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Endothelial Progenitor Cells in Cardiovascular Disorders
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The important role of the vascular endothelium in cardiovascular health is increasingly recognized. However, ma-
ture endothelial cells possess limited regenerative capacity. There is therefore much interest in circulating
endothelial progenitor cells (EPCs) among the scientific community, especially into their purported role in main-
tenance of endothelial integrity and function, as well as postnatal neovascularization. It has been suggested that
these cells might not only be responsible for the continuous recovery of the endothelium after injury/damage,
but also might take part in angiogenesis, giving the hope of new treatment opportunities. Indeed, there is accu-
mulating evidence showing reduced availability and impaired EPC function in the presence of both cardiovascu-
lar disease and associated comorbid risk factors. Thus, many studies into the potential for use of EPCs in the
clinical setting are being undertaken. The goal of this review article is to provide an overview of data relevant to
the clinical role of EPCs and perspectives for treatment of cardiovascular disorders. (J Am Coll Cardiol 2007;
49:741–52) © 2007 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2006.09.050
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he crucial role played by the endothelium in cardiovascular
iology is becoming increasingly appreciated (1). Indeed,
ndothelial injury has been implicated in atherosclerosis,
hrombosis, and hypertension, and the balance between
ndothelial injury and endothelial recovery is of paramount
mportance for reducing cardiovascular events (2). However,

ature endothelial cells possess limited regenerative capac-
ty (3,4). There is therefore growing interest into circulating
ndothelial progenitor cells (EPCs), especially into their
urported role in maintenance of endothelial integrity,
unction, and postnatal neovascularization (5). Other stud-
es are also providing intriguing and encouraging insight
nto the potential use of EPCs in the clinical setting.
ndeed, there is accumulating evidence for reduced avail-
bility and impaired EPC function in the presence of both
ardiovascular disease and associated comorbid risk factors.

The goal of this review paper is to provide an overview of
ata relevant to the clinical role of EPCs and perspectives
or treatment of cardiovascular disorders. A search strategy
nd a detailed discussion of the pathophysiological aspects
f EPCs (that is, EPC definition, links to angiogenesis, and
o on) is provided as an online-only Appendix.
hysiological factors and EPCs. Because of the rarity of
PCs and the difficulties in identification, limited informa-
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ion is available about the normal range and functional
haracteristics of different types of EPCs in humans.

The available data suggest that age may affect the avail-
bility and function of EPCs (6–8). Aging is associated
ith a reduced number of circulating EPCs in patients with

oronary artery disease (CAD). For example, Vasa et al. (9)
eported age-associated depression in circulating CD34/
inase insert domain receptor (KDR)-positive cells in a
ixed group of healthy probands and CAD patients.

cheubel et al. (7) have reported an age-dependent loss of
irculating EPCs in stable CAD. Moreover, the number of
PCs mobilized after coronary artery bypass grafting was

ignificantly decreased in older patients.
The aging-associated impairment of cardiac angiogenic

apacity in older mice, estimated as neovascularization of
ardiac allografts, can be restored by implantation of bone-
arrow-derived EPCs from young adult animals (8). Pro-

ression of atherosclerosis in apolipoprotein E�/� mice
ith persistent hypercholesterolemia seems delayed by

hronic administration of bone marrow-derived progenitor
ells from young mice (6). This treatment was much less
ffective when donors were older animals with atheroscle-
osis, indicating that progressive age-dependent reduction
n EPCs may accelerate the development of atherosclerosis,
articularly in the presence of risk factors (e.g., hypercho-

esterolemia) (6).
Multiple factors seem to be involved in the aging-

ssociated deterioration of EPC quantity and function
Table 1). The chronic exposure to risk factors continuously
amages endothelial cells and requires their intensive re-
lacement. Conversely, risk factors possibly affect EPC
obilization, integration in injured vascular sites, and an-
iogenic capacity. The EPC dysfunction may also be result

https://core.ac.uk/display/82553139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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of their accelerated senescence
and apoptosis, as well as exhaus-
tion of the pool of progenitor
cells available in the bone mar-
row (10–12).

Reduced levels of angiogenic
and mobilizing cytokines have
been related to age-dependent
impairment of EPC mobilization
in vivo. Indeed, vascular endo-
thelial growth factor (VEGF)
and nitric oxide (NO) produc-
tion have been reported to de-
crease with age (7,11,13–16),
and these factors play synergistic
roles in the mobilization, migra-
tion, proliferation, and survival
of endothelial cells (11,15). The
alteration of constitutive human
telomerase reverse transcriptase
activity can also affect the regen-
erative capacity of EPC (17).
Thus, the impaired ability of

PCs themselves for mobilization by adequate stimuli may
ccur.
It is well known that physical training improves endothe-

ial function, exercise tolerance, and collateralization in
atients with CAD (18,19), chronic heart failure (20,21),
nd peripheral artery disease (22,23). Exercise upregulates
irculating EPCs in patients with CAD (24), and increases
he number of EPCs in bone marrow, peripheral blood, and
he spleen (at least in mice) (25). The upregulation of EPCs
y exercise may be dependent on endothelial NO and
EGF levels or a decreased rate of EPC apoptosis (24). In
recent clinical study, physical exertion in patients with

eripheral arterial occlusive disease resulted in a 5.2-fold
ardiovascular Risk Factors and Endothelial Progenitor Cells

