On Some Fixed Point Theorems on Uniformly Convex Banach Spaces

P. VEERAMANI

Department of Mathematics, Indian Institute of Technology, Madras-600 036, India

Submitted by V. Lakshmikantham

Received October 1, 1990

We introduce a notion of T-regularity to generalize a well known fixed point theorem of Browder. We also give some related results in this direction. © 1992 Academic Press, Inc.

We introduce the following definition.

Definition 1.1. Let X be a vector space and A be a subset of X. A is said to be a T-regular set if and only if

(i) $T: A \to A$

(ii) $(x + Tx)/2 \in A$, for each x in A.

Remark 1.1. Obviously every convex set invariant under a map T is a T-regular set. But a T-regular set need not be a convex set.

Example 1.1. Let X be a nonzero vector space and $x, y \in X$, $x \neq y$. Let

$$z = \frac{x + y}{2}, \quad A = \{x, y, z\}.$$

Define $T: A \to A$ as $Tx = y$, $Ty = x$, and $Tz = z$. Then A is a T-regular set.

Some Properties of T-Regular Sets:

(i) Let X be a vector space and $\{A_x\}_{x \in I}$ be a collection of T-regular subsets of X. Then

$$\bigcap_{x \in I} A_x \quad \text{and} \quad \bigcup_{x \in I} A_x$$

are T-regular sets.
(ii) Let X be a vector space and $T: X \to X$ be a linear transformation. Suppose A, B are T-regular subsets of X. Then $T(A)$, $A + B$ are T-regular sets.

(iii) Let X be a topological vector space and $T: X \to X$ be a continuous map. Suppose A is a T-regular subset of X. Then \overline{A}, the closure of A, is also a T-regular set.

(iv) Let X be a uniformly convex Banach space and F be a bounded T-regular subset of X. Then either $Tx = x$, for all x in F or there exists x_0 in F such that

$$\text{Sup}\{\|x - x_0\| : x \in F\} = \delta(x_0, F) < \delta(F), \quad \text{the diameter of } F.$$

Proof. Parts (i), (ii), and (iii) are easy to prove. We give below the proof of (iv).

Suppose for some $x \in F$, $x \neq Tx$. For any $y \in F$, $\|y - Tx\| \leq \delta(F)$, $\|y - x\| \leq \delta(F)$.

Let $x_0 = (x + Tx)/2$.

As F is a T-regular set $Tx \in F$ and $x_0 \in F$.

The uniform convexity of the space implies the existence of a number α, $0 < \alpha < 1$ such that

$$\|x_0 - y\| \leq \alpha \delta(F)$$

implies $\delta(x_0, F) \leq \alpha \delta(F)$. □

Remark 1.2. Using some properties of T-regular sets we prove the following theorem.

Theorem 1.1. Let K be a nonempty weakly compact T-regular subset of a uniformly convex Banach space X. Further for each weakly closed T-regular subset F of K, with $\delta(F) > 0$, there exists some $\beta(F)$, $0 < \beta(F) < 1$, such that

$$\|Tx - Ty\| \leq \max\{\|x - y\|, \beta \delta(F)\},$$

for all x, y in F.

Then T has a fixed point in K.

Proof. Let H be the collection of all nonempty weakly closed, T-regular subsets of K. Because of property (i) one can use Zorn's Lemma to get a minimal element say F of H.

Suppose for some x in F, $x \neq Tx$. F is a bounded T-regular set implies there exists x_0 in F and α, $0 < \alpha < 1$, such that

$$\delta(x_0, F) \leq \alpha \delta(F) \quad (\text{by property (iv)}).$$
By hypothesis there exists $\beta, 0 < \beta < 1,$ such that
$$\|Tx - Ty\| \leq \beta \delta(F).$$

Let
$$x_0 = \max\{x, \beta\}$$
$$E_0 = \{x \in X: \delta(x, F) \leq x_0 \delta(F)\}$$
$$F_0 = E_0 \cap F.$$

$x_0 \in E_0 \cap F$ implies F_0 is nonempty, and E_0, F are weakly closed sets implies F_0 is weakly closed.

Let $x \in F_0, \|Tx - Ty\| \leq x_0 \delta(F)$, for all $y \in F$.

