Short Communication

Distribution of Genes Encoding Resistance to Macrolides, Lincosamides and Streptogramins Among Clinical Staphylococcal Isolates in a Turkish University Hospital

Emel Sesli Cetin*, Hayati Gunes, Selcuk Kaya, Buket Cicioglu Aridogan, Mustafa Demirci

Microbiology and Clinical Microbiology Department, Suleyman Demirel University Medical Faculty, Isparta, Turkey.

This study investigated the prevalence of genes encoding resistance to macrolides, lincosamides and streptogramins (MLS$_B$) among staphylococci in a series of 301 erythromycin-resistant clinical isolates of _Staphylococcus aureus_ and coagulase-negative staphylococci (CoNS). Erythromycin-resistance phenotypes were determined according to Clinical and Laboratory Standards Institute guidelines and specific resistance genes _erm$(A), _erm$(B), _erm$(C), _msr$(A) and _msr$(B) were identified using polymerase chain reaction. Two hundred of 301 (66.5%) erythromycin-resistant staphylococcal isolates exhibited resistance to MLS$_B$ antibiotics. Of these, 127 (63.5%) exhibited a cMLS$_B$ resistance phenotype (resistant to both erythromycin and clindamycin), whereas 73 (36.5%) expressed the iMLS$_B$ resistance phenotype (resistant to erythromycin and susceptible to clindamycin). The most prevalent resistance determinants were _erm$(A) (62%) among _S. aureus_ and _erm$(C) (30%) among CoNS isolates. Combinations of resistance mechanisms were rarely seen, and occurred most often in oxacillin-resistant isolates. The results of the present study support the idea that there are geographical differences in the prevalence of erythromycin resistance mechanisms among staphylococci, therefore local surveillance studies are important tools for guiding therapy and in the promotion of judicious use of antimicrobial agents.

KEYWORDS: _erm_ genes, MLS$_B$ resistance, staphylococci

Introduction

Empirical outpatient treatment options for staphylococcal infections have become more limited as methicillin resistance has increased. The efficacy of macrolide antibiotics in the treatment of infections caused by multi-resistant staphylococci makes them the most often prescribed drugs in clinical medicine. However, the expanded use of these antibiotics has been accompanied by increased resistance rates among staphylococci all over the world.1,2

Macrolide antibiotic resistance in _Staphylococcus aureus_ and coagulase-negative staphylococci (CoNS) may be due to an active drug efflux mechanism encoded by _msrA_ and _msrB_ (conferring resistance to macrolides and type B streptogramins only) or may be the result of ribosomal target modification, mediated by the presence of _erm_ genes [_erm$(A), _erm$(B) and _erm$(C)] conferring resistance to macrolides,
Lincosamides, and type B streptogramins (MLS B resistance). When the underlying mechanism of resistance to erythromycin is an altered efflux system, expressed by the msrA/msrB gene, staphylococcal strains are susceptible to clindamycin, whereas ribosomal methylation expressed by the erm gene could render strains resistant to clindamycin. Phenotypic expression of MLS B resistance in staphylococci can be either inducible or constitutive. Strains with inducible MLS B (iMLS B) resistance demonstrate in vitro resistance to 14- and 15-member macrolides, but appear susceptible to 16-member macrolides, lincosamides and type B streptogramins. Strains with constitutive MLS B (cMLS B) resistance are considered resistant to all MLS B-type antibiotics, although streptogramin A-type antibiotics escape resistance.

Although there is growing data regarding the prevalence of MLS B resistance phenotypes among staphylococcal isolates from different regions of Turkey, data on the genetic determinants of MLS B resistance are limited. The present study was undertaken to investigate the prevalence of genes encoding resistance to MLS B antibiotics in a series of 301 erythromycin-resistant clinical isolates of S. aureus and CoNS.

Methods

Bacterial isolates

This study included 301 erythromycin-resistant staphylococcal isolates consisting of 47 S. aureus [32 methicillin-resistant S. aureus (MRSA) and 15 methicillin-susceptible S. aureus (MSSA)] and 254 CoNS [161 methicillin-resistant CoNS (MRCoNS) and 93 methicillin-susceptible CoNS (MSCoNS)], collected between January 2006 and January 2007 in the Clinical Microbiology Laboratory of the Faculty of Medicine, Suleyman Demirel University (Isparta, Turkey). All staphylococcal isolates determined to be resistant to erythromycin and clinically significant based on species identification were included in the study. Duplicate isolates from the same patients were excluded. Isolates were characterized to the species level by Gram staining, catalase, slide and tube coagulase and by biochemical tests (API Staph; bioMerieux, Marcy l’Etoile, France).

