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The Noetherian type of a space is the least κ such that it has a base that is κ-like with
respect to reverse inclusion. Just as all known homogeneous compacta have cellularity
at most c, they satisfy similar upper bounds in terms of Noetherian type and related
cardinal functions. We prove these and many other results about these cardinal functions.
For example, every homogeneous dyadic compactum has Noetherian type ω. Assuming
GCH, every point in a homogeneous compactum X has a local base that is c(X)-like with
respect to containment. If every point in a compactum has a well-quasiordered local base,
then some point has a countable local π-base.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Van Douwen’s Problem (see Kunen [16]) asks whether there is a homogeneous compactum of cellularity exceeding c.
(See Engelking [7], Juhász [14], and Kunen [17] for all undefined terms. In particular, recall that w(·), π(·), χ(·), πχ(·), d(·),
c(·), and t(·) respectively denote weight, π -weight, character, π -character, density, cellularity, and tightness of topological
spaces.) A homogeneous compactum of cellularity c exists by Maurice [19], but van Douwen’s Problem remains open in all
models of ZFC.

Definition 1.1. We say that a homogeneous compactum is exceptional if it is not homeomorphic to a product of dyadic
compacta and first countable compacta.

By Arhangel’skiı̆’s Theorem, first countable compacta have size at most c; dyadic compacta are ccc. Since the cellularity
of a product space equals the supremum of the cellularities of its finite subproducts (see p. 107 of [14]), all nonexceptional
homogeneous compacta have cellularity at most c. To the best of the author’s knowledge, there are only two classes of
examples of exceptional homogeneous compacta (see [20]); these two kinds of spaces have cellularities ω and c.

We investigate several cardinal functions defined in terms of order-theoretic base properties. Just like cellularity, these
functions have upper bounds when restricted to the class of known homogeneous compacta. Moreover, GCH implies that
one of these functions is a lower bound on cellularity when restricted to homogeneous compacta.

Definition 1.2. Given a cardinal κ , define a poset to be κ-like (κop-like) if no element is above (below) κ-many elements.
Define a poset to be almost κop-like if it has a κop-like dense subset.

In the context of families of subsets of a topological space, we will always implicitly order by inclusion.
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Definition 1.3. Given a space X , let the Noetherian type of X , or Nt(X), be the least κ � ω such that X has a base that
is κop-like. Analogously define Noetherian π -type in terms of π -bases and denote it by πNt(X). Given a subset E of X ,
let the local Noetherian type of E in X , or χNt(E, X), be the least κ � ω such that there is a κop-like neighborhood base
of E . Given p ∈ X , let the local Noetherian type of p, or χNt(p, X), be χNt({p}, X). Let the local Noetherian type of X , or
χNt(X), be the supremum of the local Noetherian types of its points. Let the compact Noetherian type of X , or χK Nt(X),
be the supremum of the local Noetherian types of its compact subsets. We call Nt, πNt, χNt, and χK Nt Noetherian cardinal
functions.

Noetherian type and Noetherian π -type were introduced by Peregudov [23]. Preceding this introduction are several
papers by Peregudov, Šapirovskiı̆ and Malykhin [18,21,22,24] about min{Nt(·),ω2} and min{πNt(·),ω2} (using different ter-
minologies). Also, Dow and Zhou [5] showed that βω \ ω has a point with local Noetherian type ω. (An easier construction
of such a point will be given in the proof of Theorem 5.16, which is a generalization a construction of Isbell [12].)

Observation 1.4. Every known homogeneous compactum X satisfies the following.

(1) Nt(X) � c+ .
(2) πNt(X) � ω1 .
(3) χNt(X) = ω.
(4) χK Nt(X) � c.

We justify this observation in Section 2, except that we postpone the case of homogeneous dyadic compacta to Section 3,
where we investigate Noetherian cardinal functions on dyadic compacta in general. The results relevant to Observation 1.4
are summarized by the following theorem.

Theorem 1.5. Suppose X is a dyadic compactum. Then πNt(X) = χK Nt(X) = ω. Moreover, if X is homogeneous, then Nt(X) = ω.

Also in Section 3, we generalize the above theorem to continuous images of products of compacta with bounded weight;
we also prove the following:

Theorem 1.6. The class of Noetherian types of dyadic compacta includes ω, excludes ω1 , includes all singular cardinals, and in-
cludes κ+ for all cardinals κ with uncountable cofinality.

Section 4 generalizes our results about dyadic compacta to the proper superclass of k-adic compacta.
Finally, in Section 5, we prove several results about the local Noetherian types of all homogeneous compacta, known and

unknown, including the following theorem.

Theorem 1.7 (GCH). If X is a homogeneous compactum, then χNt(X) � c(X).

2. Observed upper bounds on Noetherian cardinal functions

First, we note some very basic facts about Noetherian cardinal functions.

Definition 2.1. Given a subset E of a product
∏

i∈I Xi and σ ∈ [I]<ω , we say that E has support σ , or supp(E) = σ , if
E = π−1

σ πσ [E] and E �= π−1
τ πτ [E] for all τ � σ .

Theorem 2.2. Given a point p and a compact subset K of a product space X = ∏
i∈I Xi , we have the following relations.

Nt(X) � sup
i∈I

Nt(Xi),

πNt(X) � sup
i∈I

πNt(Xi),

χNt(p, X) � sup
i∈I

χNt
(

p(i), Xi
)
,

χNt(K , X) � sup
σ∈[I]<ω

χNt
(
πσ [K ],πσ [X]).

Proof. See Peregudov [23] for a proof of the first relation. That proof can be easily modified to demonstrate the next
two relations. Let us prove the last relation. For each σ ∈ [I]<ω , set κσ = χNt(πσ [K ],πσ [X]) and let Aσ be a κ

op
σ -like

neighborhood base of πσ [K ]. For each σ ∈ [I]<ω , let Bσ denote the set of sets of the form π−1
σ U where U ∈ Aσ and
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supp(U ) = σ . Note that if U ∈ Aσ and supp(U ) � σ , then there exists τ � σ and V ∈ Aτ such that π−1
τ V ⊆ π−1

σ U .
Moreover, for any minimal such τ , we have π−1

τ V ∈ Bτ .
Set B = ⋃

σ∈[I]<ω Bσ . By compactness, B is a neighborhood base of K . Moreover, if σ ,τ ∈ [I]<ω and Bσ � U ⊆ V ∈ Bτ ,
then σ = supp(U ) ⊇ supp(V ) = τ ; hence, given U , there are at most (supτ⊆σ κτ )-many possibilities for V . Thus, B is
(supσ∈[I]<ω κσ )op-like as desired. �
Question 2.3. Do there exist spaces X and Y such that χK Nt(X × Y ) exceeds χK Nt(X)χK Nt(Y )?

Lemma 2.4. Every poset P is almost |P |op-like.

Proof. Let κ = |P | and let 〈pα〉α<κ enumerate P . Define a partial map f :κ → P as follows. Suppose α < κ and we have a
partial map fα :α → P . If ran fα is dense in P , then set fα+1 = fα . Otherwise, set β = min{δ < κ: pδ � q for all q ∈ ran fα}
and let fα+1 be the smallest map extending fα such that fα+1(α) = pβ . For limit ordinals γ � κ , set fγ = ⋃

α<γ fα . Then
fκ is nonincreasing; hence, ran fκ is κop-like. Moreover, ran fκ is dense in P . �
Theorem 2.5. For any space X with point p, we have χNt(p, X) � χ(p, X), πNt(X) � π(X), Nt(X) � w(X)+ , and χK Nt(X) �
w(X).

Proof. The first two relations immediately follow from Lemma 2.4; the third relation is trivial. For the last relation, note
that if K is a compact subset of X , then it has neighborhood base of size at most w(X); apply Lemma 2.4. �

Given Theorem 2.2, justifying Observation 1.4 for Nt(·), πNt(·), and χNt(·) amounts to justifying it for first countable
homogeneous compacta, dyadic homogeneous compacta, and the two known kinds of exceptional homogeneous compacta.
The first countable case is the easiest. By Arhangel’skiı̆’s Theorem, first countable compacta have weight at most c, and
therefore have Noetherian type at most c+ . Moreover, every point in a first countable space clearly has an ωop-like local
base. The only nontrivial bound is the one on Noetherian π -type. For that, the following theorem suffices.

Definition 2.6. Give a space X , let πsw(X) denote the least κ such that X has a π -base A such that
⋂

B = ∅ for all
B ∈ [A]κ+

.

Theorem 2.7. If X is a compactum, then πNt(X) � πsw(X)+ � t(X)+ � χ(X)+ .

Proof. Only the second relation is nontrivial; it is a theorem of Šapirovskiı̆ [26]. �
For dyadic homogeneous compacta, Theorem 1.5 obviously implies Observation 1.4; we will prove this theorem in Sec-

tion 3. Now consider the two known classes exceptional homogeneous compacta. They are constructed by two techniques,
resolutions and amalgams. First we consider the exceptional resolution.

Definition 2.8. Suppose X is a space, 〈Y p〉p∈X is a sequence of nonempty spaces, and 〈 f p〉p∈X ∈ ∏
p∈X C(X \ {p}, Y p). Then

the resolution Z of X at each point p into Y p by f p is defined by setting Z = ⋃
p∈X ({p} × Y p) and declaring Z to have

weakest topology such that, for every p ∈ X , open neighborhood U of p in X , and open V ⊆ Y p , the set U ⊗ V is open in Z
where

U ⊗ V = ({p} × V
) ∪

⋃
q∈U∩ f −1

p V

({q} × Yq
)
.

The resolution of concern to us in constructed by van Mill [30]. It is a compactum with weight c, π -weight ω, and char-
acter ω1. Moreover, assuming MA + ¬CH (or just p > ω1), this space is homogeneous. (It is not homogeneous if 2ω < 2ω1 .)
For a proof that this space is exceptional (assuming MA+¬CH), see [20]. Clearly, this space has sufficiently small Noetherian
type and π -type. We just need to show that it has local Noetherian type ω. Van Mill’s space is a resolution of 2ω at each
point into Tω1 where T is the circle group R/Z.

Notice that T is metrizable. The following lemma proves that every metric compactum has Noetherian type ω, along
with some results that will be useful in Section 3.

Lemma 2.9. Let X be a metric compactum with base A. Then there exists B ⊆ A satisfying the following.

(1) B is a base of X .
(2) B is ωop-like.
(3) If U , V ∈ B and U � V , then U ⊆ V .
(4) For all Γ ∈ [B]<ω , there are only finitely many U ∈ B such that Γ contains {V ∈ B: U � V }.
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Proof. Construct a sequence 〈Bn〉n<ω of finite subsets of A as follows. For each n < ω, let En be the union of the set of all
singletons in

⋃
m<n Bm . Let Cn be the set of all U ∈ A for which U ∩ En = ∅ and

2−n � diam U < min

{
diam V : V ∈

⋃
m<n

Bm and 0 < diam V

}

and U ⊆ V for all V ∈ ⋃
m<n Bm strictly containing U . Then

⋃
Cn = X \ En . Let Bn be a minimal finite subcover of Cn . Set

B = ⋃
n<ω Bn . To prove (3), suppose U ∈ Bn and V ∈ Bm and U � V . Then m �= n by minimality of Bn . Also, 0 < diam V

because ∅ �= U � V . Hence, if m > n, then diam V < diam U , in contradiction with U � V . Hence, m < n; hence, U ⊆ V .
For (1), let p ∈ X and n < ω, and let V be the open ball with radius 2−n and center p. Then we just need to show that

there exists U ∈ B such that p ∈ U ⊆ V . Hence, we may assume {p} /∈ B. Hence, p /∈ En+1; hence, there exists U ∈ Bn+1
such that p ∈ U . Since diam U � 2−n−1, we have U ⊆ V .

For (2), let n < ω and U ∈ Bn . If U is a singleton, then every superset of U in B is in
⋃

m�n Bm . If U is not a singleton,
then U has diameter at least 2−m for some m < ω; whence, every superset of U in B is in

⋃
l�m Bl .

For (4), suppose Γ ∈ [B]<ω and there exist infinitely many U ∈ B such that {V ∈ B: U � V } ⊆ Γ . We may assume Γ

contains no singletons. Choose an increasing sequence 〈kn〉n<ω in ω such that, for all n < ω, there exists Un ∈ Bkn such
that {V ∈ B: Un � V } ⊆ Γ . For each n < ω, choose pn ∈ Un . Since {Un: n < ω} is infinite, we may choose 〈pn〉n<ω such
that {pn: n < ω} is infinite. Let p be an accumulation point of {pn: n < ω}. Choose m < ω such that 2−m < diam V for all
V ∈ Γ . Since p is not an isolated point, there exists W ∈ Bm such that p ∈ W . Then W /∈ Γ ; hence, W does not strictly
contain Un for any n < ω. Choose q ∈ W \ {p} such that W contains {x: d(p, x) � d(p,q)}; set r = d(p,q). Let B be the open
ball of radius r/2 centered about p. Then there exists n < ω such that 2−kn < r/2 and pn ∈ B . Hence, diam Un < r/2 and
Un ∩ B �= ∅; hence, Un ⊆ W and q /∈ Un; hence, Un � W , which is absurd. Therefore, for each Γ ∈ [B]<ω , there are only
finitely many U ∈ B such that {V ∈ B: U � V } ⊆ Γ . �

We have Nt(2ω) = Nt(Tω1 ) = ω by Lemma 2.9 and Theorem 2.2. Therefore, the following theorem implies that van Mill’s
space has local Noetherian type ω.

Lemma 2.10. (See [30].) Suppose X, 〈Y p〉p∈X , 〈 f p〉p∈X , and Z are as in Definition 2.8. Suppose U is a local base at a point p in X
and V is a local base at a point y in Y p . Then {U ⊗ V : 〈U , V 〉 ∈ U × (V ∪ {Y p})} is a local base at 〈p, y〉 in Z .

Theorem 2.11. Suppose X, 〈Y p〉p∈X , 〈 f p〉p∈X , and Z are as in Definition 2.8. Then χNt(〈p, y〉, Z) � Nt(X)χNt(y, Y p) for all
〈p, y〉 ∈ Z .

Proof. Set κ = Nt(X)χNt(y, Y p). Let A be a κop-like base of X and let B be a κop-like local base at y in Y p ; we may assume
Y p ∈ B. Set C = {U ∈ A: p ∈ U }. Set D = {U ⊗ V : 〈U , V 〉 ∈ C × B}, which is a local base at 〈p, y〉 in Z by Lemma 2.10. If there
exists U ⊗ V ∈ D such that U ∩ f −1

p V = ∅, then U ⊗ V is homeomorphic to V ; whence, χNt(〈p, y〉, Z) = χNt(y, Y p) � κ .

Hence, we may assume U ∩ f −1
p V �= ∅ for all U ⊗ V ∈ D.