Hence $T(F)$ is contained in a closed ball U of centre Tx and radius $x_0 \delta(F).$ This implies $T(F \cap U) \subset F \cap U.$ Now F is a T-regular set, U is a convex set implies $F \cap U$ is a T-regular set. Hence by the minimality of F, $T(F_0) \subset F_0$. Also F_0 is a T-regular set. Hence $F_0 \in H.$ But $\delta(F_0) < \delta(F)$, a contradiction. \[\]

Corollary 1.2. Let K be a nonempty weakly compact T-regular subset of a uniformly convex Banach space and $T: K \to K$ a nonexpansive map. Then T has a fixed point.

Corollary 1.3 [1]. Let K be a nonempty weakly compact convex subset of a uniformly convex Banach space and $T: K \to K$ a nonexpansive map.

Then T has a fixed point.

Definition 1.2 [3]. If D is a subset of a Banach space X, T is a mapping from D into X, and $x_1 \in D$, then $M(x_1, t_n, T)$ is the sequence $\{x_n\}_{n=1}^{\infty}$ defined by
$$x_{n+1} = (1 - t_n) x_n + t_n Tx_n,$$

where $\{t_n\}_{n=1}^{\infty}$ is a real sequence.

If a point x_1 and a sequence $\{t_n\}_{n=1}^{\infty}$ satisfy the following conditions:

(i) $\sum_{n=1}^{\infty} t_n = \infty$.

(ii) $0 \leq t_n \leq b < 1$, for all positive integers n, and $x_n \in D$ for all positive integers n, then x_1 and $\{t_n\}_{n=1}^{\infty}$ will be said to satisfy Condition A.

Definition 1.3 [3]. Let D be a subset of a Banach space X. A mapping $T: D \to X$ with a nonempty fixed points set F in D will be said to satisfy Condition B if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with
ON SOME FIXED POINT THEOREMS

\[f(0) = 0, \ f(r) > 0 \ \text{for} \ r \in (0, \infty) \ \text{such that} \ \|x - Tx\| \geq f(d(x, F)), \ \text{for all} \ x \in D, \ \text{where} \ d(x, F) = \inf\{\|x - z\| : z \in F\}. \]

Lemma 1.4 [3]. Let \(D \) be a subset of a Banach space \(X \) and \(T \) be a nonexpansive mapping from \(D \) into \(X \). If there exist \(x_1 \) and \(\{t_n\}_{n=1}^{\infty} \) that satisfy Condition A and \(M(x_1, t_n, T) \) is bounded then \(x_n - Tx_n \) converges to zero as \(n \to \infty \).

Using Lemma 1.4, Ishikawa [3] has proved the following theorem.

Theorem 1.5 [3]. Let \(D \) be a closed subset of a Banach space \(X \) and \(T: D \to X \) be a nonexpansive mapping with a nonempty fixed points set \(F \) in \(D \). If \(T \) satisfies Condition B and there exist \(x_1 \) and \(\{t_n\}_{n=1}^{\infty} \) that satisfy Condition A, then \(M(x_1, t_n, T) \) converges to a member of \(F \).

The following Theorem 1.6 is a generalization of a result of Outlaw [5].

Theorem 1.6. Let \(K \) be a nonempty weakly compact \(T \)-regular subset of a uniformly convex Banach space \(X \). Let \(T: K \to K \) be a nonexpansive map satisfying condition B. Then \(M(x_1, \frac{1}{2}, T) \) converges to a fixed point of \(T \) for any \(x_1 \) in \(K \).

Proof. By Corollary 1.2., \(F = \{x \in K: Tx = x\} \) is nonempty. Hence the result follows from Theorem 1.5. \(\square \)

Gillespie and Williams [2] have given the following.

Theorem 1.7 [2]. Let \(K \) be a closed, bounded, convex subset of a Banach space \(X \) and \(T: K \to K \) be a map satisfying:

1. \(\|Tx - Ty\| \leq \|x - y\| \), for all \(x, y \in K; \)
2. For some \(\alpha > 0 \)
 \[\|Tx - Ty\| \leq \alpha(\|x - Tx\| + \|y - Ty\|), \quad \text{for} \ x, y \in K. \]

Then \(T \) has a unique fixed point.

The following generalization of Theorem 1.7 is immediate by an application of Lemma 1.4.

Theorem 1.8. Let \(K \) be a closed, bounded subset of a Banach space \(X \) and \(T: K \to K \) be a map satisfying

1. \(\|Tx - Ty\| \leq \|x - y\| \), for \(x, y \in K; \)
2. For some \(\alpha > 0 \),
 \[\|Tx - Ty\| \leq \alpha(\|x - Tx\| + \|y - Ty\|), \quad \text{for} \ x, y \in K. \]
Further suppose there exist x_1 and t_n that satisfy Condition A, then $M(x_1, t_n, T)$ converges to the unique fixed point of T.

