1<|k|�
1+- 5

2
,

4AU (0, 0; k)=|k| for |k|�
1+- 5

2
.

Remark 3.1. Noting that the minimum of the right hand side of (0.3)
is 1+- 3�2, we can compare the first lines of (3.10)�(3.12) as follows: any
*>0 is not an eigenvalue of H with any q(x) satisfying (Q.1) and (Q.2) if
|k|<1�4 according to KLP, if |k|<1�2 according to KK, if |k|�1 accord-
ing to AU, and if |k|<1+- 3�2 according to our Theorem 0.4.

The results are illustrated in the following Fig. 1.
Let us show (3.7)�(3.12).
In Kato's case s=&k, t=0 and K=|k| so that we have (3.7).
In Agmon's case s=t=0 and L=2 |k| so that we have (3.8).
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FIGURE 1

In the sequel, we may assume k�0 without loss of generality since
4

*
(&s, &t; &k)=4

*
(s, t; k) for V=EK, KLP, KK, and AU.

In the calculation of 4EK , 4KLP , and 4KK , we will use the following
lemma, whose proof can be seen by means of elementary consideration of
the calculus.

Lemma 3.1. (1) Let

g1(x, y)= 1
2 [ |x|+- x2+4 |x+ y|], y�0.

Then we have

inf
x # R

g1(x, y)={g1(&y, y)= y
g1(0, y)=- y

for 1�y�0,
for y�1.

(3.13)

(2) Let

g2(x, y)=x2+|x+ y|, y�0.
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Then we have

inf
x # R

g2(x, y)={g2(&y, y)= y2

g2(&1�2, y)= y&1�4
for 1�2�y�0,
for y�1�2.

(3.14)

Let us treat Eastham and Kalf 's 4, where &�<s<� and t=0. Since

4EK=4EK (s, 0; k)= g1(s, k)2,

we have (3.9) by virtue of (3.13).
Let us consider the case of Khosrovshahi, Levine, and Payne, where

&�<s<� and |t|<1�4. We put

a(t)=(1&2 |t| )&1, b(t)=(1&4 |t| )&1.

Then a(t)>0, b(t)>0 and

4KLP(s, t; k)=max[ g1 (a(t) s, a(t)(k+t))2, g2 (b(t) s, b(t)(k+t))].

Since 4KLP(s, t; k)�0 and

4KLP(0, &k; k)=0 for |k|< 1
4 ,

4KLP(&k, 0; k)=k2 for any k,

4KLP(0, 0; k)=|k| for any k,

we have

40
KLP=0 for |k|< 1

4

and

40
KLP�{k2

|k|
for 1

4�|k|�1,
for |k|�1.

(3.15)

We will show that the reverse inequality holds in (3.15). Then we have
(3.10). First, we assume 1�4�k�1�2. In this case we use

4KLP(s, t; k)�g2 (b(t) s, b(t)(k+t)).

Under our assumptions |t|<1�4 and k�1�4, we have b(t)(k+t)>0 and
by (3.14) we have

inf
s # R

4KLP(s, t; k)�{(b(t)(k+t))2

(b(t)(k+t))&1�4�1�4
if b(t)(k+t)�1�2,
if b(t)(k+t)�1�2,
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so that we have

40
KLP�min {inf {\ k+t

1&4 |t|+
2

} 2k&1
2

�t�
1&2k

6 = ,
1
4=

=min {\ k+t
1&4 |t|+

2

} t=0

,
1
4=

=min {k2,
1
4==k2

since k�1�2.
Next, let k�1�2. In this case we use

4KLP(s, t; k)�g1 (a(t)s, a(t)(k+t))2.

By (3.13), we have

inf
s # R

g1(a(t) s, a(t)(k+t))2={a(t)2 (k+t)2

a(t)(k+t)
if 1�a(t)(k+t),
if a(t)(k+t)�1,

that is,

inf
s # R

4KLP(s, t; k)�{\
k+t

1&2 |t|+
2

k+t
1&2 |t|

if k+t�1&2 |t|,

if k+t�1&2 |t|.