It suffices to show that D is κop-like. Suppose Ui ⊗ V i ∈ D for all i < 2 and U0 ⊗ V 0 ⊆ U1 ⊗ V 1. Then V 0 ⊆ V 1 and
∅ �= U0 ∩ f −1

p V 0 ⊆ U1 ∩ f −1
p V 1. Since B is κop-like, there are fewer than κ-many possibilities for V 1 given V 0. Since A is

a κop-like base, there are fewer than κ-many possibilities for U1 given U0 and V 0. Hence, there are fewer than κ-many
possibilities for U1 ⊗ V 1 given U0 ⊗ V 0. �
Definition 2.12. Let p denote the least κ for which some A ∈ [[ω]ω]κ has the strong finite intersection property but does
not have a nontrivial pseudointersection. By a theorem of Bell [4], p is also the least κ for which there exist a σ -centered
poset P and a family D of κ-many dense subsets of P such that P does not have a D-generic filter.

Definition 2.13. Given a space X , let Aut(X) denote the set of its autohomeomorphisms.

Van Mill’s construction has been generalized by Hart and Ridderbos [10]. They show that one can produce an exceptional
homogeneous compactum with weight c and π -weight ω by carefully resolving each point of 2ω into a fixed space Y
satisfying the following conditions.

(1) Y is a homogeneous compactum.
(2) ω1 � χ(Y ) � w(Y ) < p.
(3) ∃d ∈ Y ∃η ∈ Aut(Y ) {ηn(d): n < ω} = Y .
(4) If γω is a compactification of ω and γω \ ω ∼= Y , then Y is a retract of γω.

By Theorem 2.11, to show that such resolutions have local Noetherian type ω, it suffices to show that every such Y has local
Noetherian type ω. Theorem 2.16 will accomplish this.
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Theorem 2.14. Suppose X is a compactum and πχ(p, X) = χ(q, X) for all p,q ∈ X. Then χNt(p, X) = ω for some p ∈ X. In partic-
ular, if X is a homogeneous compactum and πχ(X) = χ(X), then χNt(X) = ω.

The proof of Theorem 2.14 will be delayed until Section 5.
The following lemma is essentially a generalization of a similar result of Juhász [15].

Lemma 2.15. Suppose X is a compactum and ω = d(X) � w(X) < p. Then there exists p ∈ X such that χ(p, X) � π(X).

Proof. Let A be a base of X of size at most w(X). Let B be a π -base of X of size at most π(X). For each 〈U , V 〉 ∈ B2

satisfying U ⊆ V , choose a closed Gδ-set Φ(U , V ) such that U ⊆ Φ(U , V ) ⊆ V . Then ran Φ , ordered by ⊆, is σ -centered
because d(X) = ω. Since |A| < p, there is a filter G of ran Φ such that for all disjoint U , V ∈ A some K ∈ G satisfies
U ∩ K = ∅ or V ∩ K = ∅. Hence, there exists a unique p ∈ ⋂

G . Hence, p has pseudocharacter, and therefore character, at
most |G|, which is at most π(X). �
Theorem 2.16. If X is a homogeneous compactum and ω = d(X) � w(X) < p, then χNt(X) = ω.

Proof. By Lemma 2.15, χ(X) � π(X) = πχ(X)d(X) = πχ(X). Hence, by Theorem 2.14, χNt(X) = ω. �
Amalgams are defined in [20] as follows.

Definition 2.17. Suppose X is a T0 space, S is a subbase of X such that ∅ /∈ S , and 〈Y S 〉S∈S is a sequence of nonempty
spaces. The amalgam Y of 〈Y S : S ∈ S 〉 is defined by setting Y = ⋃

p∈X

∏
p∈S∈S Y S and declaring Y to have the weakest

topology such that, for each S ∈ S and open U ⊆ Y S , the set π−1
S U is open in Y where π−1

S U = {p ∈ Y : S ∈ dom p
and p(S) ∈ U }. Define π : Y → X by {π(p)} = ⋂

dom p for all p ∈ Y . It is easily verified that π is continuous.

Theorem 2.18. Suppose X, S , 〈Y S 〉S∈S , and Y be as in Definition 2.17. Then we have the following relations for all p ∈ Y .

Nt(Y ) � Nt(X) sup
S∈S

Nt(Y S ),

πNt(Y ) � πNt(X) sup
S∈S

πNt(Y S ),

χNt(p, Y ) � χNt
(
π(p), X

)
sup

S∈dom p
χNt

(
p(S), Y S

)
.

Proof. We will only prove the first relation; the proofs of the others are almost identical. Set κ = Nt(X) supS∈S Nt(Y S ).
Let A be a κop-like base of X . For each S ∈ S , let B S be a κop-like base of Y S . Set

C =
{
π−1U ∩

⋂
S∈domτ

π−1
S τ (S): τ ∈

⋃
F ∈[S ]<ω

∏
S∈F

B S \ {Y S } and A � U ⊆
⋂

domτ

}
.

Then C is clearly a base of Y . Let us show that C is κop-like. Suppose π−1Ui ∩ ⋂
S∈domτi

π−1
S τi(S) ∈ C for all i < 2 and

π−1U0 ∩
⋂

S∈domτ0

π−1
S τ0(S) ⊆ π−1U1 ∩

⋂
S∈domτ1

π−1
S τ1(S).

Then U0 ⊆ U1 and domτ0 ⊇ domτ1 and τ0(S) ⊆ τ1(S) for all S ∈ domτ1. Hence, there are fewer than κ-many possibilities
for U1 and τ1 given U0 and τ0. �

An exceptional homogeneous compactum Y is constructed in [20] with X = T and w(Y S ) = π(Y S ) = c and χ(Y S ) = ω
for all S ∈ S . Hence, Nt(Y S ) � c+ and χNt(Y S ) = ω for each S ∈ S . Moreover, each Y S is 2γ ordered lexicographically
where γ is a fixed indecomposable ordinal in ω1 \ (ω + 1). Since cfγ = ω, it is easy to construct an ωop-like π -base of this
space. Hence, by Theorem 2.18, Nt(Y ) � c+ and πNt(Y ) = χNt(Y ) = ω. Thus, Observation 1.4 is justified for Nt(·), πNt(·),
and χNt(·).

It remains to justify Observation 1.4 for χK Nt(·). We first note that all known homogeneous compacta are continuous
images of products of compacta each of weight at most c. (Moreover, it is shown in [20] that any Z as in Definition 2.17 is
a continuous image of X × ∏

S∈S Y S .) Therefore, the following theorem will suffice.

Theorem 2.19. Suppose Y is a continuous image of a product X = ∏
i∈I Xi of compacta. Then χK Nt(Y ) � supi∈I w(Xi).

Before proving the above theorem, we first prove two lemmas.
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Definition 2.20. Given subsets P and Q of a common poset, define P and Q to be mutually dense if for all p0 ∈ P and
q0 ∈ Q there exist p1 ∈ P and q1 ∈ Q such that p0 � q1 and q0 � p1.

Lemma 2.21. Let κ be a cardinal and let P and Q be mutually dense subsets of a common poset. Then P is almost κop-like if and only
if Q is.

Proof. Suppose D is a κop-like dense subset of P . Then it suffices to construct a κop-like dense subset of Q . Define a partial
map f from |D|+ to Q as follows. Set f0 = ∅. Suppose α < |D|+ and we have constructed a partial map fα from α to Q . Set
E = {d ∈ D: d � q for all q ∈ ran fα}. If E = ∅, then set fα+1 = fα . Otherwise, choose q ∈ Q such that q � e for some e ∈ E ,
and let fα+1 be the smallest function extending fα such that fα+1(α) = q. For limit ordinals γ � |D|+ , set fγ = ⋃

α<γ fα .
Set f = f |D|+ .

Let us show that ran f is κop-like. Suppose otherwise. Then there exists q ∈ ran f and an increasing sequence 〈ξα〉α<κ in
dom f such that q � f (ξα) for all α < κ . By the way we constructed f , there exists 〈dα〉α<κ ∈ Dκ such that f (ξβ) � dβ �= dα

for all α < β < κ . Choose p ∈ P such that p � q. Then choose d ∈ D such that d � p. Then d � dβ �= dα for all α < β < κ ,
which contradicts that D is κop-like. Therefore, ran f is κop-like.

Finally, let us show that ran f is a dense subset of Q . Suppose q ∈ Q . Choose p ∈ P such that p � q. Then choose d ∈ D
such that d � p. By the way we constructed f , there exists r ∈ ran f such that r � d; hence, r � q. �
Lemma 2.22. Suppose f : X → Y is a continuous surjection between compacta and C is closed in Y . Then χNt( f −1C, X) =
χNt(C, Y ).

Proof. Let A be a neighborhood base of C . By Lemma 2.21, it suffices to show that { f −1 V : V ∈ A} is a neighborhood base
of f −1C . Suppose U is a neighborhood of f −1C . By normality of Y , we have f −1C = ⋂

V ∈A f −1 V . By compactness of X ,
we have f −1 V ⊆ U for some V ∈ A. Thus, { f −1 V : V ∈ A} is a neighborhood base of f −1C as desired. �
Proof of Theorem 2.19. By Lemma 2.22, we may assume Y = X . By Theorem 2.2, we may assume I is finite. Apply Theo-
rem 2.5. �

How sharp are the bounds of Observation 1.4? (3) is trivially sharp as every space has local Noetherian type at least ω.
We will show that there is a homogeneous compactum with Noetherian type c+ , namely, the double arrow space. Moreover,
we will show that Suslin lines have uncountable Noetherian π -type. It is known to be consistent that there are homoge-
neous compact Suslin lines, but it is also known to be consistent that there are no Suslin lines. It is not clear whether it is
consistent that all homogeneous compacta have Noetherian π -type ω, even if we restrict to the first countable case. Also,
it is not clear in any model of ZFC whether all first countable homogeneous compacta have compact Noetherian type ω.

Question 2.23. Is there a first countable compactum with uncountable compact Noetherian type?

The following proposition is essentially due to Peregudov [23].

Proposition 2.24. If X is a space and π(X) < cfκ � κ � w(X), then Nt(X) > κ .

Proof. Suppose A is a base of X and B is π -base of X of size π(X). Then |A| � κ ; hence, there exist U ∈ [A]κ and V ∈ B
such that V ⊆ ⋂

U . Hence, there exists W ∈ A such that W ⊆ V ⊆ ⋂
U ; hence, A is not κop-like. �

Example 2.25. The double arrow space, defined as ((0,1] × {0}) ∪ ([0,1) × {1}) ordered lexicographically, has π -weight ω
and weight c, and is known to be compact and homogeneous. By Proposition 2.24, it has Noetherian type c+ .

Theorem 2.26. Suppose X is a Suslin line. Then πNt(X) � ω1 .

Proof. Let A be a π -base of X consisting only of open intervals. By Lemma 2.21, it suffices to show that A is not ωop-like.
Construct a sequence 〈Bn〉n<ω of maximal pairwise disjoint subsets of A as follows. Choose B0 arbitrarily. Given n < ω
and Bn , choose Bn+1 such that it refines Bn and Bn ∩ Bn+1 ⊆ [X]1.

Let E denote the set of all endpoints of intervals in
⋃

n<ω Bn . Since X is Suslin, there exists U ∈ A \ [X]1 such that
U ∩ E = ∅. For each n < ω, the set

⋃
Bn is dense in X by maximality; whence, there exists Vn ∈ Bn such that U ∩ Vn �= ∅.

Since U ∩ E = ∅, we have U ⊆ ⋂
n<ω Vn . Thus, A is not ωop-like. �

MA + ¬CH implies there are no Suslin lines. It is not clear whether it further implies every homogeneous compactum
has Noetherian π -type ω. However, the next theorem gives us a partial result. First, we need a lemma very similar to the
result that MA + ¬CH implies all Aronszajn trees are special.
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Definition 2.27. Given a subset E of a poset Q , let ↑Q E denote the set of q ∈ Q for which q has a lower bound in E .

Lemma 2.28. Assume MA. Suppose Q is an ω
op
1 -like poset of size less than c. Then Q is almost ωop-like or Q has an uncountable

centered subset.

Proof. Set P = [Q ]<ω and order P such that σ � τ if and only if σ ∩ ↑Q τ = τ . A sufficiently generic filter G of P will be
such that

⋃
G is a dense ωop-like subset of Q . Hence, if P is ccc, then Q is almost ωop-like. Hence, we may assume P has

an antichain A of size ω1. We may assume A is a Δ-system with root ρ . Since Q is ω
op
1 -like, we may assume σ ∩↑Q ρ = ρ

for all σ ∈ A. Choose a bijection 〈aα〉α<ω1 from ω1 to A. We may assume there exists an n < ω such that |aα \ ρ| = n for
all α < ω1. For each α < ω1, choose a bijection 〈aα,i〉i<n from n to aα \ ρ . For each x ∈ Q and i < n, set Ex,i = {α < ω1:
x �Q aα,i or aα,i �Q x}. For each α < ω1, since A is an antichain, we have

⋃
i<n

⋃
j<n Eaα,i , j = ω1. Choose a uniform

ultrafilter U on ω1. Then we may choose B ∈ [(⋃ A) \ ρ]ω1 and i < n such that Ex,i ∈ U for all x ∈ B .
It suffices to show that B is centered. Let σ ∈ [B]<ω . Set E = ⋂

x∈σ Ex,i . Then E ∈ U ; hence, |E| = ω1; hence, we may
choose α ∈ E \ {β < ω1: aβ,i ∈ ↑Q σ }. Then aα,i <Q x for all x ∈ σ . Thus, B is centered. �
Lemma 2.29. Suppose f : X → Y is an irreducible continuous surjection between spaces and X is regular. Then πNt(X) = πNt(Y ).

Proof. Let A be a πNt(X)op-like π -base of X and let B be a πNt(Y )op-like π -base of Y . By Lemma 2.21, we may assume A
consists only of regular open sets. Set C = { f −1U : U ∈ B}. Then C is πNt(Y )op-like. Suppose U is a nonempty open
subset of X . Then we may choose V ∈ B such that V ∩ f [X \ U ] = ∅. Then f −1 V ⊆ U . Thus, C is a π -base of X ; hence,
πNt(X) � πNt(Y ).

Set D = {Y \ f [X \ U ]: U ∈ A}. Suppose V is a nonempty open subset of Y . Then we may choose U ∈ A such that
U ⊆ f −1 V . Then Y \ f [X \ U ] ⊆ V . Thus, D is a π -base of Y . Now suppose U0, U1 ∈ A and U0 � U1. Then U0 � U 1

by regularity. By irreducibility, we may choose p ∈ Y \ f [X \ (U0 \ U 1)]. Then p ∈ f [X \ U1] and p /∈ f [X \ U0]. Hence,
Y \ f [X \ U0] � Y \ f [X \ U1]. Thus, D is πNt(X)op-like; hence, πNt(Y ) � πNt(X). �
Theorem 2.30. Assume MA. Let X be a compactum such that t(X) = ω and π() < c. Then πNt(X) = ω.