Corollary 1.9. Let K be a closed, bounded, T-regular subset of a Banach space X and $T: K \rightarrow K$ be a map satisfying

(i) $\|Tx - Ty\| \leq \|x - y\|$, for $x, y \in K$,

(ii) for some $\alpha > 0$,

$$\|Tx - Ty\| \leq \alpha(\|x - Tx\| + y - Ty\|), \text{ for } x, y \in K.$$

Then for each $x_1 \in K$, $M(x_1, \frac{1}{T}, T)$ converges to the unique fixed point of T.

Corollary 1.10. Let K be a weakly compact convex subset of a Banach space X and $T: K \rightarrow K$ be a nonexpansive affine map. Then T has a fixed point in K.

Proof. Let $\alpha_0 = \inf\{\|x - Tx\| + \|y - Ty\| : x, y \in K\}$. If $\alpha_0 > 0$ then there exists an $\alpha > 0$, take $\alpha \geq \bar{\delta}(K)/\alpha_0$, such that

$$\|Tx - Ty\| \leq \alpha(\|x - Tx\| + \|y - Ty\|), \text{ for } x, y \in K.$$

Suppose $\alpha_0 = 0$.

$$(x, y) \rightarrow \|x - Tx\| + \|y - Ty\|$$

is a continuous convex function, K is a weakly compact set implies

$$\|x - Tx\| + \|y - Ty\| = 0,$$

for some $(x, y) \in K \times K$.

We use Corollary 1.2 to prove the following results in optimization and approximation theory.

Theorem 2.1. Let K be a nonempty weakly compact T-regular subset of a uniformly convex Banach space X. Let

$$T: K \rightarrow K$$

$$h: X \rightarrow \mathbb{R}, \text{ the set of reals, satisfy}$$

(i) T is nonexpansive

(ii) h is a lower semicontinuous (l.s.c.) convex function

(iii) $h \cdot T \leq h$ on K.

Then there exists x_0 in K such that $Tx_0 = x_0$ and $h(x_0) = \inf\{h(x) : x \in K\}$.
Proof. Let \(A = \{ x \in K : h(x) = \inf_{y \in K} h(y) \} \). \(h \) is a l.s.c. convex function implies \(h \) is weakly l.s.c. Now \(K \) is a weakly compact set implies \(A \neq \emptyset \). Also \(\{ x \in X : h(x) \leq \inf_{y \in K} h(y) \} \) is a weakly closed set implies

\[
A = \{ x \in X : h(x) = \inf_{y \in K} h(y) \} \cap K
\]

is a weakly closed set.

Now \(h \cdot T \leq h \) implies \(T(A) \subset A \).

For \(x \in A \),

\[
\frac{h\left(\frac{x + T x}{2}\right)}{2} \leq \frac{h(x)}{2} + \frac{h(T x)}{2}
\]

implies

\[
\frac{h(x + T x)}{2} = \inf_{y \in K} h(y)
\]

implies

\[
\frac{x + T x}{2} \in A.
\]

Hence \(A \) is a nonempty weakly compact \(T \)-regular subset of the uniformly convex Banach space \(X \).

Therefore by Corollary 1.2 there exists \(x_0 \) in \(A \) such that

\[
Tx_0 = x_0.
\]

COROLLARY 2.2. Let \(K \) be a nonempty weakly compact \(T \)-regular subset of a uniformly convex Banach space \(X \) and \(y_0 \in X \setminus K \). Suppose

1. \(\| Tx - y_0 \| \leq \| x - y_0 \| \), for \(x \) in \(K \);
2. \(\| Tx - Ty \| \leq \| x - y \| \), for \(x, y \) in \(K \).

Then \(T \) has a fixed point \(x_0 \) in \(K \) which is a best approximation to \(y_0 \) from \(K \).

Proof. Define \(h : X \to \mathbb{R} \) as \(h(x) = \| x - y_0 \| \).

We give the following simple example to justify the above result.

EXAMPLE 2.1. Let \(K = [-2, -1] \cup [1, 2] \). Define \(T : K \to K \) as

\[
Tx = \begin{cases}
-1, & \text{for } x \in [-2, -1] \\
1, & \text{for } x \in [1, 2].
\end{cases}
\]

Then all the conditions of Corollary 2.2 are satisfied.
Here $-1, 1 \in K$ are such that

(i) $T(-1) = -1, T(1) = 1$ and

(ii) $-1, 1$ are both best approximations to 0 from $K.$

REFERENCES