Susceptibility testing

Erythromycin and oxacillin susceptibilities of the strains were determined by the Kirby–Bauer disk diffusion method following the criteria of the Clinical and Laboratory Standards Institute. The resistance phenotypes of erythromycin-resistant isolates were determined by the double-disk test method in accordance with the recommendations of the Clinical and Laboratory Standards Institute. S. aureus ATCC BAA-977 was used as a positive control for iMLS B resistance and S. aureus ATCC 25923 was used as a control for the other tested antibiotics.

Polymerase chain reaction amplification of MLS B resistance genes

Polymerase chain reaction (PCR) was carried out on the 301 staphylococcal strains displaying resistance to erythromycin. Genomic DNA was extracted from staphylococcal cultures using a genomic DNA purification kit (Fermentas Life Sciences) and used as a template for amplification. Extracted DNA was stored at –20°C until PCR was performed. The erm(A), erm(B), erm(C), msr(A) and msr(B) genes were detected by PCR using the oligonucleotide primer pairs described by Lim et al and Spiliopoulou et al. These oligonucleotides were synthesized by Bio Basic Inc (Canada).

Five different PCRs were run for each isolate. Each reaction was carried out in a final volume of 50 μL and included 5 μL of 10× PCR buffer [100 mM Tris-HCl (pH 8.8 at 25°C), 500 mM KCl] (Fermentas), 2 mM MgCl₂ (Fermentas), 0.2 mM each of dATP, dTTP, dCTP and dGTP (Fermentas), 0.4 mM of the sense and anti-sense primers, 1.25 U Taq DNA polymerase (Fermentas) and 1 μL of extracted template DNA. The PCR were initialized by a denaturation step (5 min at 94°C) followed by 35 cycles of 30 seconds at 95°C, 30 seconds at 54°C, 1 minute at 72°C; and a final extension step (5 min at 72°C). PCR products were detected by gel electrophoresis (100V, 60 min) at 2% (w/v) agarose gels containing ethidium bromide. The sizes of the PCR products were estimated with standard molecular weight markers (1.5–100 kb DNA ladder; Bio Basic Inc., Ontario, Canada). Isolates were considered positive for erm(A), erm(B), erm(C), msr(A) and msr(B) genes when the respective PCR products of the expected size could be visualized.

Statistical analysis

Statistical analysis was conducted using Fischer’s exact test and χ² test.
Results

MLSB resistance phenotypes

Two hundred (66%) of the 301 erythromycin-resistant staphylococcal isolates exhibited resistance to MLSB antibiotics; of these, 127 (64%) exhibited a cMLSB resistance phenotype, whereas 73 (37%) expressed the iMLSB resistance phenotype. It was observed that 40 (85%) of 47 *S. aureus* and 160 (63%) of 254 CoNS isolates exhibited MLSB resistance. Approximately 44% of CoNS isolates expressed the cMLSB phenotype, and 19% expressed the iMLSB phenotype whereas 51% of *S. aureus* isolates expressed cMLSB and 34% expressed the iMLSB phenotype. When the resistance rates were evaluated according to oxacillin resistance of the strains, 29 of 32 (91%) MRSA, 11 of 15 (73%) MSSA, 112 of 161 (70%) MRCoNS, and 48 of 93 (52%) MSCoNS displayed MLSB resistance. cMLSB was detected in 89 of 161 (55%) MRCoNS, 14 of 32 (44%) MRSA, 22 of 93 (24%) MSCoNS and 2 of 15 (13%) MSSA. iMLSB was detected in 9 of 15 (60%) MSSA, 15 of 32 (47%) MRSA, 26 of 93 (28%) MSCoNS, and 23 of 161 (14%) MRCoNS. MLSB resistance was more prevalent among *S. aureus* strains, and oxacillin-resistant strains exhibited significantly higher MLSB resistance rates compared with oxacillin-susceptible strains (*p* < 0.001). The most frequently detected resistance phenotype among all erythromycin-resistant staphylococcal isolates was the constitutive type and this resistance phenotype was more frequently encountered among oxacillin-resistant strains. Additionally, the iMLSB resistance phenotype was significantly higher among *S. aureus* than CoNS strains (*p* < 0.001).