Proof. We may assume X is a closed subspace of [0,1]κ for some cardinal κ . By a result of Šapirovskiı̆ [26], since t(X) = ω,
there is an irreducible continuous map f from X onto a subspace of

⋃
I∈[κ]ω [0,1]I × {0}κ\I . Because of Lemma 2.29, we

may replace our hypothesis of t(X) = ω with X ⊆ ⋃
I∈[κ]ω [0,1]I × {0}κ\I . Set F = Fn(κ, (Q ∩ (0,1])2) and

A =
{

X ∩
⋂

α∈domσ

π−1
α

(
σ(α)(0),σ (α)(1)

)
: σ ∈ F

}
\ {∅},

which is a π -base of X . Then A witnesses that πsw(X) = ω. Hence, by Theorem 2.7 and Lemma 2.21, A contains an ω
op
1 -

like dense subset B, and it suffices to show that B is almost ωop-like. Seeking a contradiction, suppose B is not almost
ωop-like. By Lemma 2.28, B contains an uncountable centered subset C . Let the map〈

X ∩
⋂

α∈domσβ

π−1
α

(
σβ(α)(0),σβ(α)(1)

)〉
β<ω1

be an injection from ω1 to C . Then |⋃β<ω1
domσβ | = ω1. By compactness, the set

X ∩
⋂

β<ω1

⋂
α∈domσβ

π−1
α

[
σβ(α)(0),σβ(α)(1)

]

is nonempty, in contradiction with X ⊆ ⋃
I∈[κ]ω [0,1]I × {0}κ\I . �

Concerning compact Noetherian type, we note that if there is a homogeneous compactum X for which χK Nt(X) � ω1,
then X is not an ordered space.

Definition 2.31. A point p in a space X is Pκ -point if, for every set A of fewer than κ-many neighborhoods of p, the set⋂
A has p in its interior. A P -point is a Pω1 -point.

Theorem 2.32. If X is a homogeneous ordered compactum, then χK Nt(X) = ω.

Proof. We may assume X is infinite; hence, X has a point that is not a P -point. By homogeneity, min X is not a P -point;
hence, min X has countable character. By homogeneity, X is first countable. Let C be closed in X . Then X \ C is a disjoint
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union of open intervals
⋃

i∈I (ai,bi) such that (ai,bi) = ⋃
n<ω[ai,n,bi,n] and 〈ai,n〉n<ω is nonincreasing and 〈bi,n〉n<ω is

nondecreasing for all i ∈ I . Hence, {X \ ⋃
i∈domσ [ai,σ (i),bi,σ (i)]: σ ∈ Fn(I,ω)} is an ωop-like neighborhood base of C . �

It is worth noting that while products do not decrease cellularity, they can decrease Nt(·), πNt(·), and χNt(·), as shown
by the following theorem of Malykhin [18].

Theorem 2.33. Let p ∈ X = ∏
i∈I Xi where Xi is a nonsingleton T1 space for all i ∈ I . If supi∈I w(Xi) � |I|, then Nt(X) = ω. If

supi∈I π(Xi) � |I|, then πNt(X) = ω. If supi∈I χ(p(i), Xi) � |I|, then χNt(p, X) = ω.

Proof. See [18] for a proof of the first implication. That proof can be easily modified to demonstrate the other implica-
tions. �

In contrast, χK Nt(·) is not decreased by products when the factors are compacta. Just as is true of cellularity, the compact
Noetherian type of a product of compacta is the supremum of the compact Noetherian types of its finite subproducts.

Theorem 2.34. If X = ∏
i∈I Xi is a product of compacta, then χK Nt(X) = supσ∈[I]<ω χK Nt(

∏
i∈σ Xi).

Proof. To prove “�”, apply Theorem 2.2. To prove “�”, apply Lemma 2.22. �
Though cellularity and compact Noetherian type behave similarly for compacta, they do not coincide, even assuming

homogeneity. Given any indecomposable ordinal γ strictly between ω and ω1, the lexicographic ordering of 2γ is homo-
geneous and compact and has cellularity c by a result of Maurice [19]. However, by Theorem 2.32, this space has compact
Noetherian type ω.

3. Dyadic compacta

In this section, we prove a strengthened version of Theorem 1.5 and generalize it to continuous images of products of
compacta with bounded weight. We also investigate the spectrum of Noetherian types of dyadic compacta. Our approach is
to start with results about subsets of free boolean algebras and then use Stone duality to apply them to families of open
subsets of dyadic compacta.

By Lemma 2.4, every countable subset of a free boolean algebra is almost ωop-like. We wish to prove this for all sub-
sets of free boolean algebras. We achieve this by approximating free boolean algebras by smaller free subalgebras using
elementary substructures. More specifically, we use elementary submodels of Hθ where θ is a regular cardinal and Hθ is
the {∈}-structure of the family of sets that hereditarily have size less than θ . Whenever we use Hθ in an argument, we
implicitly assume that θ is sufficiently large to make the argument valid. As is typical with elementary submodels of Hθ ,
we need reflection properties. For our purposes, the crucial reflection property of free boolean algebras is given by the
following lemma.

Lemma 3.1. Let B be a free boolean algebra and let {B,∧,∨} ⊆ M ≺ Hθ . Then, for all q ∈ B, there exists r ∈ B ∩ M such that, for all
p ∈ B ∩ M, we have p � q if and only if p � r. In particular, r � q.

Proof. Let q ∈ B . We may assume q �= 0. By elementarity, there exists a map g ∈ M enumerating a set of mutually inde-
pendent generators of B . Set G = ⋃{{g(i), g(i)′}: i ∈ dom g}. Then there exists η ∈ [[G]<ω]<ω such that q = ∨

τ∈η

∧
τ and∧

τ �= 0 for all τ ∈ η. Set r = ∨
τ∈η

∧
(τ ∩ M). Let p ∈ B ∩ M; we may assume p �= 1. Then there exists ζ ∈ [[G ∩ M]<ω]<ω

such that p = ∧
σ∈ζ

∨
σ and

∨
σ �= 1 for all σ ∈ ζ . Hence, p � q iff, for all σ ∈ ζ and τ ∈ η, we have

∨
σ �

∧
τ , which is

equivalent to σ ∩ τ �= ∅, which is equivalent to σ ∩ τ ∩ M �= ∅. Thus, p � q if and only if p � r. �
The above lemma is not new. Fuchino proved that the conclusion of the above lemma is equivalent to the Freese–Nation

property, a property free boolean algebras are known to have. (See Section 2.2 and Theorem A.2.1 of [11] for details.)

Theorem 3.2. Every subset of every free boolean algebra is almost ωop-like.

Proof. Let B be a free boolean algebra; set κ = |B|. Given A ⊆ B , let ↑A denote the smallest semifilter of B containing A; if
A = {a} for some a, then set ↑a = ↑A. Let Q be a subset of B . If Q is a countable, then Q is almost ωop-like by Lemma 2.4.
Therefore, we may assume that κ > ω and the theorem is true for all free boolean algebras of size less than κ .

We will construct a continuous elementary chain 〈Mα〉α<κ of elementary submodels of Hθ and a continuous increasing
sequence of sets 〈Dα〉α<κ satisfying the following conditions for all α < κ .

(1) α ∪ {B,∧,∨, Q } ⊆ Mα and |Mα | � |α| + ω.
(2) Dα is a dense subset of Q ∩ Mα .
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(3) Dα ∩ ↑q is finite for all q ∈ Q ∩ Mα .
(4) Dα+1 ∩ ↑q = Dα ∩ ↑q for all q ∈ Q ∩ Mα .

Given this construction, set D = ⋃
α<κ Dα . Then D is a dense subset of Q by (2). Moreover, if α < κ and d ∈ Dα , then

d ∈ Q ∩ Mα by (2); whence, d is below at most finitely many elements of D by (3) and (4). Hence, Q is almost ωop-like.
For stage 0, choose any M0 ≺ Hθ satisfying (1). Since Q ∩ M0 ⊆ B ∩ M0, we may choose D0 to be an ωop-like dense

subset of Q ∩ M0, exactly what (2) and (3) require. At limit stages, (1) and (2) are clearly preserved, and (3) is preserved
because of (4).

For a successor stage α + 1, choose Mα+1 such that Mα ≺ Mα+1 ≺ Hθ and (1) holds for stage α + 1. Since Q ∩ Mα+1 ⊆
B ∩ Mα+1, there is an ωop-like dense subset E of Q ∩ Mα+1. Set Dα+1 = Dα ∪ (E \ ↑(Q ∩ Mα)). Then (4) is easily verified:
if q ∈ Q ∩ Mα , then

Dα+1 ∩ ↑q = (Dα ∩ ↑q) ∪ (
(E ∩ ↑q) \ ↑(Q ∩ Mα)

) = Dα ∩ ↑q.

Let us verify (2) for stage α + 1. Let q ∈ Q ∩ Mα+1. If q ∈ ↑(Q ∩ Mα), then q ∈ ↑Dα ⊆ ↑Dα+1 because of (2) for stage α.
Suppose q /∈ ↑(Q ∩ Mα). Choose e ∈ E such that e � q. Then e /∈ ↑(Q ∩ Mα); hence, q ∈ ↑(E \ ↑(Q ∩ Mα)) ⊆ ↑Dα+1.

It remains only to verify (3) for stage α + 1. Let q ∈ Q ∩ Mα+1. Then E ∩ ↑q is finite; hence, by the definition of Dα+1,
it suffices to show that Dα ∩ ↑q is finite. By Lemma 3.1, there exists r ∈ B ∩ Mα such that r � q and Mα ∩ ↑q = Mα ∩ ↑r;
hence, Dα ∩ ↑q = Dα ∩ ↑r. Since q ∈ Q , we have r ∈ Mα ∩ ↑Q . By elementarity, there exists p ∈ Q ∩ Mα such that p � r;
hence, Dα ∩ ↑r ⊆ Dα ∩ ↑p. By (2) for stage α, we have Dα ∩ ↑p is finite; hence, Dα ∩ ↑q is finite. �
Definition 3.3. For any space X , let Clop(X) denote the boolean algebra of clopen subsets of X .

Theorem 3.4. Let X be a dyadic compactum and let U be a family of subsets of X such that for all U ∈ U there exists V ∈ U such that
V ∩ X \ U = ∅. Then U is almost ωop-like.

Proof. Let f : 2κ → X be a continuous surjection for some cardinal κ . Set B = Clop(2κ ). Then B is a free boolean algebra.
Set V = { f −1U : U ∈ U }. Then it suffices to show that V is almost ωop-like. Let Q denote the set of all B ∈ B such that
V ⊆ B for some V ∈ V . By Theorem 3.2, Q is almost ωop-like. Hence, by Lemma 2.21, it suffices to show that Q and V
are mutually dense. By definition, every Q ∈ Q contains some V ∈ V ; hence, it suffices to show that every V ∈ V contains
some Q ∈ Q. Suppose V ∈ V . Choose U ∈ U such that U ∩ X \ f [V ] = ∅. Then there exists B ∈ B such that f −1U ⊆ B ⊆ V ;
hence, V ⊇ B ∈ Q. �

The following corollary is immediate and it implies the first half of Theorem 1.5.

Corollary 3.5. Let X be a dyadic compactum. Then, for all closed subsets C of X , every neighborhood base of C contains an ωop-like
neighborhood base of C . Moreover, every π -base of X contains an ωop-like π -base of X .

Remark. The first half of the above corollary can also proved simply by citing Theorem 2.19 and Lemma 2.21.

Next we state the natural generalizations of Lemma 3.1, Theorems 3.2, 3.4, and Corollary 3.5 to continuous images of
products of compacta with bounded weight. We will only remark briefly about the proofs of these generalizations, for they
are easy modifications of the corresponding old proofs.

Lemma 3.6. Let κ be a regular uncountable cardinal and let B be a coproduct
∐

i∈I Bi of boolean algebras all of size less than κ ; let
{B,∧,∨, 〈Bi〉i∈I } ⊆ M ≺ Hθ and M ∩κ ∈ κ + 1. Then, for all q ∈ B, there exists r ∈ B ∩ M such that, for all p ∈ B ∩ M, we have p � q
if and only if p � r. In particular, r � q.

Proof. Note that the subalgebra B ∩ M is the subcoproduct
∐

i∈I∩M Bi naturally embedded in B . Then proceed as in the
proof of Lemma 3.1 with

⋃
i∈I Bi , naturally embedded in B , playing the role of G . �

Theorem 3.7. Let κ � ω and B be a coproduct of boolean algebras all of size at most κ . Then every subset of B is almost κop-like.

Proof. The proof is essentially the proof of Theorem 3.2. Instead of using Lemma 3.1, use the instance of Lemma 3.6 for the
regular uncountable cardinal κ+ . �
Theorem 3.8. Let κ � ω and let X be Hausdorff and a continuous image of a product of compacta all of weight at most κ ; let U be
a family of subsets of X such that, for all U ∈ U , there exists V ∈ U such that V ∩ X \ U = ∅. Then U is almost κop-like.
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Proof. Let h :
∏

i∈I Xi → X be a continuous surjection where each Xi is a compactum with weight at most κ . Each Xi

embeds into [0,1]κ and is therefore a continuous image of a closed subspace of 2κ . Hence, we may assume
∏

i∈I Xi is
totally disconnected. The rest of the proof is just the proof of Theorem 3.4 with Theorem 3.7 replacing Theorem 3.2. �

The following corollary is immediate.

Corollary 3.9. Let κ � ω and let X be Hausdorff and a continuous image of a product of compacta all of weight at most κ . Then, for all
closed subsets C of X , every neighborhood base of C contains a κop-like neighborhood base of C . Moreover, every π -base of X contains
a κop-like π -base of X .

Remark. Again, the first half of the above corollary can also proved simply by citing Theorem 2.19 and Lemma 2.21.

In contrast to Corollary 3.5, not all dyadic compacta have ωop-like bases. The following proposition is essentially due to
Peregudov (see Lemma 1 of [23]). It makes it easy to produces examples of dyadic compacta X such that Nt(X) > ω.

Proposition 3.10. Suppose a point p in a space X satisfies πχ(p, X) < cfκ = κ � χ(p, X). Then Nt(X) > κ .

Proof. Let A be a base of X . Let U0 and V0 be, respectively, a local π -base at p of size at most πχ(p, X) and a local
base at p of size χ(p, X). For each element of U0, choose a subset in A, thereby producing a local π -base U at p that is
a subset of A of size at most πχ(p, X). Similarly, for each element of V0, choose a smaller neighborhood of p in A, thereby
producing a local base V at p that is a subset of A of size χ(p, X). Every element of V contains an element of U . Hence,
some element of U is contained in κ-many elements of V ; hence, A is not κop-like. �
Example 3.11. Let X be the discrete sum of 2ω and 2ω1 . Let Y be the quotient of X resulting from collapsing a point in 2ω

and a point in 2ω1 to a single point p. Then πχ(p, Y ) = ω and χ(p, Y ) = ω1; hence, Nt(Y ) > ω1.

Question 3.12. Is there a dyadic compactum X such that πχ(p, X) = χ(p, X) for all p ∈ X but X has no ωop-like base? In
particular, if Y is as in Example 3.11 and Z is the discrete sum of Y and 2ω2 , then does Zω1 have an ωop-like base?

As we shall see in Theorem 3.21, if we make an additional assumption about a dyadic compactum X , namely, that all
its points have π -character equal to its weight, then X has an ωop-like base. Also, we may choose this ωop-like base to
be a subset of an arbitrary base of X . To prove this, we approximate such an X by metric compacta. Each such metric
compactum is constructed using the following technique due to Bandlow [2].