Table 1 Cardiovascular Risk Factors and Endothelial Progenito

Study Risk Factor Patients

Vasa et al. (9) LDL CAD 2CD

Hypertension NE

Smoking 2Ci

Hill et al. (10) Total cholesterol, LDL Healthy 2CF

Chen et al. (27) Total cholesterol CAD 2In

Pellegatta et al. (31) HDL, triglycerides Healthy 2CF

Loomans et al. (36) Diabetes Type 1 diabetes melitus 2In

Tepper et al. (37) Diabetes Type 2 diabetes melitus 2In

Pistrosch et al. (38) Diabetes Type 2 diabetes melitus NE

Kondo et al. (42) Smoking Healthy 2Ci

Chen et al. (44) Homocysteine Healthy 2In

Thum et al. (46) ADMA CAD 2Ci

Abbreviations
and Acronyms

ADMA � asymmetric
dimethylarginine

CABG � coronary artery
bypass grafting

CAD � coronary artery
disease

EPC � endothelial
progenitor cell

G-CSF � granulocyte
colony-stimulating factor

KDR � kinase insert
domain receptor

LDL � low-density
lipoprotein

MNC � mononuclear cell

NO � nitric oxide

PDGF � platelet-derived
growth factor

VEGF � vascular
endothelial growth factor
DMA � asymmetric dimethylarginine; CAD � coronary artery disease; CFU � colony-forming units of EPC
eceptor; LDL � low-density lipoprotein; ND � no data; NE � no effect; NO � nitric oxide.
ncrease in EPCs and improvement of their function.
owever, subischemic exercise training in revascularized

atients did not affect EPC number, although in vitro
ascular tube formation was enhanced (26). These data
mply that a positive impact of regular physical training on
ardiovascular performance may be attributable at least
artly to the improved behavior of EPCs (26).
ardiovascular risk factors and EPCs. An increasing
ody of evidence suggests that cardiovascular risk factors
ffect the number and properties of EPCs. An inverse
orrelation is found between the number (and functional
ctivity) of EPCs and cardiovascular risk factors among
pparently healthy people and in patients with CAD (9,10).
he number of EPCs correlates with endothelial function

nd is a better predictor for this than the patient’s combined
ramingham risk factor score (10).
ipids. Multiple studies have consistently reported an as-

ociation between lipid metabolism and the biology of
uman EPCs. The numbers of EPC colony forming units
re significantly reduced in relatively healthy subjects with
levated serum cholesterol levels (10). In CAD, low-density
ipoprotein (LDL) cholesterol inversely correlates with the
umber of circulating EPCs (9). In addition, the functional
haracteristics of isolated EPCs, such as proliferation, mi-
ration, adhesion, and in vitro vasculogenic capacity, are
lso impaired in patients with hypercholesterolemia (9,27).

Exposure of cultured EPC to oxidized LDL induces a
ose-dependent impairment of their functional activity,
ccelerates the rate of EPC senescence, possibly by telom-
rase inactivation, and can be associated with up to a 70%
eduction in EPC numbers (28,29). In addition, oxidized
DL impairs VEGF-induced EPC differentiation via the
eactivation of Akt (30). Plasma levels of high-density

ipoprotein cholesterol and triglycerides positively correlate
ith the number of EPC colony-forming units, but not

ls

Effects on EPC Number Effect on Function

KDR� cells, NE CFU 2Migration

2Migration

ng CD34�/KDR� cells,2in culture NE on migration

ND

e 2Proliferation, migration, adhesion,
in vitro vasculogenic capacity

ND

e 2In vitro vasculogenic capacity

e 2In vitro vasculogenic capacity

2Adhesion

ng CD45low/CD34�/CD133�/KDR� cells ND

e 2Proliferation, migration, adhesion,
in vitro vasculogenic capacity

ng CD34�/CD133� cells,2CFU 2Differentiation, in vitro
vasculogenic capacity,
NO synthase activity
r Cel

34�/

rculati

U

cultur

U

cultur

cultur

rculati

cultur

rculati
s; EPC � endothelial progenitor cell; HDL � high-density lipoprotein; KDR � kinase insert domain
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ith the number of CD34�/CD133�-positive progenitor
ells (31).

ypertension. Among various risk factors, hypertension is
hown to be the strongest predictor of EPC migratory
mpairment (9). Angiotensin II diminishes telomerase ac-
ivity in EPCs and accelerates the onset of EPC senescence
hrough an increase in oxidative stress. Some controversy
oes exist about the effects of angiotensin II on in vitro EPC
roliferation. Although angiotensin II inhibited EPC pro-

iferation in one study, it enhanced VEGF-induced EPC
roliferation in another (32,33). Angiotensin II also poten-
iates VEGF-induced network formation by EPCs, proba-
ly by upregulation of KDR (32).
iabetes mellitus. Diabetes mellitus, another important

ardiovascular risk factor, is a disease in which impairment
f ischemia-induced neovascularization has been described
34,35). The number of EPCs is reduced in both type 1 and
ype 2 diabetes (36,37). Furthermore, marked EPC dys-
unction may underlie new mechanisms involved in the
athogenesis of vascular complications in diabetic patients.
ndeed, EPC proliferation, adhesion, and angiogenic prop-
rties are impaired in this setting (36–38).