If 1�2�k�1, we have

40
KLP �min {inf {\ k+t

1&2 |t|+
2

} k+t�1&2 |t|, |t|<
1
4= ,

inf { k+t
1&2 |t| }k+t�1&2 |t|, |t|<

1
4==

�min {inf {\ k+t
1&2 |t|+

2

}k&1�t�
1&k

3
, |t|<

1
4+= , 1=

=min {\ k+t
1&2 |t|+

2

} t=0

, 1==k2.
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If k�1, then k+t�1&2 |t| and we have

40
KLP�inf { k+t

1&2 |t| } |t|<
1
4==

k+t
1&2 |t| } t=0

=k.

Thus we have (3.15) with � replaced by =.
In the Kalf�Kumar case, &�<s<�, |t|<1�2 and

4KK= g1 (a(t) s, a(t)(k+t))2.

An argument similar to that given for 4KLP for k� 1
2 leads (3.11).

Now let us consider 4AU , where &�<s<� and |t|<1. The first and
the second formulae of (3.12) are obvious. In the sequel we assume k>1.
Noting

4AU=
1
2

}
1

1&M2 [K 2+L+- K2(K 2+2L)+L2M2]

=
1
4

1
1&M2 [- K2+L[1+- 1&M2]+- K 2+L[1&- 1&M 2]]2,

where

L=2 |k+s+t|, K=|s|, M=|t|,

we put

{g3(x, y, :, ;)= 1
2 [- A+- B],

A=x2+2: |x+ y|, B=x2+2; |x+ y|.
(3.16)

Then we have

4AU (s, t; k)=
1

1&t2 [ g3(s, k+t, :(t), ;(t))]2, &�<s<�, |t|<1,

(3.17)

where

:(t)=1+- 1&t2, ;(t)=1&- 1&t2. (3.18)

Lemma 3.3. Let

y>0, 2�:>1>;�0, and :+;=2. (3.19)
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We put #=:;. When y>1, we define x0 as

x0=
1

2( y&1)
[#&- #[#+4y( y&1)]]. (3.20)

Then we have

#(x0+ y)=x2
0( y&1) and &y<x0�0 for y>1, (3.21)

�g3

�x
(x0 , y, :, ;)=0 if y>1, (3.22)

inf[ g3(x, y, :, ;) | &�<x<�]

={g3(&y, y, :, ;)= y
g3(x0 , y, :, ;)

if 1�y>0,
if y>1.

(3.23)

Proof. A little calculation shows (3.21). In x<&y, we have

�g3

�x
=

1
2 _

x&:

- A
+

x&;

- B &<0.

In x>&y, we have

{
A&B=2(:&;)(x+ y),
;A&:B=&(:&;) x2,
AB=x4+4(x+ y) x2+4#(x+ y)2

=[x(x+2y)]2+4(x+ y)[#(x+ y)&x2( y&1)],

(3.24)

and

�g3

�x
=

1
2 _

x+:

- A
+

x+;

- B &
=

1

2 - AB
[x(- A+- B)+: - B+; - A]

=
1

2 - AB
}

1

- A&- B
[x(A&B)+;A&:B+(:&;) - AB]

=
:&;

2 - AB
}

1

- A&- B

_[x(x+2y)+- [x(x+2y)]2+4(x+ y)[#(x+ y)&x2( y&1)]].
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Note that :>;, A>B and x+2y>0 by y>0 and x+ y>0. It is obvious
that (3.22) holds by (3.21), and

>0 in x>0,
�g3

�x {�0 in &y<x<0, #(x+ y)&x2( y&1)�0,

<0 in &y<x<0, #(x+ y)&x2( y&1)<0.

In case 0< y�1, we have #(x+ y)&x2( y&1)�0 for &y<x<0. In case
y>1, note (3.21). In each case we have (3.23).

Define :=:(t) and ;=;(t) by (3.18), #(t) as #(t)=:(t);(t)=t2 and y(t)
as y(t)=k+t. Then y>0 since k>1 and |t|<1. When y>1, we define
x0(t) by (3.20) and put

g4(t)=
g3(x0(t), y(t), :(t), ;(t))

- 1&t2
.