Definition 3.13. Given a space X , let C(X) denote the set of continuous maps from X to R.

Definition 3.14. Suppose X is a space and F is a set. For all p ∈ X , let p/F denote the set of q ∈ X satisfying f (p) = f (q)

for all f ∈ F ∩ C(X). For each f ∈ F , define f /F : X/F → R by ( f /F )(p/F ) = f (p) for all p ∈ X .

Lemma 3.15. Suppose X is a compactum and F ⊆ C(X). Then X/F (with the quotient topology) is a compactum and its topology is
the coarsest topology for which f /F is continuous for all f ∈ F . Further suppose {X \ f −1{0}: f ∈ F } is a base of X and F ∈ M ≺ Hθ .
Then {(X \ f −1{0})/(F ∩ M): f ∈ F ∩ M} is a base of X/(F ∩ M).

Proof. If f ∈ F , then f /F is clearly continuous with respect to the quotient topology of X/F . Therefore, the compact
quotient topology on X/F is finer than the Hausdorff topology induced by { f /F : f ∈ F }. If a compact topology T0 is finer
than a Hausdorff topology T1, then T0 = T1. Hence, the quotient topology on X/F is the topology induced by { f /F : f ∈ F }.

Set A = {X \ f −1{0}: f ∈ F }. Suppose A is a base of X and F ∈ M ≺ Hθ . Let us show that {(X \ f −1{0})/(F ∩ M):
f ∈ F ∩ M} is a base of X/(F ∩ M). Let U denote the set of preimages of open rational intervals with respect to elements
of F ∩ M . Let V denote the set of nonempty finite intersections of elements of U . Then V ⊆ M and {V /(F ∩ M): V ∈ V }
is base of X/(F ∩ M). Suppose p ∈ V 0 ∈ V . Then it suffices to find W ∈ A ∩ M such that p ∈ W ⊆ V 0. Choose V 1 ∈ V such
that p ∈ V 1 ⊆ V 1 ⊆ V 0. Then there exist n < ω and W0, . . . , Wn−1 ∈ A such that V 1 ⊆ ⋃

i<n W i ⊆ V 0. By elementarity, we
may assume W0, . . . , Wn−1 ∈ M . Hence, there exists i < n such that p ∈ W i ⊆ V 0 and W i ∈ A ∩ M . �

To construct an ωop-like base of a suitable dyadic compactum X , we apply Lemma 2.9 to a family of spaces X/(F ∩ M)

where F ⊆ C(X) and M ranges over a transfinite sequence of countable elementary submodels of Hθ . This sequence is
constructed such that, loosely speaking, each submodel in the sequence knows about the preceding submodels.

Definition 3.16. Let κ be a regular uncountable cardinal and let 〈Hθ , . . .〉 be an expansion of the {∈}-structure Hθ to an
L-structure for some language L of size less than κ . Then a κ-approximation sequence in 〈Hθ , . . .〉 is an ordinally indexed
sequence 〈Mα〉α<η such that for all α < η we have {κ, 〈Mβ〉β<α} ⊆ Mα ≺ 〈Hθ , . . .〉 and |Mα | ⊆ Mα ∩ κ ∈ κ .
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The following lemma is a generalization of a technique of Jackson and Mauldin [13] of approximating a structure by
a tree of elementary substructures.

Lemma 3.17. Let κ and 〈Hθ , . . .〉 be as in Definition 3.16. Then there is a {κ}-definable map Ψ that sends every κ-approximation
sequence 〈Mα〉α<η in 〈Hθ , . . .〉 to a sequence 〈Σα〉α�η such that we have the following for all α � η.

(1) Σα is a finite set.
(2) |N| ⊆ N ≺ 〈Hθ , . . .〉 for all N ∈ Σα .
(3)

⋃
Σα = ⋃

β<α Mβ .
(4) If α < η, then Σα ∈ Mα .
(5) Σα is an ∈-chain.
(6) If N0, N1 ∈ Σα and N0 ∈ N1 , then |N0| > |N1|.
(7) 〈Σβ 〉β�α = Ψ (〈Mβ 〉β<α).

Moreover, |Σλ| = 1 and {α < λ: |Σα | = 1} is closed unbounded in λ for all infinite cardinals λ � η.

Proof. Let Ω denote the class of 〈γi〉i<n ∈ On<ω \ {∅} for which κ � |γi | > |γ j | for all i < j < n and |γn−1| < κ . Order Ω

lexicographically and let Υ be the order isomorphism from On to Ω . Given any σ = 〈γi〉i<n ∈ On<ω and i < n, set φi(σ ) =
〈γ0, . . . , γi−1,0〉 and φn(σ ) = σ . Let 〈Mα〉α<η be a κ-approximation sequence in 〈Hθ , . . .〉. For all α � η and i ∈ dom Υ (α),
set

Nα,i =
⋃{

Mβ : φi
(
Υ (α)

)
� Υ (β) < φi+1

(
Υ (α)

)};
set Σα = {Nα,i: i ∈ dom Υ (α)} \ {∅}. Then Ψ is {κ}-definable and it is easily verified that |Σλ| = 1 and {α < λ: |Σα | = 1}
is closed unbounded in λ for all infinite cardinals λ � η. Let us prove (1)–(7). (1), (3), (4), and (7) immediately follow
from the relevant definitions. Let α � η and 〈βi〉i<n = Υ (α). We may assume n > 0. For all σ ∈ Ω and i < n − 1, we have
φi(Υ (α)) � σ < φi+1(Υ (α)) if and only if σ is the concatenation of 〈β j〉 j<i and some τ ∈ Ω satisfying τ < 〈βi,0〉. Therefore,
|Nα,i| = |βi | for all i < n − 1. For all σ ∈ Ω , we have φn−1(Υ (α)) � σ < φn(Υ (α)) if and only if σ = 〈β0, . . . , βn−2, γ 〉 for
some γ < βn−1. Hence, |Nα,n−1| < κ ; hence, |Nα,i| > |Nα, j| for all i < j < n. Let Υ (αi) = φi(Υ (α)) for all i < n. If i < j < n,
then {Nα,k: k < j} = Σα j−1 ; whence, either Nα, j = ∅ or Nα,i ∈ Mα j−1 ⊆ Nα, j , depending on whether β j = 0. Thus, (5) and (6)
hold.

Finally, let us prove (2). Proceed by induction on α. Suppose βn−1 > 0. Since {Nα,i: i < n − 1} = Σαn−1 and αn−1 +
βn−1 = α, it suffices to show that |Nα,n−1| ⊆ Nα,n−1 ≺ 〈Hθ , . . .〉. If βn−1 ∈ Lim, then Nα,n−1 is the union of the ∈-chain
〈Nαn−1+γ ,n−1〉γ <βn−1 ; hence, |Nα,n−1| ⊆ Nα,n−1 ≺ 〈Hθ , . . .〉. If βn−1 /∈ Lim, then Nα,n−1 = Nα−1,n−1 ∪ Mα−1 = Mα−1 because
Nα−1,n−1 ∈ Mα−1 and |Nα−1,n−1| < κ ; hence, |Nα,n−1| ⊆ Nα,n−1 ≺ 〈Hθ , . . .〉.

Therefore, we may assume βn−1 = 0. Hence, Σα = {Nα,i: i < n − 1}; hence, we may assume n > 1. Since {Nα,i: i <

n − 2} = Σαn−2 and αn−2 < α, it suffices to show that |Nα,n−2| ⊆ Nα,n−2 ≺ 〈Hθ , . . .〉. If βn−2 = κ , then Nα,n−2 is the union
of the ∈-chain 〈Nαn−2+γ ,n−2〉γ <κ ; hence, |Nα,n−2| ⊆ Nα,n−2 ≺ 〈Hθ , . . .〉. Hence, we may assume βn−2 > κ . Let Υ (δγ ) =
〈β0, . . . , βn−3, γ ,0〉 for all γ ∈ [κ,βn−2). If βn−2 ∈ Lim, then Nα,n−2 is the union of the ∈-chain 〈Nδγ ,n−2〉κ�γ <βn−2 ; hence,
|Nα,n−2| ⊆ Nα,n−2 ≺ 〈Hθ , . . .〉. Hence, we may let βn−2 = ε + 1. Suppose |ε| = κ . Then Nα,n−2 = Nδε,n−2 ∪ ⋃

γ <κ Mδε+γ . If

γ < κ , then φn−1(Υ (δε + γ )) = Υ (δε); whence, δε and γ are definable from δε + γ and κ ; whence, γ ∪ ⋃
ρ<γ Mδε+ρ ⊆

Mδε+γ . Hence, |Nδε,n−2| = κ ⊆ ⋃
γ <κ Mδε+γ ≺ 〈Hθ , . . .〉. Moreover, since Nδε,n−2 ∈ Mδε , we have Nδε,n−2 ⊆ ⋃

γ <κ Mδε+γ ;
hence, |Nα,n−2| = κ ⊆ Nα,n−2 ≺ 〈Hθ , . . .〉.

Therefore, we may assume |ε| > κ . Let Υ (ζγ ) = 〈β0, . . . , βn−3, ε, κ + γ ,0〉 for all γ < |ε|. Then Nα,n−2 = Nδε,n−2 ∪⋃
γ <|ε| Nζγ ,n−1. If γ < |ε|, then Υ (ζγ )(n−1) = κ +γ ; whence, γ ∈ Mζγ ⊆ Nζγ +1,n−1. Hence, |ε| ⊆ ⋃

γ <|ε| Nζγ ,n−1 ≺ 〈Hθ , . . .〉.
Since |Nδε,n−2| = |ε| and Nδε,n−2 ∈ Mδε ⊆ Nζ0,n−1, we have Nδε,n−2 ⊆ ⋃

γ <|ε| Nζγ ,n−1. Hence, |Nα,n−2| = |ε| ⊆ Nα,n−2 ≺
〈Hθ , . . .〉. �
Proposition 3.18. If X is a topological space, then every base of X contains a base of size at most w(X).

Proof. Let A be an arbitrary base of X ; let B be a base of X of size at most w(X). Since X is hereditarily w(X)+-compact,
we may choose, for each U ∈ B, some AU ∈ [A]�w(X) such that U = ⋃

AU . Then
⋃{AU : U ∈ B} is a base of X and in

[A]�w(X) . �
Lemma 3.19. Let X be a dyadic compactum such that πχ(p, X) = w(X) for all p ∈ X. Let A be a base of X consisting only of cozero
sets. Then A contains an ωop-like base of X .

Proof. Set κ = w(X); by Proposition 3.18, we may assume |A| = κ . Choose F ⊆ C(X) such that A = {X \ g−1{0}: g ∈ F }.
Let h : 2λ → X be a continuous surjection for some cardinal λ. Let B be the free boolean algebra Clop(2λ). By Lemma 2.9,
we may assume κ > ω. Let 〈Mα〉α<κ be an ω1-approximation sequence in 〈Hθ ,∈, F ,h〉; set 〈Σα〉α�κ = Ψ (〈Mα〉α<κ) as
defined in Lemma 3.17.
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For each α < κ , set Aα = A ∩ Mα and Fα = F ∩ Mα . For every H ⊆ Aα , let H/Fα denote {U/Fα: U ∈ H}. By
Lemma 3.15, Aα/Fα is a base of X/Fα . Since X/Fα is a metric compactum, there exists Wα ⊆ Aα such that Wα/Fα is
a base of X/Fα satisfying (2)–(4) of Lemma 2.9. By (2) of Lemma 2.9, we may choose, for each U ∈ Wα , some Eα,U ∈ B ∩ Mα

such that h−1U ⊆ Eα,U ⊆ h−1 V for all V ∈ Wα satisfying U ⊆ V . Set Gα = {Eα,U : U ∈ Wα}.
Suppose Gα is not ωop-like. Then there exist U ∈ Wα and 〈Vn〉n<ω ∈ W ω

α such that Eα,U � Eα,Vn �= Eα,Vm for all m <

n < ω. Set Γ = {W ∈ Wα: U � W }. By (2) of Lemma 2.9, Γ is finite; hence, by (4) of Lemma 2.9, there exists n < ω such
that {W ∈ Wα: Vn � W } � Γ . Hence, there exists W ∈ Wα such that W strictly contains Vn but not U . Hence, by (3)
of Lemma 2.9, Eα,Vn ⊆ h−1W ; hence, h−1U ⊆ Eα,U � Eα,Vn ⊆ h−1W ; hence, U � W , which is absurd. Therefore, Gα is
ωop-like.

Let Vα denote the set of V ∈ Wα satisfying U � V for all nonempty open U ∈ ⋃
Σα . Let us show that Vα/Fα is a base

of X/Fα . If V ∈ Vα , then P (V )∩ Wα ⊆ Vα ; hence, it suffices to show that Vα covers X . Since |⋃Σα | < κ , every point of X
has a neighborhood in A that does not contain any nonempty open subset of X in

⋃
Σα . By compactness, there is cover

of X by finitely many such neighborhoods, say, W0, . . . , Wn−1. By elementarity, we may assume W0, . . . , Wn−1 ∈ Aα . Then
{W i: i < n} has a refining cover S ⊆ Wα . Hence, S ⊆ Vα ; hence, Vα covers X as desired.

Let Uα denote the set of U ∈ Vα such that U ⊆ V for some V ∈ Vα . Then Uα/Fα is clearly a base of X/Fα . Set Eα =
{Eα,U : U ∈ Uα}. Then Eα is ωop-like because it is a subset of Gα .

For all I ⊆ P (2κ ), set ↑I = {H ⊆ 2κ : H ⊇ I for some I ∈ I}. For all H ⊆ 2κ , set ↑H = ↑{H}. Set U = ⋃
α<κ Uα and

C = B ∩ ↑{h−1U : U ∈ U }. For all α � κ , set Dα = ⋃
β<α Eβ . Then we claim the following for all α � κ .

(1) Dα is a dense subset of C ∩ ⋃
Σα .

(2) Dα ∩ ↑H is finite for all H ∈ C ∩ ⋃
Σα .

(3) If α < κ , then Dα+1 ∩ ↑H = Dα ∩ ↑H for all H ∈ C ∩ ⋃
Σα .

We prove this claim by induction. For stage 0, the claim is vacuous. For limit stages, (1) is clearly preserved, and (2) is
preserved because of (3). Suppose α < κ and (1) and (2) hold for stage α. Then it suffices to prove (3) for stage α and to
prove (1) and (2) for stage α + 1.

Let us verify (3). Seeking a contradiction, suppose H ∈ C ∩ ⋃
Σα and Dα+1 ∩ ↑H �= Dα ∩ ↑H . Then Eα ∩ ↑H �= ∅; hence,

there exists U ∈ Uα such that H ⊆ Eα,U . By (1), there exist β < α and W ∈ Uβ such that Eβ,W ⊆ H . By definition, there
exists V ∈ Vα such that U ⊆ V . Hence, h−1W ⊆ Eβ,W ⊆ H ⊆ Eα,U ⊆ h−1 V ; hence, W ⊆ V . Since W ∈ Mβ ⊆ ⋃

Σα and
V ∈ Vα , we have W � V , which yields our desired contradiction.