EPCs can facilitate angiogenesis in a paracrine fashion by
ecretion of angiogenic factors to mobilize bone-marrow
rogenitors and to activate mature endothelial cells (39,40).
f note, the media from EPC culture of type 1 diabetic

atients not only possesses evidence of reduced angiogenic
apacity, but also contains an inhibitor for in vitro tube
ormation (36). Interestingly, diabetes was not associated
ith enhanced apoptosis in this study. Tepper et al. (37)

howed an impaired ability of mature endothelial cells to
ncorporate into tubules in type 2 diabetes. In both studies,
ecreased number and dysfunction of EPCs was inversely
elated to the levels of hemoglobin A1c, implying that the
egree of glycemic dysregulation was associated with EPC
athophysiology.

ardiovascular Disorders and Endothelial Progenitor Cells

Table 2 Cardiovascular Disorders and Endothelial Progenitor Ce

Study Patients

Heeschen et al. (47) Stable CAD

George et al. (49) Unstable angina

Massa et al. (48) Myocardial infarction stable CAD

Shintani et al. (51) Myocardial infarction

Valgimigli et al. (57) Heart failure

Foresta et al. (58) Erectile dysfunction

George et al. (59) Diffuse in-stent restenosis

Simper et al. (60) Transplant arteriopathy

Taguchi et al. (61) Cerebrovascular atherosclerosis

Ghani et al. (62) Stroke
YHA � New York Heart Association; other abbreviations as in Table 1.
Further evidence of the negative impact of hyperglycemia
n EPCs was provided by Kränkel et al. (41), who showed
hat cultivation of peripheral blood mononuclear cells
MNCs) from healthy donors under hyperglycemic condi-
ions was associated with significant reduction in EPC
umbers, inhibition of NO production, and matrix
etalloproteinase-9 activity, as well as an impairment of the
igrational and integrative capacities of the cells.
ther risk factors. Smoking is a significant predictor of

educed circulating and cultured endothelial progenitors (9).
he number of circulating EPCs correlates inversely with

he number of cigarettes consumed (42). The EPCs from
eavy smokers also die prematurely during the early phase of
ulture (42). Similarly, smoking cessation is associated with
n increase of EPC numbers, and these changes are most
arked in those who smoked the least (42). However, if

moking is resumed, EPC numbers rapidly decrease to
evels seen before smoking cessation (42). Of note, nicotine
ffects on the activity and function of EPCs seems to be
ose dependent. Lower doses of nicotine have a positive
nfluence on EPC numbers, proliferation, migration, and in
itro vasculogenesis with the peak effect at concentrations of
icotine 10�8 mol/l, similar to that found in the blood of
mokers (43). However, cytotoxicity was observed at higher
icotine concentrations (43).
Homocysteine, which is another common cardiovascu-

ar risk factor, was shown to decrease numbers and impair
ctivity of EPCs from human peripheral blood (44).
symmetric dimethylarginine (ADMA), an endogenous
O synthase inhibitor, contributes to endothelial

ysfunction and inhibition of angiogenesis and is an
ndependent biomarker of future major adverse cardio-
ascular events or death (45). Of note, circulating
DMA levels inversely correlate with the number of
rogenitor cells, and ADMA inhibits EPC function, at

east in vitro (46).

Effects on EPC Number Effect on Function

2Migration, in vivo vasculogenic
capacity

NE adhesion

4�/KDR� cells NE ND

ulating CD34� cells,1CFU ND

nd CD34�/CD133�/KDR� cells,
n NYHA functional class I,
n NYHA functional class III–IV

ND

ulating EPCs ND

ND

ND
�/CD133� cells,
n cerebral infarction,
correlation with the degree
therosclerosis

ND

ND
lls

2CFU

1CFU

1CD3

1Circ

CFU a
1i
2i

2Circ

2CFU

2CFU

CD34
2i
no
of a

2CFU
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PCs and cardiovascular diseases. Abnormalities in quan-
ity and function of EPCs have been shown in a number of
tudies of various cardiovascular disorders (Table 2).
table CAD. Despite numbers of circulating CD34�/
D45� and CD133�/CD34� progenitor cells and EPCs

n patients with severe chronic CAD being similar to those
n control subjects, in vitro functional capacity of bone-

arrow MNCs is significantly reduced and transplantation
f bone-marrow MNCs from patients with CAD into
schemic nude-mice high limb showed a markedly impaired
bility to restore tissue perfusion (47,48).
nstable CAD. In patients with unstable angina, an in-

rease in numbers of EPC colony-forming units, but no
hange in adhesive properties, has been shown; however, the
umber of EPCs were reduced by almost 50%, after clinical
tabilization (49). Correlations were also noted between
ystemic C-reactive protein (CRP) levels and circulating
PC numbers, but not with their adhesive capacity, imply-

ng that systemic inflammation may play a role in the
obilization of EPCs in patients with unstable angina (49).
n the contrary, CRP was found to inhibit EPC prolifer-