Then (3.17) and (3.23) show

inf
s # R

4AU (s, t; k)={
(k+t)2

1&t2

g4(t)2

if k+t�1,

if k+t>1.
(3.25)

Let us calculate inf[(k+t)2�(1&t2) | k+t�1, |t|<1]. Since

d
dt

(k+t)2

1&t2 =
2(k+t)(1+kt)

(1&t2)2 ,

the infimum is attained at t=&1�k if &1<&1�k�1&k, that is, if 1<k
�(1+- 5)�2, and at t=1&k if &1<1&k<&1�k, that is, if (1+- 5)�2
<k<2. If k�2, k+t�1 and |t|<1 do not hold simultaniously. Thus we
have

inf {(k+t)2

1&t2 } k+t�1, |t|<1=

={
(k+t)2

1&t2 } t=&1�k
=k2&1

(k+t)2

1&t2 } t=1&k
=

1
k(2&k)

for 1<k�
1+- 5

2
,

for
1+- 5

2
<k<2.

(3.26)

Next, let us calculate inf[ g4(t)2 | k+t>1, |t|<1]. We assume y=k+t>1
and |t|<1. We will show

g$4(t)>0 in 0<t<1 (3.27)
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and

>0 for 1<k<
1+- 5

2
,

g$4(t) {=0 for k=
1+- 5

2
, (3.28)

<0 for k>
1+- 5

2

in 0>t>max[&1, 1&k]. Then we have

inf [ g4(t)2 | t>1&k, |t|<1]

={
lim

t a 1&k
g4(t)2=

1
k(2&k)

g4(0)2=k

for 1<k�
1+- 5

2
,

for k�
1+- 5

2
.

Note that k2&1�1�(k(2&k)) for 1<k<2 since 1�(k(2&k))&(k2&1)=
(k2&k&1)2�(k(2&k)) and that k�1�(k(2&k)) for (1+- 5)�2�k<2
since 1�(k(2&k))&k=(k&1)(k2&k&1)�(k(2&k)). The above formula
with (3.25) and (3.26) yields (3.12).

Now let us show (3.27) and (3.28). Now,

(1&t2) g$4(t)=
t } g3

- 1&t2
+- 1&t2 d

dt
g3(x0(t), y(t), :(t), ;(t)).

dg3

dt
=

�g3

�x
dx0

dt
+

�g3

�y
dy
dt

+
�g3

�:
d:
dt

+
�g3

�;
d;
dt

.

Using (3.22) and

�g3

�y
=

1
2 _

:

- A
+

;

- B& ,
dy
dt

=1,

�g3

�:
=

1
2

}
x0+ y

- A
,

d:
dt

=
&t

- 1&t2
,

�g3

�;
=

1
2

}
x0+ y

- B
,

d;
dt

=
t

- 1&t2
,
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we have

(1&t2) - AB g$4(t)=
1
2 _

t - AB

- 1&t2
[- A+- B]+t(x0+ y)[- A&- B]

+- 1&t2[: - B+; - A]& ,

from which (3.27) is obvious. In order to show (3.28), in the sequel we
assume k>1 and 0>t>max[&1, 1&k]. Then we have y=k+1>1 and
#=:;=t2>0. By (3.20) and (3.21) we have &y<x0<0. By (3.24), (3.21),
x0<0, and x0+2y>x0+ y>0 we have

- AB=- x2
0(x0+2y)2=&x0(x0+2y).

Using (3.24) we have

(1&t2) - AB(- A&- B) g$4(t)

=
1
2 _

t

- 1&t2
- AB (A&B)+t(x0+ y)(A+B&2 - AB)

+- 1&t2[(:&;) - AB+(;A&:B)]&
=2(x0+ y)[t(x0+ y)&x0(1+ty&t2)]

=x0(x0+ y)[t+- t2+4y( y&1)&2(1+ty&t2)]

=x0(x0+ y)[- (2y&1)2&(1&t2)&t(2y&1)&2(1&t2)]

=
x0(x0+ y)(1&t2)[(2y&1&2t)2&5]

- (2y&1)2&(1&t2)+t(2y&1)+2(1&t2)