Let us verify (1) for stage α + 1. By (1) for stage α, we have

Dα+1 = Dα ∪ Eα ⊆
(

C ∩
⋃

Σα

)
∪ (C ∩ Mα) = C ∩

⋃
Σα+1,

so we just need to show denseness. Let H ∈ C ∩ ⋃
Σα+1. If H ∈ ⋃

Σα , then H ∈ ↑Dα , so we may assume H ∈ Mα . By
elementarity, there exists U0 ∈ Uα such that h−1U0 ⊆ H . Choose U1 ∈ Uα such that U 1 ⊆ U0. Then Eα,U1 ⊆ h−1U0; hence,
Eα,U1 ⊆ H . Hence, H ∈ ↑Dα+1.

To complete the proof of the claim, let us verify (2) for stage α + 1. By (1) for stage α + 1, it suffices to prove Dα+1 ∩↑H
is finite for all H ∈ Dα+1. By (3), if H ∈ Dα , then Dα+1 ∩ ↑H = Dα ∩ ↑H , which is finite by (1) and (2) for stage α. Hence,
we may assume H ∈ Eα . Since Eα is ωop-like, it suffices to show that Dα ∩ ↑H is finite. Since Dα ⊆ ⋃

Σα , it suffices to
show that Dα ∩ N ∩ ↑H is finite for all N ∈ Σα . Let N ∈ Σα . By Lemma 3.1, there exists G ∈ B ∩ N such that G ⊇ H and
B ∩ N ∩ ↑H = B ∩ N ∩ ↑G; hence, Dα ∩ N ∩ ↑H = Dα ∩ N ∩ ↑G . Since G ⊇ H ∈ C , we have G ∈ C . By (2) for stage α, the set
Dα ∩ N ∩ ↑G is finite; hence, Dα ∩ N ∩ ↑H is finite.

Since U ⊆ A, it suffices to prove that U is an ωop-like base of X . Suppose p ∈ V ∈ A. Then there exists α < κ such that
V ∈ Aα . Hence, there exists U ∈ Uα such that p/Fα ∈ U/Fα ⊆ V /Fα ; hence, p ∈ U ⊆ V . Thus, U is a base of X .

Let us show that U is ωop-like. Suppose not. Then there exists α < κ and U0 ∈ Uα such that there exist infinitely many
V ∈ U such that U0 ⊆ V . Choose U1 ∈ Uα such that U 1 ⊆ U0. Suppose β < κ and U0 ⊆ V ∈ Uβ . Then Eα,U1 ⊆ h−1U0 ⊆
h−1 V ⊆ Eβ,V . By (1) and (2), Dκ is ωop-like; hence, there are only finitely many possible values for Eβ,V . Therefore, there
exist 〈γn〉n<ω ∈ κω and 〈Vn〉n<ω ∈ ∏

n<ω Uγn such that Vm �= Vn and Eγm,Vm = Eγn,Vn for all m < n < ω. Suppose that for
some δ < κ we have γn = δ for all n < ω. Let i < ω and set Γ = {W ∈ Wδ: V i � W }. By (2) and (4) of Lemma 2.9, there
exists j < ω such that {W ∈ Wδ: V j � W } � Γ . Hence, there exists W ∈ Wδ such that W strictly contains V j but not V i .
By (3) of Lemma 2.9, V j ⊆ W . Hence, h−1 V i ⊆ Eδ,V i = Eδ,V j ⊆ h−1W . Hence, V i ⊆ W . Since W does not strictly contain V i ,

we must have V i = V i = W . Hence, h−1 V i = Eδ,V i = Eδ,V 0 . Since i was arbitrary chosen, we have Vm = Vn = h[Eδ,V 0 ] for all
m,n < ω, which is absurd. Therefore, our supposed δ does not exist; hence, we may assume γ0 < γ1. By definition, there
exists W ∈ Vγ1 such that V 1 ⊆ W . Therefore, h−1 V 0 ⊆ Eγ0,V 0 = Eγ1,V 1 ⊆ h−1W ; hence, V 0 ⊆ W . Since V 0 ∈ Mγ0 ⊆ ⋃

Σγ1

and W ∈ Vγ1 , we have V 0 � W , which is absurd. Therefore, U is ωop-like. �
Let us show that we may remove the requirement that the base A in Lemma 3.19 consist only of cozero sets.
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Lemma 3.20. Suppose X is a space with no isolated points and χ(p, X) = w(X) for all p ∈ X. Further suppose κ = cfκ �
min{Nt(X), w(X)} and X has a network consisting of at most w(X)-many κ-compact sets. Then every base of X contains an Nt(X)op-
like base of X .

Proof. Set λ = Nt(X) and μ = w(X). Let A be an arbitrary base of X ; let B be a λop-like base of X ; let N be a network of X
consisting of at most μ-many κ-compact sets. By Proposition 3.18, we may assume |B| = μ. Let 〈〈Nα, Bα〉〉α<μ enumerate
{〈N, B〉 ∈ N × B: N ⊆ B}. Construct a sequence 〈Gα〉α<μ as follows. Suppose α < μ and 〈Gβ 〉β<α is a sequence of elements
of [B]<κ . For each p ∈ Nα , we have χ(p, X) = μ � κ = cfκ ; hence, we may choose Uα,p ∈ B such that p ∈ Uα,p /∈ ⋃

β<α Gβ .
Choose σα ∈ [Nα]<κ such that Nα ⊆ ⋃

p∈σα
Uα,p . Set Gα = {Uα,p: p ∈ σα}.

For each α < μ, choose Fα ∈ [A]<κ such that Nα ⊆ ⋃
Fα ⊆ Bα and Fα refines Gα . Set F = ⋃

α<μ Fα , which is easily

seen to be a base of X . Let us show that F is λop-like. Suppose not. Then, since κ = cfκ � λ, there exist V ∈ F , I ∈ [μ]λ ,
and 〈Wα〉α∈I ∈ ∏

α∈I Fα such that V ⊆ ⋂
α∈I Wα . For each α ∈ I , there is a superset of Wα in Gα . By induction, Gα ∩ Gβ = ∅

for all α < β < μ; hence, V has λ-many supersets in the λop-like base B, which is absurd, for V has a subset in B. �
Remark. If X is regular and locally κ-compact and κ � w(X), then it is easily seen that X has a network consisting of at
most w(X)-many κ-compact sets.

Theorem 3.21. Let X be a dyadic compactum such that πχ(p, X) = w(X) for all p ∈ X. Then every base A of X contains an ωop-like
base of X .

Proof. By Lemma 3.19, Nt(X) = ω. Since w(X) = πχ(p, X) � χ(p, X) � w(X) for all p ∈ X , we may apply Lemma 3.20 to
get a subset of A that is an ωop-like base of X . �

Finally, let us prove the second half of Theorem 1.5.

Corollary 3.22. Let X be a homogeneous dyadic compactum with base A. Then A contains an ωop-like base of X .

Proof. Efimov [6] and Gerlits [9] independently proved that the π -character of every dyadic compactum is equal to its
weight. Since X is homogeneous, πχ(p, X) = w(X) for all p ∈ X . Hence, A contains an ωop-like base of X by Theo-
rem 3.21. �

Note that a compactum is dyadic if and only if it a continuous image of a product of second countable compacta. Let us
prove generalizations of Theorem 3.21 and Corollary 3.22 about continuous images of products of compacta with bounded
weight.

Lemma 3.23. Suppose κ = cfκ > ω and X is a space such that πχ(p, X) = w(X) � κ for all p ∈ X. Further suppose X has a network
consisting of at most w(X)-many κ-compact closed sets. Then every base of X contains a w(X)op-like base of X .

Proof. Set λ = w(X) and let A be an arbitrary base of X . By Proposition 3.18, we may assume |A| = λ. Let N be a network
of X consisting of at most λ-many κ-compact sets. Let 〈Mα〉α<λ be a continuous elementary chain such that for all α < λ

we have A, N , Mα ∈ Mα+1 ≺ Hθ . We may also require that Mα ∩ κ ∈ κ > |Mα | for all α < κ and |Mα | = |κ + α| for all
α ∈ λ \ κ . For each α < λ, set Aα = A ∩ Mα . Set B = ⋃

α<λ Aα+1 \ ↑Aα , which is clearly λop-like. Let us show that B is
a base of X . Suppose p ∈ U ∈ A. Choose N ∈ N such that p ∈ N ⊆ U . Choose α < λ such that N, U ∈ Aα+1. For each q ∈ N ,
choose Vq ∈ A \ ↑Aα such that q ∈ Vq ⊆ U . Then there exists σ ∈ [N]<κ such that N ⊆ ⋃

q∈σ Vq . By elementarity, we may
assume 〈Vq〉q∈σ ∈ Mα+1. Choose q ∈ σ such that p ∈ Vq . Then Vq ∈ B and p ∈ Vq ⊆ U . Thus, B is a base of X . �
Theorem 3.24. Let κ � ω and let X be Hausdorff and a continuous image of a product of compacta each with weight at most κ .
Suppose πχ(p, X) = w(X) for all p ∈ X. Then every base of X contains a κop-like base.

Proof. Let h :
∏

i∈I Xi → X be a continuous surjection where each Xi is a compactum with weight at most κ . Each Xi
embeds into [0,1]κ and is therefore a continuous image of a closed subspace of 2κ . Hence, we may assume

∏
i∈I Xi is

totally disconnected. Set λ = w(X); by Lemmas 2.9 and 3.23, we may assume λ > κ . By Theorem 3.21, we may assume
κ > ω. Inductively construct a κ+-approximation sequence 〈Mα〉α<λ in 〈Hθ ,∈, C(X),h, 〈Clop(Xi)〉i∈I 〉 as follows. For each
α < λ, let 〈Nα,β〉β<κ be an ω1-approximation sequence in〈

Hθ ,∈, C(X),h, κ,
〈
Clop(Xi)

〉
i∈I , 〈Mβ〉β<α

〉
.

Set 〈Γα,β 〉β�κ = Ψ (〈Nα,β 〉β<κ) as defined in Lemma 3.17; let {Mα} = Γα,κ . Set 〈Σα〉α�λ = Ψ (〈Mα〉α<λ). Set F = C(X) ∩⋃
Σλ and A = {X \ f −1{0}: f ∈ F }. Then A is a base of X . By Lemma 3.20, it suffices to construct a subset of A that is a

κop-like base of X .
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For each α < λ, set Fα = F ∩ Mα . Let Vα denote the set of V ∈ A ∩ Mα satisfying U � V for all nonempty open
U ∈ ⋃

Σα . Arguing as in the proof Lemma 3.19, Vα/Fα is a base of X/Fα . For each β < κ , let Vα,β denote the set of all
V ∈ Vα ∩ Nα,β satisfying U � V for all nonempty open U ∈ ⋃

Γα,β . Let Rα,β denote the set of 〈U , V 〉 ∈ V 2
α,β for which

U ⊆ V ; set Uα,β = dom Rα,β ; set Uα = ⋃
β<κ Uα,β .

Let us show that Uα/Fα is also a base of X/Fα . Suppose p ∈ V ∈ Vα . Extend {V } to a finite subcover σ of Vα such
that p /∈ ⋃

(σ \ {V }). Choose β < κ such that σ ∈ Nα,β . For each q ∈ X , choose Vq,0, Vq,1 ∈ A such that q ∈ Vq,0 and there
exists W ∈ σ such that U � V q,0 ⊆ Vq,1 ⊆ W for all nonempty open U ∈ ⋃

Σα ∪ ⋃
Γα,β . Choose τ ∈ [X]<ω such that

X = ⋃
q∈τ Vq,0. By elementarity, we may assume 〈Vq,i〉〈q,i〉∈τ×2 ∈ Nα,β . Choose q ∈ τ such that p ∈ Vq,0. Then Vq,0 ∈ Uα,β

and p ∈ Vq,0 ⊆ V . Thus, Uα/Fα is a base of X/Fα .
Set B = Clop(

∏
i∈I Xi). For each 〈U0, U1〉 ∈ ⋃

β<κ Rα,β , choose Eα(U0, U1) ∈ B ∩ Mα such that h−1U 0 ⊆ Eα(U0, U1) ⊆
h−1U1. Set Eα,β = Eα[Rα,β ]. Set Eα = ⋃

β<κ Eα,β . Let us show that Eα is κop-like. Suppose β,γ < κ and Eα,β � H ⊆
K ∈ Eα,γ . Then it suffices to show that γ � β . Seeking a contradiction, suppose β < γ . There exist 〈U0, U1〉 ∈ Rα,β and
〈V 0, V 1〉 ∈ Rα,γ such that H = Eα(U0, U1) and K = Eα(V 0, V 1). Hence,

⋃
Γα,γ � U0 ⊆ V 1 ∈ Vα,γ , in contradiction with the

definition of Vα,γ .
Set U = ⋃

α<λ Uα and C = B ∩ ↑{h−1U : U ∈ U }. For all α � λ, set Dα = ⋃
β<α Eβ . Then we claim the following for all

α � λ.

(1) Dα is a dense subset of C ∩ ⋃
Σα .

(2) |Dα ∩ ↑H| < κ for all H ∈ C ∩ ⋃
Σα .

(3) If α < λ, then Dα+1 ∩ ↑H = Dα ∩ ↑H for all H ∈ C ∩ ⋃
Σα .

We prove this claim by induction. For stage 0, the claim is vacuous. For limit stages, (1) is clearly preserved, and (2) is
preserved because of (3). Suppose α < κ and (1) and (2) hold for stage α. Then it suffices to prove (3) for stage α and to
prove (1) and (2) for stage α + 1.

Let us verify (3). Seeking a contradiction, suppose H ∈ C ∩ ⋃
Σα and Dα+1 ∩ ↑H �= Dα ∩ ↑H . Then Eα ∩ ↑H �= ∅; hence,

there exists V ∈ Uα such that H ⊆ h−1 V . By (1), there exist β < α and U ∈ Uβ and K ∈ Eβ such that h−1U ⊆ K ⊆ H . Hence,
U ⊆ V . Since U ∈ Mβ ⊆ ⋃

Σα and V ∈ Vα , we have U � V , which yields our desired contradiction.
Let us verify (1) for stage α + 1. By (1) for stage α, we have

Dα+1 = Dα ∪ Eα ⊆
(

C ∩
⋃

Σα

)
∪ (C ∩ Mα) = C ∩

⋃
Σα+1,

so we just need to show denseness. Let H ∈ C ∩ ⋃
Σα+1. If H ∈ ⋃

Σα , then H ∈ ↑Dα , so we may assume H ∈ Mα . By
elementarity, there exists U ∈ Uα such that h−1U ⊆ H . Choose β < κ such that U ∈ Uα,β ; choose V ∈ Uα,β such that V ⊆ U .
Then Eα(V , U ) ⊆ H ; hence, H ∈ ↑Dα+1.

The proof of the claim is completed by noting that (2) for stage α + 1 can be verified just as in the proof of Lemma 3.19,
except that Lemma 3.6 is used in place of Lemma 3.1.

