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Brain ischemic tolerance is a protective mechanism induced by a preconditioning stimulus, which prepare the
tissue against harmful insults. Preconditioning with N-methyl-p-aspartate (NMDA) agonists induces brain
tolerance and protects it against glutamate excitotoxicity. Recently, the glycine transporters type 1 (GlyT-
1) have been shown to potentiate glutamate neurotransmission through NMDA receptors suggesting an alter-
native strategy to protect against glutamate excitotoxicity. Here, we evaluated the preconditioning effect of
sarcosine pre-treatment, a GlyT-1 inhibitor, in rat hippocampal slices exposed to ischemic insult. Sarcosine
(300 mg/kg per day, i.p.) was administered during seven consecutive days before induction of ischemia in hip-
pocampus by oxygen/glucose deprivation (OGD). To access the damage caused by an ischemic insult, we eval-
uated cells viability, glutamate release, nitric oxide (NO) production, lactate dehydrogenase (LDH) levels,
production of reactive oxygen species (ROS), and antioxidant enzymes as well as the impact of oxidative stress
in the tissue. We observed that sarcosine reduced cell death in hippocampus submitted to OGD, which was
confirmed by reduction on LDH levels in the supernatant. Cell death, glutamate release, LDH levels and NO
production were reduced in sarcosine hippocampal slices submitted to OGD when compared to OGD controls
(without sarcosine). ROS production was reduced in sarcosine hippocampal slices exposed to OGD, although
no changes were found in antioxidant enzymes activities. This study demonstrates that preconditioning with
sarcosine induces ischemic tolerance in rat hippocampal slices submitted to OGD.

© 2012 Elsevier Ltd. Open access under the Elsevier OA license.
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1. Introduction cerebral preconditioning were based on the observation that brief

periods of anoxia were capable to increase the survival time of animals

Ischemic tolerance is referred to brain protection induced by its
pre-exposing to several stimuli that reduces neuronal vulnerability
to a subsequent ischemic insult (Gidday, 2006). Initial evidences of
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exposed to a prolonged period of anoxia (Dahl and Balfour, 1964;
Schurr et al., 1986), indicating that ischemic tolerance is a phenome-
non that occurs in order to protect the neural system (Gidday, 2006).

Neurons produce reactive oxygen species (ROS) by oxidative
metabolism during excitotoxic damage and hypoxia (Liu et al.,
2009; Perez-Pinzon et al., 2005). However, there are strong evi-
dences that brain preconditioning involves the generation of ROS
(Puisieux et al., 2004; Mori et al., 2000). Superoxide anion (0;")
is a product of a large number of reactions involving some enzymes
like NADPH oxidase, monooxygenases and NADH dehydrogenase.
0, is dangerous to cell and is rapidly scavenged by superoxide
dismutase, which converts two molecules of O, into a molecule
of hydrogen peroxide (H,0,) and one of oxygen (O;) (Puisieux
et al., 2004). In turn, cellular levels of H,0, are controlled by cata-
lase (CAT) and glutathione peroxidase (GPX), which convert two
molecules of H,0, into a molecule of H,O and one of O,. During
the excitotoxic process induced by glutamate, there is an increase
on O, and H,0, production, which contributes to ischemic brain
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injury. In addition, activation of N-methyl-p-aspartate (NMDA)
receptors induces the production of nitric oxide (NO) by neuronal
nitric oxide synthase (NOS), which reacts with O, to produce reac-
tive nitrogen species such as peroxynitrite that can damage a wide
array of molecules in cells. Nevertheless, H,0, O, and NO play a
role in the development of hypoxic and ischemic tolerance, since
the inhibition of NOS or the scavenging of NO and O, during the
preconditioning period significantly attenuates the process of tol-
erance (Cho et al., 2005; Furuichi et al., 2005).