tion, survival, differentiation, and function, suggesting a
ossible role in the development of cardiovascular disease (50).
In myocardial infarction, the number of circulating EPCs

s markedly increased from the early phase of the disease to
eak levels on day 7 (48,51). Subsequently, EPC numbers
educe and become similar to levels seen in control subjects
ithin 60 days (51). Of note, plasma levels of VEGF (a
rowth factor associated with angiogenesis) are closely
elated to circulating EPC numbers, and levels also peak on
ay 7 (51). These data show the important role for VEGF
n EPC mobilization in acute coronary syndromes. How-
ver, given that most patients with myocardial infarction are
reated with EPC mobilizing drugs, such as statins or the
ngiotensin-converting enzyme inhibitors, the primary driv-
ng factor for peripheral EPC elevation in myocardial
nfarction is uncertain. In a rat model, the number and
unction of EPCs were depressed after myocardial infarction
n those given placebo, whereas treatment with either an
ngiotensin-converting enzyme inhibitor or a statin was
ssociated with significant stimulation of the amount and
ctivity of the EPCs (52). Moreover, mesenchymal stem
ells, which also possess the potential to differentiate to
ndothelial cells, are decreased on day 7 after acute ST-
egment elevation myocardial infarction (53).

The functional role of the bone marrow cells in myocar-
ial infarction may be attributable not only to their angio-
enic properties and release of growth factors and cytokines,
ut also to their ability to restore the population of cardiac
rogenitor cells by selective homing to specific areas of
yocardial injury and conversion to the phenotype of

ardiac side-population cells (54). Bone marrow-derived
ematopoietic cells may generate cardiomyocytes (albeit at a

ow frequency) within the infarcted myocardium in some

nimal models (55), although others fail to show transdif- c
erentiation of hematopoietic stem cells into cardiac myo-
ytes after myocardial infarction (56).

eart failure. The numbers of EPCs are elevated in
atients with acute heart failure, which significantly corre-

ates with levels of the cytokine tumor necrosis factor alpha
57). Differences in the quantity of EPCs can be related to
he stage of heart failure, with relatively higher numbers in
he early stage of heart failure (New York Heart Association
unctional class I and II), with levels progressively decreas-
ng with New York Heart Association functional class III
nd IV heart failure (57). Higher levels of brain natriuretic
eptide are associated with depression of circulating EPCs
ith no effect of medical therapy or etiology of heart

ailure (57).
ther disease states. Reduced numbers of EPCs are found

n patients with erectile dysfunction (58), those with in-
tent restenosis (59), and in cardiac transplantation patients
ith vasculopathy (60). The number of EPCs does not seem

o be associated with the degree of cerebrovascular athero-
clerosis per se (61). However, EPC levels are significantly
ecreased in patients after stroke (62) and in those with
therosclerotic patients (including ones without clinical
troke) in whom areas of cerebral infarction as determined
y positron emission tomography were found (61). In the
atter study, EPC numbers also correlated with regional
lood flow in areas of chronic hypoperfusion of the brain
61).
ffects of drug therapies on EPCs. Drug therapies may

nfluence EPC physiology, as summarized in Table 3. These
hanges need to be placed in context to explain the possible
herapeutic benefit(s) of these drugs, and to justify the
ffects on clinical outcomes, good or bad.
-hydroxy-3-methylglutaryl co-enzyme A (HMG-CoA)
eductase inhibitors (statins). Many primary and second-
ry prevention trials have suggested that statins possess
avorable (pleiotropic) effects, which include the improve-
ent of endothelial function and an anti-thrombotic effect,

ndependent of their impact on cholesterol reduction
63,64).

Along with direct effects on endothelial cells, stimulation
f EPC activity may be an additional mechanism of the
eneficial influence of statins on endothelial performance.
ndeed, different statins have been shown to enhance the
roliferative capacity of EPCs in vitro (12,65,66). More-
ver, the effect of statins seems to be comparable with
EGF (66), which is known to augment the number of
PCs (67,68).
Statins stimulate EPC proliferation through the cell cycle

egulatory genes (12). Additionally, statins induce EPC
ifferentiation via the PI 3-kinase/Akt pathway (65,66), as
ell as enhance adhesiveness by increased integrin expres-

ion (69), and improve migratory activity by upregulation of
he telomere repeat-binding factor TRF2 in EPCs (70,71). As
reviously mentioned, the pleiotropic effects of statins on EPC
ctivity are independent of their impact on reduction in LDL

holesterol, as shown by comparison of simvastatin and
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zetimibe (72). Finally, atorvastatin or mevastatin dose-
ependently inhibit the onset of EPC senescence in culture
12). Thus, one may potentially consider the use statins to
ugment the functional potential of EPCs for transplantation
herapy.