Just as in the proof of Lemma 3.19, U is a base of X ; hence, it suffices to show that U is κop-like. Suppose γ < λ and
δ < κ and U ∈ Uγ ,δ and 〈〈ζα,ηα〉〉α<κ ∈ (λ × κ)κ and 〈Wα〉α<κ ∈ ∏

α<κ Uζα,ηα and U ⊆ ⋂
α<κ Wα . Then it suffices to show

that Wα = Wβ for some α < β < κ . Choose V ∈ Uγ ,δ such that V ⊆ U . For each α < κ , choose Vα ∈ Vζα,ηα such that
W α ⊆ Vα ; set Hα = Eζα (Wα, Vα). Then Eγ (V , U ) ⊆ ⋂

α<κ Hα . By (1) and (2), Dλ is κop-like; hence, there exists J ∈ [κ]ω1

such that Hα = Hβ for all α,β ∈ J ; hence, Wα ⊆ Vβ for all α,β ∈ J . If α,β ∈ J and ζα < ζβ , then
⋃

Σζβ � Wα ⊆ Vβ ,
in contradiction with Vβ ∈ Vζβ . Hence, ζα = ζβ for all α,β ∈ J . If α,β ∈ J and ηα < ηβ , then

⋃
Γζβ,ηβ � Wα ⊆ Vβ , in

contradiction with Vβ ∈ Vζβ ,ηβ . Hence, ηα = ηβ for all α,β ∈ J . Hence, {Wα: α ∈ J } ⊆ Nζmin J ,ηmin J ; hence, Wα = Wβ for
some α < β < κ . �
Lemma 3.25. Let κ be an uncountable regular cardinal; let X be a compactum such that w(X) � κ and X is a continuous image of
a product of compacta each with weight less than κ . Then π(X) = w(X).

Proof. It suffices to prove that π(X) � κ . Seeking a contradiction, suppose A is a π -base of X of size less than κ . Let
〈Xi〉i∈I be a sequence of compacta each with weight less than κ and let h be a continuous surjection from

∏
i∈I Xi to X .

Choose M ≺ Hθ such that A ∪ {C(X),h, 〈C(Xi)〉i∈I } ⊆ M and |M| = |A|. Choose p ∈ M ∩ ∏
i∈I Xi and set Y = {q ∈ ∏

i∈I Xi :
p � (I \ M) = q � (I \ M)}. Then it suffices to show that h[Y ] = X , for that implies κ � w(X) � w(Y ) < κ . Seeking a contra-
diction, suppose h[Y ] �= X . Then there exists U ∈ A such that U ∩ h[Y ] = ∅. By elementarity, there exists σ ∈ [I ∩ M]<ω and
〈V i〉i∈σ such that V i is a nonempty open subset of Xi for all i ∈ σ , and

⋂
i∈σ π−1

i V i ⊆ h−1U . Hence, Y ∩ ⋂
i∈σ π−1

i V i �= ∅,
in contradiction with U ∩ h[Y ] = ∅. �
Definition 3.26. Given any cardinal κ , set logκ = min{λ: 2λ � κ}.

Lemma 3.27. Let κ be an uncountable regular cardinal; let X be a compactum such that w(X) � κ and X is a continuous image of
a product of compacta each with weight less than κ . Then πχ(X) = w(X).
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Proof. Let 〈Xi〉i∈I be a sequence of compacta each with weight less than κ and let h be a continuous surjection from
∏

i∈I Xi
to X . For any space Y , we have π(Y ) = πχ(Y )d(Y ). Hence, w(X) = π(X) = πχ(X)d(X) by Lemma 3.25; hence, we may
assume d(X) = w(X). Arguing as in the proof of Lemma 3.25, if A is a π -base of X and A ∪{C(X),h, 〈C(Xi)〉i∈I } ⊆ M ≺ Hθ ,
then X is a continuous image of

∏
i∈I∩M Xi ; hence, we may assume |I| = π(X). By 5.5 of [14], d(X) � d(

∏
i∈I Xi) � κ · log |I|.

By 2.37 of [14], d(Y ) � πχ(Y )c(Y ) for all T3 non-discrete spaces Y . Since κ is a caliber of Xi for all i ∈ I , it is also a caliber
of X ; hence, |I| = π(X) = d(X) � πχ(X)κ ; hence, log |I| � κ · πχ(X). Therefore, w(X) = d(X) � κ · πχ(X); hence, we may
assume w(X) = κ .

Let 〈Uα〉α<κ enumerate a base of X . For each α < κ , choose pα ∈ Uα . Since d(X) = w(X) = κ , there is no α < κ such
that {pβ : β < α} is dense in X . Since κ is a caliber of X , we may choose p ∈ X \ ⋃

α<κ {pβ : β < α}. It suffices to show
that πχ(p, X) = κ . Seeking a contradiction, suppose πχ(p, X) < κ . Then there exists α < κ such that {Uβ : β < α} contains
a local π -base at p; hence, p ∈ {pβ : β < α}, in contradiction with how we chose p. �
Theorem 3.28. Let 〈Xi〉i∈I be a sequence of compacta; let X be a homogeneous compactum; let h :

∏
i∈I Xi → X be a continuous

surjection. If there is a regular cardinal κ such that w(Xi) < κ � w(X) for all i ∈ I , then every base of X contains a (supi∈I w(Xi))
op-

like base. Otherwise, w(X) � supi∈I w(Xi) and every base of X trivially contains a (w(X)+)op-like base.

Proof. The latter case is a trivial application of Proposition 3.18. In the former case, Lemma 3.27 implies πχ(p, X) = w(X)

for all p ∈ X ; apply Theorem 3.24. �
Every known homogeneous compactum is a continuous image of a product of compacta each with weight at most c;

hence, Theorem 3.28 provides a uniform justification for our observation that all known homogeneous compacta have
Noetherian type at most c+ . Analogously, since every known homogeneous compactum is such a continuous image, it
has c+ among its calibers; hence, it has cellularity at most c.

Let us now turn to the spectrum of Noetherian types of dyadic compacta and a proof of Theorem 1.6.

Theorem 3.29. Let κ and λ be infinite cardinals such that λ < κ . Let X be the discrete sum of 2κ and 2λ . Let Y be the quotient space
induced by collapsing 〈0〉α<κ and 〈0〉α<λ to a single point p. If λ < cfκ , then Nt(Y ) = κ+ . If λ � cfκ , then Nt(Y ) = κ .

Proof. Clearly χ(p, Y ) = κ and πχ(p, Y ) = λ. Hence, if λ < cfκ , then κ+ � Nt(Y ) � w(Y )+ = κ+ by Proposition 3.10.
Suppose λ � cfκ . We still have κ � Nt(Y ) by Proposition 3.10, so it suffices to construct a κop-like base of Y . Let ∼ be the
equivalence relation such that Y = X/∼. In building a base of Y , we proceed in the canonical way when away from p: for
each μ ∈ {κ,λ}, set

Aμ = {{
x ∈ 2μ: η ⊆ x

}
/∼: η ∈ Fn(μ,2) and η−1{1} �= ∅}

.

Choose f0 :κ → cfκ such that for all α < cfκ the preimage f −1
0 {α} is bounded in κ . Define f : [κ]<ω → cfκ by f (σ ) =

f0(supσ) for all σ ∈ [κ]<ω . Choose g0 :λ → cfκ such that for all α < cfκ the preimage g−1
0 {α} is unbounded in λ. Define

g : [λ]<ω → cfκ by g(σ ) = g0(supσ) for all σ ∈ [λ]<ω . Set

A p =
⋃

α<cfκ

{({
x ∈ 2κ : x[σ ] = {0}} ∪ {

x ∈ 2λ: x[τ ] = {0}})/∼: 〈σ ,τ 〉 ∈ f −1{α} × g−1{α}}.
Set A = Aκ ∪ Aλ ∪ A p . Let us show that A is a κop-like base of Y . The only nontrivial aspect of showing that A is

a base of Y is verifying that A p is a local base at p. Suppose U is an open neighborhood of p. Then there exist σ ∈ [κ]<ω

and τ ∈ [λ]<ω such that({
x ∈ 2κ : x[σ ] = {0}} ∪ {

x ∈ 2λ: x[τ ] = {0}})/∼ ⊆ U .

Choose α < λ such that supτ < α and g0(α) = f (σ ). Set τ ′ = τ ∪ {α} and

V = ({
x ∈ 2κ : x[σ ] = {0}} ∪ {

x ∈ 2λ: x[τ ′] = {0}})/∼.

Then V ⊆ U and V ∈ A p because f (σ ) = g(τ ′). Thus, A is a base of Y .
Let us show that A is κop-like. Suppose U , V ∈ A and U ⊆ V . If U ∈ Aκ , then, fixing U , there are only finitely possi-

bilities for V in Aκ ; the same is true if κ is replaced by λ or p. Hence, we may assume U ∈ Ai and V ∈ A j for some
{i, j} ∈ [{κ,λ, p}]2. Since no element of A p is a subset of an element of Aκ ∪ Aλ , we have i �= p. Hence, there exists
η ∈ Fn(i,2) such that U = {x ∈ 2i: η ⊆ x}/∼. Since

⋃
Aκ ∩ ⋃

Aλ = ∅, we have j = p. Hence, there exist σ ∈ [κ]<ω and
τ ∈ [λ]<ω such that

V = ({
x ∈ 2κ : x[σ ] = {0}} ∪ {

x ∈ 2λ: x[τ ] = {0}})/∼.

If i = κ , then σ ⊆ η−1{0}; hence, fixing U , there are only finitely many possibilities for σ , and at most λ-many pos-
sibilities for τ . If i = λ, then τ ⊆ η−1{0}; hence, fixing U , there are only finitely many possibilities for τ , and at most
| sup f −1

0 {g(τ )}|<ω-many possibilities for σ given τ . Thus, there are fewer than κ-many possibilities for V given U . Thus,
A is κop-like. �
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Corollary 3.30. If κ is a cardinal of uncountable cofinality, then there is a totally disconnected dyadic compactum with Noetherian
type κ+ . If κ is a singular cardinal, then there is a totally disconnected dyadic compactum with Noetherian type κ .

Proof. For the first case, apply Theorem 3.29 with λ = ω. For the second case, apply Theorem 3.29 with λ = cfκ . �
Combining the above corollary with the following theorem (and a trivial example like Nt(2ω) = ω) immediately proves

Theorem 1.6.

Theorem 3.31. Let X be a dyadic compactum with base A consisting only of cozero sets. If Nt(X) � ω1 , then A contains an ωop-like
base of X . Hence, no dyadic compactum has Noetherian type ω1 .

Proof. Let Q be an ω
op
1 -like base of X of size w(X). Import all the notation from the proof of Lemma 3.19 verbatim, except

that we require 〈Mα〉α<κ to be an ω1-approximation sequence in 〈Hθ ,∈, F ,h, Q〉. Then U is an ωop-like subset of A as
before. On the other hand, Vα/Fα is not necessarily a base of X/Fα for all α < κ . However, we will show that U is still
a base of X . In doing so, we will repeatedly use the fact that if U , Q ∈ M ≺ Hθ and U is a nonempty open subset of X , then
all supersets of U in Q are in M because {V ∈ Q: U ⊆ V } is a countable element of M .

Suppose q ∈ Q ∈ Q. Then it suffices to find U ∈ U such that q ∈ U ⊆ Q . Let β be the least α < κ such that there exists
A ∈ Aα satisfying q ∈ A ⊆ A ⊆ Q . Fix such an A ∈ Aβ . For each p ∈ A, choose 〈A p, Q p〉 ∈ A × Q such that p ∈ A p ⊆ Q p ⊆
Q p ⊆ Q . Since Mβ � A ⊆ Q ∈ Q, we have Q ∈ Mβ . Hence, by elementarity, we may assume there exists σ ∈ [A]<ω such
that 〈〈A p, Q p〉〉p∈σ ∈ Mβ and A ⊆ ⋃

p∈σ A p . Choose p ∈ σ such that q ∈ A p . Suppose Q p /∈ ⋃
Σβ . Then all nonempty open

subsets of Q p are also not in
⋃

Σβ ; hence, there exist U ∈ Uβ and V ∈ Vβ such that q/Fβ ⊆ U ⊆ V ⊆ A p ⊆ Q . Therefore,
we may assume Q p ∈ ⋃

Σβ .
Choose α < β such that Q p ∈ Mα . Then Q ∈ Mα because Q p ⊆ Q . Hence, there exists τ ∈ [Aα]<ω such that Q p ⊆⋃
τ ⊆ ⋃

τ ⊆ Q . Choose W ∈ τ such that q ∈ W . Then q ∈ W ⊆ W ⊆ Q , in contradiction with the minimality of β . Thus,
U is a base of X . �
Question 3.32. If κ is a singular cardinal with cofinality ω, then is there a dyadic compactum with Noetherian type κ+? Is
there a dyadic compactum with weakly inaccessible Noetherian type?

We note that the spectrum of Noetherian types of all compacta is trivial.

Theorem 3.33. Let κ be a regular uncountable cardinal. Then there exists a totally disconnected compactum X such that Nt(X) = κ
and X has a Pκ -point.

Proof. Let X be the closed subspace of 2κ consisting of all f ∈ 2κ for which f (α) = 0 or f [α] = {1} for all odd α < κ . First,
let us show that X has a κop-like base. For each σ ∈ Fn(κ,2), set Uσ = { f ∈ X: f ⊇ σ }. Let E denote the set of σ ∈ Fn(κ,2)

for which sup domσ is even and Uσ �= ∅. Set A = {Uσ : σ ∈ E}, which is clearly a base of X . Let us show that A is κop-like.
Suppose σ ,τ ∈ E and Uσ ⊆ Uτ . If sup domσ < sup domτ , then for each f ∈ Uσ the sequence

( f � sup domτ ) ∪ {〈
sup domτ ,1 − τ (sup domτ )

〉} ∪ {〈β,0〉: sup domτ < β < κ
}

is in Uσ \ Uτ , which is absurd. Hence, sup domτ � sup domσ ; hence, there are fewer than κ-many possibilities for τ
given σ . Thus, A is κop-like.

Finally, it suffices to show that 〈1〉α<κ is a Pκ -point of X , for a Pκ -point must have local Noetherian type at least κ . For
each α < κ , set σα = {〈2α + 1,1〉}. Then {Uσα : α < κ} is a local base at 〈1〉α<κ . Moreover, Uσα � Uσβ for all α < β < κ .
Since κ is regular, it follows that 〈1〉α<κ is a Pκ -point. �
Corollary 3.34. Every infinite cardinal is the Noetherian type of some totally disconnected compactum.

Proof. By Lemma 2.9, all totally disconnected metric compacta have Noetherian type ω. By Theorem 3.33, if κ is a regular
uncountable cardinal, then there is a totally disconnected compactum X with Noetherian type κ . If κ is a singular cardinal,
then there is a totally disconnected dyadic compactum with Noetherian type κ by Corollary 3.30. �
4. k-adic compacta

The results of the previous section used reflection properties of free boolean algebras—see Lemma 3.1—and more gen-
erally coproducts of boolean algebras of bounded size—see Lemma 3.6. Let us define a more general family of reflection
properties.
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Definition 4.1. Let B be a boolean algebra and let κ and λ be cardinals. Then we say B has the (κ,λ)-FN if and only if, for
every M such that {B,∧,∨} ⊆ M ≺ Hθ and |M| ∩ κ ⊆ M ∩ κ ∈ κ + 1, and for every b ∈ B , there exists A ∈ [B ∩ M]<λ such
that M ∩ ↑b = M ∩ ↑A.