MLSB resistance genotypes

The distribution of resistance genes is presented in the Table. The most prevalent resistance determinant among *S. aureus* was *erm*(A), which was detected in 62% (29/47) of the isolates. The *erm*(C) determinant was found as a single MLSB resistance gene in eight (17%) *S. aureus* isolates while three isolates (6%) contained both *erm*(A) and *erm*(C). *msr*A/B genes were detected among 13 *S. aureus* isolates (27%). The most prevalent resistance determinant among CoNS was *erm*(C), which was detected in 30% (77/254) of the isolates. The *erm*(A) determinant was found as a single MLSB resistance gene in 44 (17%) CoNS isolates while 11 isolates (4%) contained both *erm*(A) and *erm*(C), and *msr*A/B genes were detected among 81 CoNS isolates (32%). *Erm*(B) was detected only in three MRCoNS strains with the cMLSB resistance phenotype and one of these strains also contained *erm*(C).

Combinations of resistance mechanisms were rarely seen, and occurred mainly in oxacillin-resistant isolates. Eighty-three of the erythromycin-resistant isolates did not harbor any of the tested resistance mechanisms. Seventy-seven of these isolates were CoNS, while only six were *S. aureus*.

Discussion

While data on genetic determinants of MLS resistance from Turkey are limited to the reports of Aktas et al and Saribas et al,9,10 other groups have studied the prevalence of MLS resistance using phenotypic methods in other hospitals from Turkey.4–8 While the MLSB resistance rate determined in our hospital was higher than the rate reported by Tunçkanat and Arikano,8 it was lower than the rate reported by Deliáçoglu et al.9 Overall, the most frequently determined genetic determinant responsible for MLSB resistance was *erm*(C), with a constitutive resistance phenotype in our study. This finding was in accordance with previous reports from Turkey.9,10 Aktas et al reported that 57.8% of CoNS isolates expressed the cMLSB phenotype and 20.6% expressed iMLSB. These rates were similar to the rates we detected (44% and 19%, respectively) for CoNS isolates. However, Aktas et al also reported that 78.2% of their CoNS isolates harbored the *erm*(C) gene and 8.9% had *erm*(A). The prevalence rates we detected were 30% for *erm*(C) and 17% for *erm*(A). Aktas et al reported that in *S. aureus*, cMLSB (58.3%) was more common than the inducible phenotype (20.8%) and *erm*(A) was detected in 50% and *erm*(C) in 62.5% of the isolates.9 Saribas et al10 reported that cMLSB was more common (64%) than the inducible phenotype (36%), and their findings were in accordance with Aktas et al. This contrasted with our study in which the most prevalent phenotype among *S. aureus* detected was the iMLSB type (51%) mediated by the *erm*(A) (62%) genes. While our findings for *S. aureus* isolates differ with the two studies from Turkey and from the results of Spiliopoulou et al12 and Schmitz et al13 (both of which also identified a predominance of the *erm*(C) gene among *S. aureus*), other published studies agreed with our finding...
that \textit{erm}(A) was the most frequent genetic determinant among \textit{S. aureus} \cite{14-16}. The most prevalent resistance determinant was \textit{erm}(C) in CoNS isolates in our study and these results are confirmed by those of Reyes et al, Chaib et al, Eady et al, and Gatermann et al, who documented the predominance of \textit{erm}(C) in a large series of clinical and commensal CoNS isolates. \cite{16-19} Thus, in conjunction with previous reports, the results of the present study support the hypothesis that there are geographical differences in the prevalence of erythromycin resistance mechanisms among staphylococci. \cite{2}

However, we must also mention the fact that since species identification was not performed for CoNS isolates, we cannot exclude the possibility that these differences might be due to variation in the distribution of different species. Most of the isolates from which we were not able to detect any resistance genes were CoNS, and this was in accordance with the previous reports that have found