he renin-angiotensin-aldosterone system. The renin-
ngiotensin-aldosterone system is an important pathophys-
ological mechanism related to many cardiovascular disor-
ers, and may also be involved in EPC (dys)function
32,33). Indeed, treatment with the angiotensin II receptor
ntagonists, olmesartan or irbesartan, significantly increases
he number of EPCs (73). Also, valsartan was reported to
educe angiotensin II accelerated senescence of EPCs via
pregulation of telomerase activity (32). The administration
f ramipril, an angiotensin-converting enzyme inhibitor,
ncreases the number and improves the functional capacity
f EPCs in patients with CAD, independent of any impact
n blood pressure (74).
strogens. No direct studies of effect of estrogen therapy
n EPCs in humans are available, but increased blood
strogen levels in women do correlate with numbers of
irculating EPCs (75). In an animal carotid injury model,
stradiol treatment showed stimulatory effects on EPC
obilization, proliferation, mitogenic activity, and migra-

ion activity, as well as inhibited EPC apoptosis (76).
iscellaneous drugs. Enhancement of EPC activity has

een shown with treatment with vardenafil (a phosphodi-
sterase inhibitor) (77), puerarin (78), and Ginkgo biloba
xtract (79). In contrast, rapamycin inhibits proliferation

rug Therapies and Endothelial Progenitor Cells

Table 3 Drug Therapies and Endothelial Progenitor Cells

Study Patients Therapy

Llevadot et al. (65) ND Simvastatin

Dimmeler et al. (66) Healthy Simvastatin, mevastatin,
atorvastatin

Vasa et al. (70) CAD Atorvastatin

Assmus et al. (12) Healthy Atorvastatin

Mevastatin

Walter et al. (69) ND Simvastatin

Spyridopoulos et al. (71) Healthy Atorvastatin, mevastatin

Landmesser et al. (72) Heart failure Atorvastatin, ezetimibe

Bahlmann et al. (73) Diabetes melitus Olmesartan, irbesartan

Imanishi et al. (32) Healthy Valsartan

Min et al. (74) CAD Ramipril

Bahlmann et al. (83) Renal anemia,
healthy

Erythropoietin

Heeschen et al. (81) CAD Erythropoietin levels

Pistrosch et al. (38) Diabetes Rosiglitazone

Foresta et al. (77) Healthy Vardenafil

Zhu et al. (78) ND Puerarin

Chen et al. (79) ND Ginkgo biloba

Butzal et al. (80) ND Rapamycin

bbreviations as in Table 1.
nd differentiation of human EPCs in vitro (80). The m
dministration of rosiglitazone, a peroxisome proliferator-
ctivated receptor gamma agonist, in patients with type 2
iabetes not only increases the number and migratory
ctivity of cultured EPCs (38), but also can attenuate the
etrimental effects of C-reactive protein on endothelial
rogenitors (50).
Finally a correlation between erythropoietin levels and

PC numbers, as well as functional activity, has been
eported (81,82). The administration of erythropoietin also
ncreases the number of functionally active EPCs in patients
ith renal anemia, as well as in healthy subjects (83).
PC transplantation— clinical experience. It is increas-

ngly recognized that EPCs are recruited to sites of injury
nd participate in the repair of damaged tissues and neo-
ascularization in ischemic myocardium (48,51,84), hind
imb (85,86), and brain (87). Many pre-clinical studies have
hown therapeutic efficacy of EPCs in ischemic disorders
nd vascular injury in animal models (86,88,89).

Several small-scale phase 1 trials of bone marrow MNC
ransplantation in treatment of myocardial infarction, pe-
ipheral limb ischemia, severe stable CAD, and heart failure
roviding preliminary evidence of feasibility and safety of
PC transplantation have been performed (Table 4). For

xample, Hamano et al. (90) performed autologous bone-
arrow MNC implantation during coronary artery bypass

rafting (CABG), and long-term improvement of myocar-
ial perfusion was reported in 3 of 5 patients, with no
hange seen in 2 patients.

Stamm et al. (91) injected autologous CD133� bone

Effects on EPC Number Effect on EPC Function

1Proliferation 1Migration

1Proliferation ND

1EPC number 1Migration

1Proliferation 2Senescence

NE 2Senescence

ND 1Adhesion

ND 1Migration

1In culture NE ND

1In culture ND

ND 2Senescence

1In culture 1Proliferation, migration, adhesion,
in vitro vasculogenic capacity

1Circulating CD34�/CD45� cells,
1in culture

1In vitro vasculogenic capacity

Correlate with EPC number Correlate with migration capacity

1In culture 1Migration

1Circulating EPCs ND

1In culture 1Migration, adhesion, in vitro
vasculogenic capacity

1In culture 1Migration, adhesion, in vitro
vasculogenic capacity

2In culture 2Differentiation, adhesion,1apoptosis
arrow cells into the infarct border during CABG in 6
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atients at 10 days to 3 months after myocardial infarction.
mprovement of global left ventricular function, diastolic
eft ventricular dimensions (in 4 patients), and perfusion of
he infarcted area (in 5 patients) with no adverse effect 3 to

months after surgery was shown. The intracoronary
elivery of unfractionated bone marrow MNCs in patients
ith percutaneous coronary intervention after myocardial

nfarction has been shown to result in the improvement of
ocal and global left ventricular contractility and geometry at
months of follow-up when compared with patients treated
ith standard therapy for myocardial infarction alone (92).
In the final 1-year follow-up results of the TOPCARE-

MI (Transplantation of Progenitor Cells and Regenera-
ion Enhancement in Acute Myocardial Infarction) trial
93,94), ex vivo expanded bone marrow MNCs or culture-
nriched EPCs derived from peripheral blood MNCs were
nfused intracoronarily to a randomized group of 20 patients
ith acute myocardial infarction. After 4 months, signifi-

ant enhancement of left ventricular ejection fraction and
all motion in the infarct zone, as well as improvement in

ardiac geometry, coronary blood flow reserve, and myocar-
ial viability in the injured area and reduction of end-
ystolic dimensions were observed. The final 1-year results
or this trial confirmed a sustained improvement in left
entricular function, as well as reductions in end-systolic
olumes and areas of dysfunctional myocardium in treated
roups (93). The beneficial effects of MNC transplantation
n post-infarct contractility restoration and prevention of
emodeling seem to be highly correlated with the migratory
apacity of these cells (95).