Remark. For regular κ , the (κ,κ)-FN and the (κ+, κ)-FN are both equivalent to the κ-FN as defined by Fuchino, Koppelberg,
and Shelah [8]. In particular, the (ω1,ω)-FN is equivalent to the Freese–Nation property and the (ω2,ω1)-FN is equivalent
to the weak Freese–Nation property.

The (κ,ω)-FN is equivalent to the (κ,2)-FN for all κ : if A ∈ [B ∩ M]<ω and M ∩ ↑b = M ∩ ↑A, then
∧

A ∈ M and
M ∩ ↑b = M ∩ ↑∧

A. Therefore, a boolean algebra has the (ω1,ω)-FN if and only if it satisfies the conclusion of Lemma 3.1.
Likewise, a boolean algebra satisfies the conclusion of Lemma 3.6 if and only if it has the (κ,ω)-FN.

Theorem 4.2. If κ � ω and B has the (κ+, cfκ)-FN, then every subset of B is almost κop-like.

Proof. Proceed as in the proof of Theorem 3.2. The only modifications worth noting happen in the last paragraph. Where
Lemma 3.1 is used to produce r ∈ B ∩ Mα such that Mα ∩ ↑q = Mα ∩ ↑r, instead use the (κ+, cfκ)-FN to produce A ∈
[B ∩ Mα]<cfκ such that Mα ∩ ↑q = Mα ∩ ↑A. For each r ∈ A, argue as before that there exists pr ∈ Q ∩ Mα such that
Dα ∩ ↑r ⊆ Dα ∩ ↑pr . By an induction hypothesis, |Dα ∩ ↑pr | < κ ; hence, |Dα ∩ ↑q| � |⋃r∈A(Dα ∩ ↑pr)| < κ . �
Corollary 4.3. It is independent of ¬CH whether every separable compactum X satisfies χNt(X) � ω1 .

Proof. Fuchino, Koppelberg, and Shelah [8] proved that P (ω) has the (ω2,ω1)-FN in the Cohen model. Arguing as in
the proof of Theorem 3.4, every separable compactum X , being a continuous image of βω, satisfies χK Nt(X) � ω1 and
πNt(X) � ω1 in this model. On the other hand, p = c implies there is a Pc-point p in βω \ ω. Assuming p = c > ω1, let us
show that this p does not have an ω

op
1 -like base in the separable compactum βω. Let U be a local base at p in βω. Choose

V ∈ [U ]ω1 and U ∈ U such that U \ ω ⊆ ⋂
V . For every V ∈ V , the compact set U \ V is contained in ω, so U \ V ⊆ n for

some n < ω. Therefore, there exist W ∈ [V ]ω1 and n < ω such that U \ W ⊆ n for all W ∈ W . Choose U0 ∈ U such that
U0 ⊆ U \ n. Then U0 ⊆ ⋂

W ; hence, U is not ω
op
1 -like. �

Theorem 4.4. Let κ � ω and let X be a compactum such that πχ(p, X) = w(X) for all p ∈ X and such that X is a continuous image
of a totally disconnected compactum Y such that Clop(Y ) has the (κ+, cfκ)-FN. Then every base of X contains a κop-like base of X .

Proof. Proceed as in the proof of Theorem 3.24. Modify that proof just as the proof of Theorem 3.2 was modified in the
above proof of Theorem 4.2. �

Ščepin discovered a nice characterization of the Stone spaces of boolean algebras having the (ω1,ω)-FN.

Definition 4.5. (See Ščepin [27].) Given a space X , let RC(X) denote the set of regular closed subsets of X . A space X is
k-metrizable if there exists ρ : X × RC(X) → [0,∞) such that we have the following for all C ∈ RC(X).

(1) C = {x ∈ X: ρ(x, C) = 0}.
(2) If C ⊇ B ∈ RC(X), then ρ(x, C) � ρ(x, B) for all x ∈ X .
(3) The map ρC : X → R defined by ρC (x) = ρ(x, C) is continuous.
(4) For each increasing union

⋃
α<β Cα of regular closed sets, if C = ⋃

α<β Cα , then ρ(x, C) = infα<β ρ(x, Cα).

A compactum is k-adic if it is a continuous image of k-metrizable compactum.

Remark. Ščepin’s notation is “κ-metrizable”. Let us use “k-metrizable” for two reasons. First, “κ” has nothing to do with
a cardinal κ ; it is a Russian abbreviation for canonical. (Canonically closed means regular closed in this context.) Second,
for some authors, κ-metrizable means something else, such as having a decreasing uniform base of the form {Uα}α<κ .

The following theorem is implicit in results of Ščepin [27] and more explicit in Heindorf and Šapiro [11]. (See especially
Section 2.9 of the latter.)

Theorem 4.6. A totally disconnected compactum X is k-metrizable if and only if Clop(X) has the (ω1,ω)-FN.

Lemma 4.7. (See Ščepin [27].) If X is a k-adic compactum, then πχ(X) = w(X).
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Given the above lemma and the preceding three theorems, it is trivial to generalize our main results from the previous
section about the class of dyadic compacta, which are continuous images of powers of 2, to the class of compacta that are
continuous images of totally disconnected k-metrizable compacta. Moreover, the next two theorems show that the latter
class properly contains the former class.

Theorem 4.8. (See Ščepin [27].) Metrizable spaces are k-metrizable. Moreover, products and hyperspaces (with the Vietoris topology)
preserve k-metrizability. In particular, every power of 2 is k-metrizable.

Theorem 4.9. (See Šapiro [25].) If κ � ω2 , then the hyperspace of 2κ is not dyadic. Hence, there is a totally disconnected compactum
that is k-metrizable but not dyadic.

With a little more care, we can further generalize our results about dyadic compacta to all k-adic compacta.

Definition 4.10. Given a space X and a set M , define π X
M : X → X/M by π X

M(p) = p/M .

Lemma 4.11. Let X be a compactum. Then X is k-metrizable if and only if π X
M is an open map for all M satisfying C(X) ∈ M ≺ Hθ .

Proof. Ščepin [28] proved that a compactum X is k-metrizable if and only if, for all sufficiently large regular cardinals μ,
there is a closed unbounded C ⊆ [Hμ]ω such that C(X) ∈ M ≺ Hμ and π X

M is open for all M ∈ C . (Ščepin stated this
result in terms of σ -complete inverse systems of metric compacta; the above formulation is due to Bandlow [3].) It follows
at once that X is k-metrizable if π X

M is open for all M satisfying C(X) ∈ M ≺ Hθ . Conversely, suppose X is k-metrizable
and C(X) ∈ M ≺ Hθ . Fix μ and C as above. We may assume θ > μω; hence, by elementarity, we may assume C ∈ M .
Choose a countable N ≺ H(2<θ )+ such that C(X), C, M ∈ N . Then M ∩ N ∩ Hμ ∈ C , so π X

M∩N∩Hμ
, which is equal to π X

M∩N , is

open. Suppose U ⊆ X is open and p ∈ U . Since π X
M∩N is open, there exists a cozero V ⊆ X such that p ∈ V ∈ M ∩ N and

V /(M ∩ N) ⊆ U/(M ∩ N). The last relation is equivalent to the statement that, for all q ∈ V , there exists r ∈ U such that,
for all f ∈ C(X) ∩ M ∩ N , we have f (q) = f (r). By elementarity, for every open U ⊆ X and p ∈ U , there exists a cozero
V ⊆ X such that p ∈ V ∈ M and, for all q ∈ V , there exists r ∈ U such that, for all f ∈ C(X) ∩ M , we have f (q) = f (r). Thus,
p/M ∈ V /M ⊆ U/M . Since V is cozero and V ∈ M , the set V /M is cozero. Hence, π X

M is open. �
Theorem 4.12. Let X be a k-metrizable compactum and Q a family of cozero subsets of X such that for every U ∈ Q there exists
V ∈ Q such that V ⊆ U . Then Q is almost ωop-like.

Proof. Proceed by induction on |Q |. Argue as in the proof of Theorem 3.2 until the verification of (3) for stage α + 1,
where we need a different argument to show that Dα ∩ ↑q is finite. Let U = q and choose V ∈ Q such that V ⊆ U . By
Lemma 4.11, U/Mα is open; hence, there exists f ∈ C(X)∩ Mα such that V /Mα ⊆ ( f −1{0})/Mα ⊆ U/Mα . Since f ∈ Mα , we
have V ⊆ f −1{0}. By elementarity, there exists W ∈ Q ∩ Mα such that W ⊆ f −1{0}. By (3) for stage α, it suffices to show
that Dα ∩ ↑U ⊆ Dα ∩ ↑W . Suppose Z ∈ Dα ∩ ↑U . Then W /Mα ⊆ ( f −1{0})/Mα ⊆ U/Mα ⊆ Z/Mα . Since Z ∈ Dα ⊆ Mα and
Z is cozero, we have W ⊆ Z . Thus, Dα ∩ ↑U ⊆ Dα ∩ ↑W . �
Corollary 4.13. Let X be a k-adic compactum and U be a family of subsets of X such that for all U ∈ U there exists V ∈ U such that
V ∩ X \ U = ∅. Then U is almost ωop-like. Hence, πNt(X) = χK Nt(X) = ω.

Proof. Proceed as in the proof of Theorem 3.4. Use the above theorem instead of Theorem 3.2. �
Theorem 4.14. Let X be a homogeneous k-adic compactum with base A. Then A contains an ωop-like base of X .

Proof. By homogeneity and Lemma 4.7, we have πχ(p, X) = w(X) for all p ∈ X . By Lemma 3.20, we may assume A
consists only of cozero sets. Proceed as in the proof of Lemma 3.19. Replace 2λ with a k-metrizable compactum Y and
replace B with the set of cozero subsets of Y . For the proof of (2) for stage α + 1, we need a different argument that, given
H ∈ Eα and N ∈ Σα , the set Dα ∩ N ∩ ↑H is finite.

Choose U ∈ Uα such that H = Eα,U ; choose V ∈ Uα such that V ⊆ U . Since π Y
N is open by Lemma 4.11, we have

(h−1 V )/N ⊆ ( f −1{0})/N ⊆ (h−1U )/N for some f ∈ C(Y )∩ N . Since f ∈ N , we have h−1 V ⊆ f −1{0}. Choose β < α such that
f ∈ Mβ . By elementarity, we may choose W0 ∈ Aβ such that h−1W0 ⊆ f −1{0}. Choose W1 ∈ Vβ such that W 1 ⊆ W0; choose
W2 ∈ Uβ such that W 2 ⊆ W1. By (2) for stage α, it suffices to prove Dα ∩ N ∩↑Eα,U ⊆ ↑Eβ,W2 . Suppose G ∈ Dα ∩ N ∩↑Eα,U .
Then we have(

f −1{0})/N ⊆ (
h−1U

)
/N ⊆ Eα,U /N ⊆ G/N.

Since G ∈ N and G is cozero, we have f −1{0} ⊆ G . Hence,
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Eβ,W2 ⊆ h−1W1 ⊆ h−1W0 ⊆ f −1{0} ⊆ G.

Thus, Dα ∩ N ∩ ↑Eα,U ⊆ ↑Eβ,W2 as desired. �
Theorem 4.15. Let X be a k-adic compactum. Then Nt(X) �= ω1 .

Proof. Proceed as in Theorem 3.31. �
Question 4.16. Is every k-adic compactum a continuous image of a totally disconnected k-metrizable compactum?

If still greater generality is desired, then one can easily combine the techniques of the proofs of Theorems 4.2, 4.12,
and 4.14 to prove the following.

Theorem 4.17. Let κ be an infinite cardinal and let Y be a compactum such that, for all open U ⊆ Y and for all M satisfying C(Y ) ∈
M ≺ Hθ and κ+ ∩ |M| ⊆ κ+ ∩ M ∈ κ+ + 1, the set U/M is the intersection of fewer than (cfκ)-many open subsets of Y /M. If X is
Hausdorff and a continuous image of Y , then we have the following.

(1) If U ⊆ P (X) and, for all U ∈ U , there exists V ∈ U such that V ∩ X \ U = ∅, then U is almost κop-like. Hence, πNt(X) � κ and
χK Nt(X) � κ .

(2) If πχ(p, X) = w(X) for all p ∈ X, then every base of X contains a κop-like base.

On the other hand, Lemma 4.7 cannot be so easily generalized. For example, if X is the Stone space of the interval
algebra generated by {[a,b): a,b ∈ R}, then w(X) = c and πχ(X) = π(X) = ω, despite it being shown in [8] that Clop(X)

has the (ω2,ω1)-FN.

5. More on local Noetherian type

In this section, we find two sufficient conditions for a compactum to have a point with an ωop-like local base. The first
of these conditions will be used to prove Theorem 1.7. We also present some related results about local bases in terms of
Tukey reducibility.

Definition 5.1. Given cardinals λ � κ � ω and a subset E in a space X , a local 〈λ,κ〉-splitter at E is a set U of λ-many open
neighborhoods of E such that E is not contained in the interior of

⋂
V for any V ∈ [U ]κ . If p ∈ X , then we call a local

〈λ,κ〉-splitter at {p} a local 〈λ,κ〉-splitter at p.

Theorem 5.2. Suppose X is a compactum and ω1 � κ = minp∈X πχ(p, X). Then there is a local 〈κ,ω〉-splitter at some p ∈ X.

Proof. Given any map f , let
∏

f denote {〈xi〉i∈dom f : ∀i ∈ dom f , xi ∈ f (i)}. Given any infinite open family E , let Φ(E )

denote the set of 〈σ ,Γ 〉 ∈ [E ]<ω × ([E ]ω)<ω for which every τ ∈ ∏
Γ satisfies

⋂
σ ⊆ ⋃

ranτ . Then Φ(E ) = ∅ always
implies E is ωop-like and centered.

Let R denote the set of nonempty regular open subsets of X . Choose 〈Wn〉n<ω ∈ Rω such that W n+1 � Wn �= X for all
n < ω. Let Ω denote the class of transfinite sequences 〈〈Uα, Vα〉〉α<η of elements of R2 satisfying the following.

(1) η � ω and 〈〈Un, Vn〉〉n<ω = 〈〈Wn+1, Wn〉〉n<ω .
(2) Uα ⊆ Vα for all α < η.
(3) P (Vα) ∩ {⋂σ \ ⋃

τ : σ ,τ ∈ [⋃β<α{Uβ, Vβ}]<ω} ⊆ {∅} for all α < η.
(4) Φ(

⋃
α<η{Uα, Vα}) = ∅.