=
4x0(x0+ y)(1&t2)(k2&k&1)

- (2y&1)2&(1&t2)+t(2y&1)+2(1&t2)
,

where in the third equality we have used

2t(x0+ y)=
2
t

x2
0( y&1)=x0[t+- t2+4y( y&1)],

which follows from (3.20), (3.21), #=t2 and t<0, and in the last equality
we have used y=k+t. The sign of the numerator of the above formula is
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oposite to the sign of k2&k&1. The denominator of the above formula is
positive since

- (2y&1)2&(1&t2)+t(2y&1)

=- [t(2y&1)]2+4y( y&1)(1&t2)+t(2y&1)>0

by y>1 and &1<t<0. Thus we have (3.28).

REFERENCES

1. S. Agmon, Lower bounds for solutions of Schro� dinger equations, J. Anal. Math. 23
(1970), 1�25.

2. M. Arai and J. Uchiyama, Growth order of eigenfunctions of Schro� dinger operators with
potentials admitting some integral conditions. I. General theory, Publ. Res. Inst. Math.
Sci. 32 (1996), 581�616.

3. M. Arai and J. Uchiyama, Growth order of eigenfunctions of Schro� dinger operators with
potentials admitting some integral conditions. II. Applications, Publ. Res. Inst. Math. Sci.
32 (1996), 617�631.

4. F. V. Atkinson, The asymptotic solution of second-order differential equations, Ann. Mat.
Pura Appl. 37 (1954), 347�378.

5. M. Ben-Artzi and A. Devinatz, Spectral and scattering theory for the adiabatic oscillator
and related potentials, J. Math. Phys. 20 (1979), 594�607.

6. A. Devinatz, R. Moeckel, and P. Rejto, A limiting absorption principle for Schro� dinger
operators with von Neumann�Wigner type potentials, Integral Equations Operator Theory
14 (1991), 13�68.

7. A. Devinatz and P. Rejto, A limiting absorption principle for Schro� dinger operators with
oscilating potentials. Part II. &2+c sin(b|x|�|x| )+V(x) and small coupling constant c,
J. Differential Equations 49 (1983), 29�84.

8. M. S. P. Eastham and H. Kalf, ``Schro� dinger-type Operators with Continuous Spectra,''
Research Notes in Mathematics, Vol. 65, Pitman, Boston�London�Melbourne, 1982.

9. W. A. Harris, Jr. and D. A. Lutz, Asymptotic integration of adiabatic oscillators, J. Math.
Anal. Appl. 51 (1975), 76�93.

10. H. Kalf and V. K. Kumar, On the absence of positive eigenvalues of Schro� dinger operators
with long range potentials, Trans. Amer. Math. Soc. 275 (1983), 215�229.

11. T. Kato, Growth properties of solutions of the reduced wave equation with variable
coefficients, Comm. Pure Appl. Math. 12 (1959), 403�425.

12. G. B. Khosrovshahi, H. A. Levine, and L. E. Payne, On the positive spectrum of
Schro� dinger operators with long range potentials, Trans. Amer. Math. Soc. 253 (1979),
211�228.

13. H. E. Moses and S. E. Tuan, Potentials with zero scattering phase, Nuovo Cimento (10)

13 (1959), 197�206.
14. B. Simon, On positive eigenvalues of one-body Schro� dinger operators, Comm. Pure Appl.

Math. 12 (1969), 531�538.
15. J. Uchiyama, Polynomial growth or decay of eigenfunctions of second-order elliptic

operators, Publ. Res. Inst. Math. Sci. 23 (1987), 975�1006.
16. J. von Neumann and E. P. Wigner, U� ber merkwu� rdige diskrete Eigenwerte, Phys. Z. 30

(1929), 465�467.

372 ARAI AND UCHIYAMA


	0. MAIN RESULTS 
	1. PROOF OF PROPOSITIONS 0.1 AND 0.3 
	2. PROOF OF THEOREM 0.4 
	3. RESULTS ANALOGOUS TO PREVIOUS CRITERIA 
	FIGURE 1 

	REFERENCES 