Programmed cell survival is a complex mechanism of cerebral
plasticity involving protein phosphorylation and post-translational
modifications closely related to the excitatory effect of glutamate
by the activation of NMDA receptors (Chu et al., 2007; Turovskaya
et al, 2011). These receptors are activated by glutamate and its co-
agonists (p-serine or glycine) promoting influx of Ca?' into the
cells. A single dose of NMDA produces brain preconditioning and
neuroprotective effects against O, and glucose deprivation, neuro-
nal death induced by quinolinic acid and kainate-induced toxicity
(Ogita et al., 2003; Boeck et al., 2004; Miao et al., 2005). This neu-
roprotective effect is characterized by a decrease on necrotic and
apoptotic cell death and is achieved by the attenuation of injury-
inducing excitotoxicity, oxidative and nitrosative stress, metabolic
dysfunction and inflammation (Gidday, 2006).

Over the past years, new compounds that potentiate glutama-
tergic neurotransmission by increasing the concentration of gly-
cine in the synaptic cleft have been developed (Lim et al., 2004).
These compounds are selective inhibitors of glycine transporter
type 1 (GlyT-1) that mediate uptake of glycine through the binding
and co-transport of Na* and Cl™ ions, being the Na* gradient gener-
ated and maintained by the plasma membrane Na*/K'-ATPase
(Aragén and Lépez-Corcuera, 2003). GlyT-1 can be found in areas
such as diencephalon, retina, olfactory bulb and brain hemi-
spheres, being closely associated with NMDA receptors, where it
plays a role on glycine uptake (Cubelos et al., 2005; Zafra et al.,
1995a,b). GIyT-1 is expressed in neurons and glial cells and it
was demonstrated its distribution on the plasma membrane of
PC12 cells line (Geerlings et al., 2002). The uptake of glycine by
GlyT-1 is down-regulated by protein kinase C and up-regulated
by protein kinase G-I, being closely related to NO formation by
neuronal NOS and activation of NMDAr (Vargas-Medrano et al.,
2011; Jimenez et al.,, 2011). Inhibition of GlyT-1 induces a pro-
nounced antipsychotic effect and also enhances social memory in
rats, which was attributed to an increase on glutamatergic signal-
ing (Harsing et al., 2003; Shimazaki et al., 2010). Recent studies in
humans showed that patients who took daily 2 g of sarcosine, a
selective inhibitor of GlyT-1, had a reduction in positive and nega-
tive symptoms (Hsien-Yuan et al., 2008; Tsai et al., 2004).

Besides the antipsychotic activity, the effects of inhibitors of
GlyT-1 on neuromodulation and neuronal survival remain unclear
(Hsien-Yuan et al., 2008). Acute blockade of GlyT-1 did not elicit sig-
nificant neuroprotection of brief oxygen/glucose deprivation (OGD)
in the CA1 region of mouse hippocampal slices, but enhanced the
amplitude of the NMDA component of a glutamatergic excitatory
postsynaptic current in hippocampal pyramidal neurons (Tanabe
et al., 2010; Bergeron et al., 1998). Therefore, the aim of the present
study was to evaluate if the repetitive administration of sarcosine in
rats promotes a neuroprotective phenotype and induces chronic tol-
erance to OGD insult through the modulation of glutamatergic
neurotransmission.

2. Materials and methods
2.1. Animals and treatment

After approval of the experimental protocol by Ethics Commit-
tee for Animal Experimentation (Protocol No. 042/11), adult male

Wistar rats, weighing 150-200 g, were maintained on a 12-h
dark-light cycle, at 25 °C controlled room, with free access to water
and food.

Sarcosine (methylglycine) was obtained from Sigma-Aldrich
(Wien, Austria) and was dissolved in physiological saline. In order
to define the dose of sarcosine for the following experiments, dif-
ferent doses of the drug (30, 100 or 300 mg/kg) were administered
i.p. once a day during seven days. Control animals received saline
injections during the same period.

2.2. OGD insult

All animals were sacrificed by decapitation twenty-four hours
after the last administration of sarcosine or saline. The brain were
carefully removed and submerged in ice-cold artificial cerebrospi-
nal fluid (ACSF) containing: 127 mM NaCl, 2 mM KCl, 1.2 mM
KH,PO,4, 26 mM NaHCO3, 2 mM MgS0,, 2 mM CaCl,, 10 mM HEPES
and 10 mM glucose, bubbled with carbogenic mixture (95% O, and
5% CO,). Hippocampus were dissected on ice and sliced on 400 pum
with a Mcllwain Tissue Chopper (Brinkman Instruments, UK). As
described by Pinheiro et al. (2009), after dissection, the slices were
transferred to individual chambers of a superfusion system (SF-12;
Brandel, Gaithersburg, MD, USA) and superfused (37 °C) at a con-
stant rate of 0.5 mL/min with ACSF (95% O, and 5% CO,) during
90 min for recovery from the dissection trauma.