Seeking a contradiction, suppose η is a limit ordinal and 〈〈Uα, Vα〉〉α<η /∈ Ω , but 〈〈Uβ, Vβ〉〉β<α ∈ Ω for all α < η. Then
(1), (2), and (3) hold for 〈〈Uα, Vα〉〉α<η , so there exists 〈σ ,Γ 〉 ∈ Φ(

⋃
α<η{Uα, Vα}). We may choose i ∈ dom Γ such that

Γ (i) �
⋃

β<α{Uβ, Vβ} for all α < η. Set Λ = Γ � (dom Γ \{i}). We may assume dom Γ is minimal among its possible values;

hence, there exists τ ∈ ∏
Λ such that

⋂
σ �

⋃
ranτ . Choose α < η and W ∈ Γ (i) such that σ ∪ ranτ ⊆ ⋃

β<α{Uβ, Vβ} and

W ∈ {Uα, Vα}. Then
⋂

σ \ ⋃
ranτ � W by (2) and (3). Since W is regular,

⋂
σ \ ⋃

ranτ � W ; hence,
⋂

σ � W ∪ ⋃
ranτ ,

in contradiction with 〈σ ,Γ 〉 ∈ Φ(
⋃

α<η{Uα, Vα}). Thus, Ω is closed with respect to unions of increasing chains.

It follows from (3) that Ω ⊆ (R2)<|R|+ . Moreover, 〈〈Wn+1, Wn〉〉n<ω ∈ Ω . Hence, by Zorn’s Lemma, Ω has a maximal
element 〈〈Uα, Vα〉〉α<η . Set B = ⋃

α<η{Uα, Vα}. Let us show that η � κ . Suppose not. For each x ∈ X , choose Yx, Zx ∈ R
such that x ∈ Yx ⊆ Y x ⊆ Zx and Zx does not contain any nonempty open set of the form

⋂
σ \ ⋃

τ where σ ,τ ∈ [B]<ω .
Choose ρ ∈ [X]<ω such that

⋃
x∈ρ Yx = X . Let us show that Φ(B ∪ {Yx, Zx}) = ∅ for some x ∈ ρ . Seeking a contradiction,
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suppose 〈σx,Γx〉 ∈ Φ(B ∪{Yx, Zx}) for all x ∈ ρ . We may assume
⋃

x∈ρ

⋃
ran Γx ⊆ B. Let Λ be a concatenation of {Γx: x ∈ ρ}

and set τ = B ∩ ⋃
x∈ρ σi . Then for all ζ ∈ ∏

Λ we have

⋂
τ =

⋂
y∈ρ

⋂
(σy ∩ B) =

⋃
x∈ρ

(
Yx ∩

⋂
y∈ρ

⋂
(σy ∩ B)

)
⊆

⋃
x∈ρ

⋂
σx ⊆

⋃
ran ζ .

Hence, 〈τ ,Λ〉 ∈ Φ(B), in contradiction with (4). Therefore, we may choose x ∈ ρ such that Φ(B ∪ {Yx, Zx}) = ∅. But then
〈〈Uα, Vα〉〉α<η+1 ∈ Ω if we set Uη = Yx and Vη = Zx , in contradiction with the maximality of 〈〈Uα, Vα〉〉α<η . Thus, η � κ .

Set A = {Vα: α < η}. By (3), |A| = |η| � κ . Set K = ⋂
α<η Uα . Then it suffices to show that A is a local 〈|η|,ω〉-splitter

at some x ∈ K . Suppose not. Then each x ∈ K has an open neighborhood W x that is a subset of infinitely many elements
of A. Hence, Φ(B ∪ {W x}) �= ∅ for all x ∈ K . Choose ρ ∈ [K ]<ω such that K ⊆ ⋃

x∈ρ W x . Choose an open set W such that

W ∪ ⋃
x∈ρ W x = X and W ∩ K = ∅. By compactness, B ∪ {W } is not centered; hence, Φ(B ∪ {W }) �= ∅. Reusing our earlier

concatenation argument, we have Φ(B) �= ∅, in contradiction with (4). Thus, A is a local 〈|η|,ω〉-splitter at some x ∈ K . �
Lemma 5.3. Suppose E is a subset of a space X and E has no finite neighborhood base. Then χNt(E, X) is the least κ � ω for which
there is a local 〈χ(p, X), κ〉-splitter at E.

Proof. Set κ = χNt(E, X) and λ = χ(E, X). By Lemma 2.4, λ � κ ; hence, a κop-like neighborhood base of E (which neces-
sarily has size λ) is a local 〈λ,κ〉-splitter at E . To show the converse, let 〈Uα〉α<λ be a sequence of open neighborhoods
of E . Let {Vα: α < λ} be a neighborhood base of E . For each α < λ, choose Wα ∈ {Vβ : β < λ} such that Wα ⊆ Uα ∩ Vα .
Then {Wα: α < λ} is a neighborhood base of E . Let μ < κ . Then there exist α < λ and I ∈ [λ]μ such that Wα ⊆ ⋂

β∈I Wβ .
Hence, E is contained in the interior of

⋂
β∈I Uβ . Hence, {Uα: α < λ} is not a local 〈λ,μ〉-splitter at E . �

Proof of Theorem 2.14. We may assume χ(X) � ω1. By Theorem 5.2, there is a local 〈χ(X),ω〉-splitter at some p ∈ X . By
Lemma 5.3, χNt(p, X) = ω. �
Proof of Theorem 1.7. Let X be a homogeneous compactum. By a result of Arhangel’skiı̆ (see 1.5 of [1]), |Y | � 2πχ(Y )c(Y ) for
all homogeneous spaces Y . Since |X | = 2χ(X) by Arhangel’skiı̆’s Theorem and the Čech–Pospišil Theorem, we have χ(X) �
πχ(X)c(X) by GCH. If πχ(X) = χ(X), then χNt(X) = ω by Theorem 2.14. Hence, we may assume πχ(X) < χ(X); hence,
χNt(X) � χ(X) � c(X) by Theorem 2.5. �
Example 5.4. Consider 2ω1 ordered lexicographically. Every point in this space has character and local Noetherian type ω1,
and some but not all points have π -character ω.

Definition 5.5. (See Tukey [29].) Given two quasiorders P and Q , we say f is a Tukey map from P to Q and write f : P �T Q
if f is a map from P to Q such that all preimages of bounded subsets of Q are bounded in P . We say that P is Tukey
reducible to Q and write P �T Q if there exists f : P �T Q . We say that P and Q are Tukey equivalent and write P ≡T Q if
P �T Q �T P .

Tukey showed that two directed sets are Tukey equivalent if and only if they embed as cofinal subsets of a common
directed set. In particular, any two local bases at a common point in a topological space are Tukey equivalent. Another,
easily checked fact is thats P �T [cf P ]<ω for every directed set P . Also, [κ]<ω �T [λ]<ω if κ � λ.

Lemma 5.6. Suppose κ � ω and E is a subset of a space X with a local 〈κ,ω〉-splitter at E. Then 〈[κ]<ω,⊆〉 �T 〈A,⊇〉 for every
neighborhood base A of E.

Proof. Let U be a local 〈κ,ω〉-splitter at E . Let N be the set of open neighborhoods of E . Then N is Tukey equivalent to
every neighborhood base of E (with respect to ⊇), so it suffices to show that [U ]<ω �T 〈N ,⊇〉. Define f : [U ]<ω → N by
f (σ ) = ⋂

σ for all σ ∈ [U ]<ω . Then, for all N ∈ N , we have | f −1 ↑N| < ω because U is a local 〈κ,ω〉-splitter; whence,
f −1 ↑N is bounded in [U ]<ω . Thus, f : [U ]<ω �T 〈N ,⊇〉. �
Theorem 5.7. Suppose X is a compactum and ω1 � κ = minp∈X πχ(p, X). Then, for some p ∈ X, every local base A at p satisfies
〈[κ]<ω,⊆〉 �T 〈A,⊇〉.

Proof. Combine Theorem 5.2 and Lemma 5.6. �
Lemma 5.8. Suppose E is a subset of a space X and E has no finite neighborhood base. Then the following are equivalent.

(1) χNt(E, X) = ω.
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(2) There is a local 〈χ(E, X),ω〉-splitter at E.
(3) Every neighborhood base A of E satisfies 〈[χ(E, X)]<ω,⊆〉 ≡T 〈A,⊇〉.

Proof. By Lemma 5.3, (1) and (2) are equivalent. Let B be a neighborhood base of E of size χ(E, X). By Lemma 5.6, (2) im-
plies [χ(E, X)]<ω �T 〈A,⊇〉 ≡T 〈B,⊇〉 �T [χ(E, X)]<ω for every neighborhood base A of E . Thus, (2) implies (3). Finally,
suppose A is a neighborhood base of E and [χ(E, X)]<ω ≡T 〈A,⊇〉. Then [χ(E, X)]<ω and 〈A,⊇〉 embed as cofinal subsets
of a common directed set. Hence, 〈A,⊆〉 is almost ωop-like by Lemma 2.21. Hence, A contains an ωop-like neighborhood
base of E . Thus, (3) implies (1). �
Theorem 5.9. Suppose X is an infinite homogeneous compactum and πχ(X) = χ(X). Then, for all p ∈ X and for all local bases A
at p, we have 〈A,⊇〉 ≡T 〈[χ(X)]<ω,⊆〉.

Proof. Combine Theorem 2.14 and Lemma 5.8. �
Definition 5.10. Given n < ω and ordinals α,β0, . . . , βn , let α → (β0, . . . , βn) denote the proposition that for all f : [α]2 →
n + 1 there exist i � n and H ⊆ α such that f [[H]2] = {i} and H has order type βi .

Lemma 5.11. Suppose κ = cfκ > ω and P is a directed set such that [κ]<ω �T P . Then P contains a set of κ-many pairwise incom-
parable elements.

Proof. Let Q be a well founded, cofinal subset of P . Then P ≡T Q ; let f : [κ]<ω �T Q . Define g : [κ]2 → 3 by g({α < β}) = 0
if f ({α}) � f ({β}) � f ({α}) and g({α < β}) = 1 if f ({α}) > f ({β}) and g({α < β}) = 2 if f ({α}) � f ({β}). By the Erdös–
Dushnik–Miller Theorem, κ → (κ,ω + 1,ω + 1). Since Q is well founded, there is no H ∈ [κ]ω such that g[[H]2] = {1}.
Since f is Tukey and all infinite subsets of [κ]<ω are unbounded, there is no H ⊆ κ of order type ω + 1 such that
g[[H]2] = {2}. Hence, there exists H ∈ [κ]κ such that g[[H]2] = {0}; whence, f [[H]1] is a κ-sized, pairwise incompara-
ble subset of P . �
Theorem 5.12. Suppose κ = cfκ > ω and X is a compactum such that every point has a local base not containing a set of κ-many
pairwise incomparable elements. Then some point in X has π -character less than κ .

Proof. Combine Theorem 5.7 and Lemma 5.11 to prove the contrapositive of the theorem. �
Corollary 5.13. Suppose X is a compactum such that every point has a local base that is well quasi-ordered with respect to ⊇. Then
some point in X has countable π -character.

Finally, let us present a few results about local Noetherian type and topological embeddings.

Lemma 5.14. Suppose X is a space, Y ⊆ X, and p ∈ Y satisfies χ(p, Y ) = χ(p, X). Then χNt(p, X) � χNt(p, Y ).

Proof. Set λ = χ(p, Y ) and κ = χNt(p, Y ); we may assume λ > ω by Theorem 2.5. By Lemma 5.3, we may choose a local
〈λ,κ〉-splitter A at p in Y . For each U ∈ A, choose an open subset f (U ) of X such that f (U ) ∩ Y = U . Set B = f [A]. Then
|B| = λ because f is bijective. Suppose C ∈ [B]κ and p is in the interior of

⋂
C with respect to X . Then p is in the interior

of Y ∩ ⋂
C with respect to Y , in contradiction how we chose A. Thus, B is a local 〈λ,κ〉-splitter at p in X . By Lemma 5.3,

χNt(p, X) � κ . �
Definition 5.15. For all infinite cardinals κ , let u(κ) denote the space of uniform ultrafilters on κ .

Theorem 5.16. For each κ � ω, there exists p ∈ u(κ) such that χNt(p, u(κ)) = ω and χ(p, u(κ)) = 2κ .

Proof. Generalizing an argument of Isbell [12] about βω, let A be an independent family of subsets of κ of size 2κ . Set
B = ⋃

F∈[A]ω {x ⊆ κ: ∀y ∈ F |x \ y| < κ}. Since A is independent, we may extend A to an ultrafilter p on κ such that
p ∩ B = ∅. For each x ⊆ κ , set x∗ = {q ∈ u(κ): x ∈ q}. Then {x∗: x ∈ A} is a local 〈2κ ,ω〉-splitter at p. Since χ(p, u(κ)) � 2κ ,
it follows from Lemma 5.3 that χNt(p, u(κ)) = ω and χ(p, u(κ)) = 2κ . �
Theorem 5.17. Suppose κ � ω and X is a space such that χ(X) = 2κ and u(κ) embeds in X. Then there is an ωop-like local base at
some point in X. Hence, χNt(X) = ω if X is homogeneous.

Proof. Let j embed u(κ) into X . By Theorem 5.16, there exists p ∈ u(κ) such that χNt(p, u(κ)) = ω and χ(p, u(κ)) = 2κ .
By Lemma 5.14, χNt( j(p), X) = ω. �
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Theorem 5.18. Suppose p is a point in a dense subspace Y of a T3 space X. Then χNt(p, X) � χNt(p, Y ).

Proof. Set κ = χNt(p, Y ) and let A be a κop-like local base at p in X . By Lemma 2.21, we may assume A consists only of
regular open sets. Set B = {U ∩ Y : U ∈ A}. Given any U , V ∈ A such that U � V , we have U \ V �= ∅; whence, U ∩ Y \ V �= ∅;
whence, U ∩ Y � V ∩ Y . Therefore, B is κop-like; hence, χNt(p, Y ) � χNt(p, X). �
Example 5.19. Consider the sequential fan Y with ω-many spines. More explicitly, Y is the space ω2 ∪{p} obtained by taking
ω × (ω + 1) and collapsing the subspace ω × {ω} to a point p. It is easily checked that Y is T3.5. Choose a compactification
X of Y . Then c(X) = c(Y ) = ω and X is not homogeneous because it has isolated points. We will show χNt(p, X) � ω1,
thereby demonstrating that homogeneity cannot be removed from the hypothesis of Theorem 1.7. It suffices to show that
χNt(p, Y ) � ω1, for we can then apply Theorem 5.18. Given f ∈ ωω , set U f = {p} ∪ {〈m,n〉 ∈ ω2: n � f (m)}. Set A =
{U f : f ∈ ωω}, which is a local base at p in Y . Suppose B ⊆ A and B is a local base at p. Then it suffices to show
that B is not ωop-like. By an easy diagonalization argument, no local base at p is countable. Choose B0 ∈ [A]ω1 . Given
n < ω, Bn ∈ [B]ω1 , and U f0 , . . . , U fn−1 ∈ B, choose Bn+1 ∈ [Bn]ω1 such that g(n) = h(n) for all U g , Uh ∈ Bn+1. Then choose
U fn ∈ Bn+1 \ {U f0 , . . . , U fn−1}. For each n < ω, set g(n) = max{ f0(n), . . . , fn(n)}. Then U g ⊆ U fn for all n < ω; hence, B is
not ωop-like.
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