The randomized, controlled BOOST (Bone Marrow
ransfer to Enhance ST-Elevation Infarct Regeneration
rial) (96) evaluated the therapeutic effect of bone marrow

ell transfer in 60 patients with myocardial infarction
ndergoing percutaneous coronary intervention. This con-
rolled trial showed an increase in global left ventricular
jection fraction and systolic wall motion in the border zone
t 6 months after autologous bone marrow MNC transfer
96). However, the difference in left ventricular contractility
etween groups was not significant after 18 months of
ollow-up, despite an acceleration of left ventricular function
ecovery by cell therapy.

Fernandez-Aviles et al. (97) published similar results of
ntracoronary infusion of bone marrow MNCs with esti-

ated numbers of CD34�, CD117�, and CD133� sub-
opulations to patients with myocardial infarction after
uccessful thrombolysis and stenting. Significant improve-
ent of the end-systolic volume and the ejection fraction
ere found, as well as an increase in the end-diastolic and

nd-systolic thickness of the infarcted wall, as measured by
agnetic resonance imagining at 6 months. All patients

emained free of major cardiac symptoms or events at
ollow-up.

In a randomized, double-blind, placebo-controlled study,
ntracoronary autologous bone marrow MNCs were infused
after percutaneous coronary reperfusion in 67 patients withC
li T S S A W F H T P T Ja

*B
io A

ab
b



a
p
s
o
s
i
w
t

m
v
e
e
I
t
d
t
t
n
t
e
e
f
r
w
f

w
U
a
n
i
p
i
r
2
w
p
s

w
o
i
n
(

t
q
t

1

2

3

747JACC Vol. 49, No. 7, 2007 Shantsila et al.
February 20, 2007:741–52 EPCs in Cardiovascular Disorders
cute myocardial infarction (98). Although stem cell trans-
lantation was associated with a reduction in infarct size, no
ignificant improvement of left ventricular function was
bserved during the 4-month follow-up period. In this
tudy, cells were delivered within 24 h after myocardial
nfarction, which is significantly earlier when compared
ith others, providing some evidence of the importance of

iming of stem cell transplantation.
Selective delivery of EPCs to ischemic areas of the heart
ay have advantages. For example, a nonfluoroscopic left

entricular electromechanical mapping system-guided deliv-
ry of bone marrow MNCs to ischemic myocardium is an
ffective and safe treatment modality in selected patients.
mprovement in symptoms, myocardial perfusion, and func-
ion at the ischemic region on magnetic resonance imaging
uring the 3-month follow-up period after MNC implan-
ation was shown in 8 patients with stable angina refractory
o maximum medical therapy (99). Another prospective,
onrandomized, open-label study of transendocardial injec-
ions of autologous bone marrow MNCs in patients with
nd-stage ischemic heart disease confirmed the safety and
ffectiveness of the treatment; at the 2- and 4-month
ollow-up period, 21 patients in the treatment group expe-
ienced less heart failure and fewer anginal symptoms, as
ell as an enhancement in myocardial perfusion and pump

unction and the improvement of cardiac geometry (100).
Leg ischemia caused by severe peripheral artery disease

as the target of the TACT (Therapeutic Angiogenesis
sing Cell Transplantation) study (101). Four weeks after

utologous bone-marrow MNC injection into the gastroc-
emius muscle, ankle-brachial indexes were significantly

mproved in the legs of patients treated with cells but not in
atients treated with placebo (saline). There was a striking
ncrease in the number of visible collateral vessels and
ecovery of blood perfusion in the treated legs during the
4-week duration of the study. Rest pain and pain-free
alking also significantly improved during the follow-up
eriod. Of note, legs injected with peripheral blood MNCs
howed much smaller increases in the ankle-brachial index.

Importantly, the therapy based on transplantation of cells
ith endothelial potential seems to be safe because no deteri-
ration in cardiac performance or adverse cardiac events,
ncluding proarrhythmia or an increased rate of in-stent reste-
osis, have been reported in the abovementioned studies
90–101).