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Isolate} & \textbf{Resistence type} & \textbf{Erm A} & \textbf{Erm B} & \textbf{Erm C} & \textbf{Erm A+C} & \textbf{msrA/B} & \textbf{Erm+msr} & \textbf{ND} \\
\hline
\textit{S. aureus} (n=47) & iMLS\textsubscript{B} (n=24) & 14 & 0 & 6 & 1 & 7 & 5 & 3 \\
& cMLS\textsubscript{B} (n=16) & 15 & 0 & 2 & 2 & 2 & 1 & 0 \\
& MLS\textsubscript{B} (n=7) & 0 & 0 & 0 & 4 & 0 & 3 & \\
& Total (n=47) & 29 (62) & 0 & 8 (17) & 3 (6) & 13 (27) & 6 (13) & 6 (13) \\
MRSA (n=32) & iMLS\textsubscript{B} (n=15) & 9 & 0 & 4 & 1 & 2 & 2 & 3 \\
& cMLS\textsubscript{B} (n=14) & 13 & 0 & 2 & 2 & 2 & 1 & 0 \\
& MLS\textsubscript{B} (n=3) & 0 & 0 & 0 & 2 & 0 & 0 & 1 \\
& Total (n=32) & 22 & 0 & 6 & 3 & 6 & 3 & 4 \\
MSSA (n=15) & iMLS\textsubscript{B} (n=9) & 5 & 0 & 2 & 0 & 5 & 3 & 0 \\
& cMLS\textsubscript{B} (n=2) & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
& MLS\textsubscript{B} (n=4) & 0 & 0 & 0 & 2 & 0 & 0 & 2 \\
& Total (n=15) & 7 & 0 & 2 & 0 & 6 & 2 & 2 \\
CoNS (n=254) & iMLS\textsubscript{B} (n=49) & 11 & 0 & 21 & 3 & 6 & 3 & 17 \\
& cMLS\textsubscript{B} (n=111) & 33 & 3 & 56 & 8 & 28 & 13 & 13 \\
& MLS\textsubscript{B} (n=94) & 0 & 0 & 0 & 47 & 0 & 47 & \\
& Total (n=254) & 44 (17) & 3 (1) & 77 (30) & 11 (4) & 81 (32) & 16 (6) & 77 (30) \\
MRCoNS (n=161) & iMLS\textsubscript{B} (n=23) & 9 & 0 & 15 & 3 & 3 & 3 & 2 \\
& cMLS\textsubscript{B} (n=89) & 23 & 3 & 48 & 6 & 25 & 13 & 10 \\
& MLS\textsubscript{B} (n=49) & 0 & 0 & 0 & 29 & 0 & 20 & \\
& Total (n=161) & 32 & 3 & 63 & 9 & 57 & 16 & 32 \\
MSCoNS (n=93) & iMLS\textsubscript{B} (n=26) & 2 & 0 & 6 & 0 & 3 & 0 & 15 \\
& cMLS\textsubscript{B} (n=22) & 10 & 0 & 8 & 2 & 3 & 0 & 3 \\
& MLS\textsubscript{B} (n=45) & 0 & 0 & 0 & 18 & 0 & 27 & \\
& Total (n=93) & 12 & 0 & 14 & 2 & 24 & 0 & 45 \\
Total (n=301) & iMLS\textsubscript{B} (n=73) & 25 & 0 & 27 & 4 & 13 & 8 & 20 \\
& cMLS\textsubscript{B} (n=127) & 48 & 3 & 58 & 10 & 30 & 14 & 13 \\
& MLS\textsubscript{B} (n=101) & 0 & 0 & 0 & 51 & 0 & 50 & \\
& Total (n=301) & 73 (24) & 3 (1) & 85 (28) & 14 (5) & 94 (31) & 22 (7) & 83 (28) \\
\hline
\end{tabular}
\caption{Distribution of resistance genes among 301 erythromycin-resistant staphylococci isolatesa}
\end{table}

aData presented as n (%). ND=Not detected; \textit{S. aureus}=\textit{Staphylococcus aureus}; iMLS=inducible macrolide, lincosamide and streptogramin resistance; cMLS=constitutive macrolide, lincosamide and streptogramin resistance; MRSA=methicillin-resistant \textit{Staphylococcus aureus}; MSSA=methicillin-susceptible \textit{Staphylococcus aureus}; CoNS=coagulase-negative staphylococci; MRCoNS=methicillin-resistant coagulase-negative staphylococci; MSCoNS=methicillin-susceptible coagulase-negative staphylococci.
isolates in the present study showed constitutive expression but were not performed. Although most erythromycin-resistant isolates may be underestimated if testing for inducible resistance is not performed. Although most erythromycin-resistant isolates may be considered as one of the therapeutic options in the treatment of hospital-associated MRSA,10 it seems that we cannot consider this antibiotic as one of the therapeutic options in the treatment of clinical isolates of Staphylococcus aureus in a Turkish university hospital. Zentralbl Bakteriol 2000;289:827–33.

14. Erm(C) gene. These findings with significant geographical differences in resistance patterns and resistance rates make the results of local surveillance studies an important tool in guiding therapy and for judicious use of antimicrobial agents.

References

14. Lina G, Quaglia A, Revery ME, Leclerq R, Vandenesch F, Etienne J. Distribution of genes encoding resistance to macrolides,

Acknowledgment

This study was funded by the Scientific Research Projects Unit of Suleyman Demirel University, Isparta, Turkey.