Although these initial studies have shown optimism for
he potential of EPCs as a therapeutic area, some important
uestions have arisen with respect to the design of clinical
rials of EPC therapy:

. Which cell population should be transplanted, and should bone
marrow or peripheral blood be the preferred source of cells?
There is not currently enough convincing evidence
regarding which of the progenitor cell populations is the
most potent for stimulating neovascularization and re-

generation of ischemic tissue. Indeed, the CD34�
stem-cell fraction takes part in postnatal revasculariza-
tion (89,102). On the other hand, CD34�302 cells
enhance CD34� cell-mediated angiogenesis (100,102).
Although the underlying mechanisms of this process are
not clearly understood, they may be related to secretion
of angiogenic cytokines and chemokines (39,84), or
transdifferentiation of bone marrow mesenchymal stem
cells and stromal cells into endothelial lineage, cardio-
myocytes, and smooth muscle cells (103–105). This
presumes that several different fractions of bone marrow
MNCs may contribute to the regeneration of necrotic
myocardium and vessels and increase regenerative po-
tential. Conversely, peripheral blood progenitors being
mobilized from bone marrow may possess higher func-
tional activity.
The TOPCARE-AMI trial showed that bone marrow
MNCs and culture-enriched circulating EPCs had a
similar positive effect on post-infarct myocardial recov-
ery and perfusion enhancement. Controversially, in the
TACT study (101), peripheral blood MNCs showed
much smaller effectiveness in improvement of ischemic
leg perfusion; however, because 500 ml of bone marrow
were used for preparation of transplanted mononuclear
cells and the number of CD34� cells, including EPC
subfraction, is much lower in fresh peripheral blood
MNCs than in bone marrow MNCs, it may be difficult
to compare their relative clinical effectiveness. Thus,
both purified EPC fractions and bone marrow MNCs,
containing also the EPC population, may be effective
for treatment of ischemic disorders.

. Which delivery method is the most efficient?
EPCs are a relatively rare cell population, and when
given intravenously, only a very small fraction of infused
cells reach the target region. It seems logical to choose
a delivery route that provides maximal cell concentration
in the damaged tissue. Injection of progenitor cells in
the infarct border during CABG or into the gastrocne-
mius muscle in peripheral vascular disease, or intracoro-
nary infusion and transendocardial intramyocardial in-
jection, have been successfully applied methods (91–
97,99–101). However, it remains premature to draw a
conclusion about optimal delivery route given the small
number of involved patients and the lack of comparative
studies.

. What time point is optimal for the cell transplantation in
acute ischemic states?
The peak of inflammatory response in myocardial in-
farction is observed in the first days with excessive
production of cytokines, growth factors, and extracellu-
lar matrix proteins mediating myocardial repair. These
molecules seem to be involved in the natural processes of
mobilization, differentiation, and homing of bone marrow
precursors. For example, VEGF is at its peak concentra-
tion at 7 days after myocardial infarction, and the decline
of adhesion molecules (intercellular adhesion molecules,

vascular cell adhesion molecules) follows shortly after-
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ward (92). Transplantation of active progenitors in this
period may exacerbate undesirable effects of inflamma-
tion on regenerative processes in the myocardium.
Indeed, no improvement of left ventricular function was
observed when bone marrow MNCs were delivered 1
day after myocardial infarction (98).
In one animal study, fetal rat cardiomyocytes were
implanted into cryoinjured adult rat hearts immediately,
2 weeks later, and 4 weeks later (106). Negative results
of immediate cell transplantation were reported,
whereas the best results have been obtained when
progenitors were implanted after 2 weeks, suggesting
that early cells were not successful because of the
excessive inflammatory process in the first days after
infarction, whereas a 4-week delay was probably less
effective because of scar expansion. In clinical studies in
which cell transplantation was performed at 4 to 10 days
and at up to 3 months, some positive results were shown
and this approach would seem to be reasonable, but
larger controlled multicenter trials are required.

ow do EPCs improve neovascularization? How many
ndothelial progenitors really incorporate in vascular struc-
ures? In different ischemic models, the rate of incorporation
f bone marrow-derived cells ranges from 0% to 57% and
chieves 80% in vascular grafts (88,107,108). Although the
asal incorporation rate of progenitor cells is low (109),
schemic tissues (myocardial [110], hind limb [88], cerebral
87,111]) and models of vascular injury (112,113) usually
how involvement of EPCs in the vascular wall.

Most studies report homing of bone marrow progenitors
n neocapillaries, but they are also found among stromal
ells (89), fibroblasts, pericytes, and primarily leukocytes
107) at the sites of neovascularization. Some even suggest
hat in the adult organism, bone marrow-derived progeni-
ors may primarily function as supporting cells (107). Of
ote, different factors potentially may affect the rate of

ncorporation of EPCs into the vascular wall, and the type
r source of cells seems to be important. For example,
mplantation of ex vivo purified bone marrow MNCs, their
ubfractions, or culture-expanded EPCs is associated with a
igher incorporation rate of cells than endogenously mobi-

ized bone marrow cells (88,110,114). In one study, bone
arrow MNCs but not peripheral blood MNCs were

ncorporated into neocapillaries (115). Outgrowth culture-
xpanded EPCs seem to show similar rates of incorporation
nto intima in the rabbit carotid injury models, as compared
ith earlier culture-modified EPCs (expanded on day 7 to
2) (113,116). The severity of ischemia may also signifi-
antly affect the incorporation of EPCs in different models
f injury/ischemia (117), as does the pattern of local
ytokine/chemokine levels. For example, stromal cell-
erived factor 1 significantly increases EPC incorporation in
he ischemic hind limb neovasculature (118). Similarly,
here is increased recruitment of bone marrow MNCs to the

ites of VEGF-induced neovascularization, but not into the m
ewly formed vessel (119). Finally, treatment with HMG-
oA reductase inhibitors (and probably other drugs) may

ffect not only the mobilization, but also the homing of
one marrow progenitors. For example, simvastatin-
nhanced corneal vasculogenesis was associated with an
ncrease in incorporation of bone marrow-derived cells from
.3% to 25.7% (65). On the whole, the rate of incorporation
f EPCs into the endothelial monolayer is relatively low,
ndicating the important role of angiogenic factors produced
y these cells to this process (120).
uo vadis? The initial results from the studies summarized

bove have shown the feasibility and safety of bone marrow
ell transplantation in treatment of myocardial infarction
nd peripheral limb ischemia, and no significant complica-
ion associated with this treatment has yet been reported.
urthermore, none of the patients after cell therapy had
alignant arrhythmias, which seems to be a major limita-

ion of injecting skeletal myoblast-derived cells directly into
he myocardium (121). The concerns over the safety of
ranulocyte colony-stimulating factor to induce EPC mo-
ilization and angiogenesis indicate the importance of
ppropriate control in further studies.

Although available clinical studies of EPC transplanta-
ion show beneficial results in terms of improvement in
schemic tissue perfusion and myocardial contractility, pre-
enting remodeling after myocardial infarction, these stud-
es are limited: a small number of patients were studied,
andomization was not blinded, and few centers were
nvolved. Furthermore, the exact profile of the cells used for
reatment needs to be accurately determined. Ideally, a
pecific cell population or combination should be tested.
hus, despite encouraging preliminary results, there re-
ains significant work to be done in terms of larger-scale
ulticenter controlled trials. The feasibility and safety of

ell treatment should also be proved by long-term follow-up
esults.

Furthermore, there are some important obstacles in the
arge-scale clinical use of EPCs. First, EPCs are relatively
are cells, and expansion of sufficient numbers of a definite
ubpopulation from peripheral blood is hardly possible.
econd, in vitro enumeration of progenitor cells for a
uantity sufficient for therapeutic implantation is associated
ith a change in phenotype and differentiation and the risk
f cell senescence, and may require artificial cell pre-
ctivation or stimulation (89,102). The reduced availability
nd functional properties of EPCs in older patients is
imiting, especially in those with cardiovascular risk factors
nd comorbidities in which further suppression of EPCs
s seen. It is in this very group of patients that advances in
his technology would be most helpful. Finally, there
emains a (theoretical) risk of undesirable recruitment of
mplanted cells by tumors or the retina, leading to vascular
roliferation.
A better understanding of the EPC biology and

dentification of the precise mechanisms involved in

obilizing, migration, and homing of endothelial pro-
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enitors may help to identify optimal regimens for cell
reparation and delivery. Combinations of gene-cell
herapy should also be considered. Indeed, the results of
he first pre-clinical studies, in which efficacy of EPC
herapy was enhanced by paracrine factors or factors
ntagonizing cellular aging and preventing apoptosis, are
ow available and can be considered promising. For
xample, ex vivo transfection of EPCs with VEGF before
ransplantation was shown to improve their capacity to
ugment neovascularization in a hind limb ischemia
odel (86). The capacity to augment blood flow and

apillary density is also significantly increased after
x vivo transduction of EPCs with human active subunit
f the telomerase reverse transcriptase (17). Biological
roperties of EPCs may also be enhanced by their genetic
odification with expression vectors to overexpress anti-

roliferative, antithrombotic, or vasodilatory genes. This
ay improve the function of the implanted cells in

amaged vessels or prostheses, as well as prevent throm-
osis and restenosis, or even increase synthesis of pro-
ngiogenic factors to improve perfusion of ischemic
egions. The latter may produce other factors to increase

Figure 1 Potential Origin and Differentiation of Endothelial Prog

EPC � endothelial progenitor cell; KDR � kinase insert domain receptor; VE � va
he proliferative, migratory, and adhesive capacity of t
PCs in response to appropriate stimulus. Endogenous
obilization of EPCs is another possible approach for

nhancing postnatal angiogenesis, and its combination
ith genetic modification of EPCs may have synergistic

ffects.
onclusions. The development of the optimal strategy
f effective and safe progenitor cell therapy presents a
ifficult challenge. More studies are needed to discover
ccurate mechanisms of EPC mobilization, migration,
trans)differentiation, and homing to the target areas. As
ultiple physiological and pathological factors are in-

olved in EPC regulation, optimal regimens of activa-
ion, stimulation, treatment, and probably genetic mod-
fication, as well as of EPC protection, must be
eveloped. Improvement and standardization of methods
f cultivation is also required. Furthermore, alternative
ources of endothelial progenitors such as cord blood and
enstrual blood are under investigation. Despite a large

umber of unanswered questions, the first clinical studies
how some promising results. A better understanding of
he biology of EPCs will help us to increase the thera-
eutic potential of EPCs, as well as to apply these cells as

r Cells

endothelial; vWF � von Willebrand factor.
enito

scular
herapies in clinical medicine (Fig. 1).
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APPENDIX

or the search strategy, pathophysiological considerations of endothelial
rogenitor cells, and angiogenic cytokines and chemokines, please see the

nline version of this article.
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