OGD was performed by perfusing the ischemic chambers with
ACSF containing glucose 4 mM and bubbled with a hypoxic mix-
ture (95% N, and 5% CO,) during 20 min. Paired control slices were
maintained on oxygenated ACSF solution containing glucose
10 mM. After the ischemic period, the slices were reperfused with
oxygenated ACSF solution with glucose 10 mM during 4 h. Thereaf-
ter, hippocampal slices were processed to experimental evaluation.
The supernatant from the ischemic period and reperfusion period
was collected to additional analysis.

2.3. Homogenization of hippocampal slices

Hippocampal slices were transferred to 1.5 mL tubes, weighed
and homogenized (1:10; w/v) in 50 mM of phosphate buffer saline,
containing 140 mM of KCl at 4 °C (pH 7.4). The homogenate was
centrifuged at 1000g for 10 min at 4 °C. The supernatant was col-
lected in 1.0 mL tubes and was frozen at —70 °C. The protein con-
tent was measured according to the Bradfords method (Bradford,
1976) using bovine serum albumin as standard (1 mg/mL).

2.4. Evaluation of hippocampal cells viability

Hippocampus slices submitted to OGD were stained with 6 pM
ethidium homodimer (Molecular Probes, Inc.) in oxygenated ACSF/
glucose solution for 30 min and then washed for 15 min in oxygen-
ated ACSF/glucose solution at room temperature and protected
from light. The cells were excited by red fluorescence (568 nm)
and dead cells were evidenced by nucleic acid bound with ethi-
dium homodimer. Fluorescence images were collected and used
to quantify the ischemia-induced by OGD. Images were acquired
using a fluorescence microscope Axiovert 200 M using the Apo-
Tome system (Carl Zeiss, Germany) to obtain optical sections of
the tissue. The Carl Zeiss Axiovision 4.8 software was used to ac-
quire the images.

To improve the quantitative analysis of the images they were
processed using the median filter. In the current approach, nucleus
was defined as connected pixels that were above the threshold
calculated using the image histogram. Regions in the CA1 area of
hippocampus were selected from the threshold images and ana-
lyzed using the Image ] software to calculate the percentage of
threshold area in the image, which reflects the number of dead cells.
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Additional evaluation of cell death was performed through
analysis of lactate dehydrogenase (LDH) content in the incubation
media after the period of ischemia/reperfusion (I/R). LDH activity
was measured using a colorimetric method through an assay kit
(Labtest, Brazil). The results were normalized by protein content
and expressed as a percentage of the ischemia control.

2.5. Evaluation of glutamate release

Supernatant from hippocampal slices on the OGD period was
collected and centrifuged (1000g at 4 °C for 5 min). Glutamate re-
lease was assayed by following the increase on fluorescence due
to NADPH production in the presence of NADP and glutamate
dehydrogenase as previously described (Nicholls et al., 1987).
The concentration of glutamate in the supernatant was determined
using a standard concentration and the results were normalized by
the protein content. The data were expressed as percentage of the
ischemia control.

2.6. Measurement of free radical content and antioxidant enzyme
activities

Nitrite measurements were performed by using 2,3-diamino-
naphthalene (DAN), (Sigma-Aldrich, Wien, Austria), a fluorescent
method previously described (Misko et al., 1993). Briefly, 15 puL
of 3.2 mM DAN were added to 200 pL of incubation media, col-
lected immediately after OGD period. After 10 min of incubation
at 20 °C and protected from light, the reaction was stopped by add-
ing 15 pL of 2.8 M NaOH. The formation of fluorescent product was
measured using a fluorescent plate reader (Cary Eclipse, Varian,
USA) with excitation at 360 nm and emission at 440 nm. The re-
sults were normalized by protein content and expressed as a per-
centage of the ischemia control.

ROS measurements were performed using 2’,7’-dichlorofluores-
cein diacetate (DCF-DA) (Sigma-Aldrich, Wien, Austria), a fluores-
cent probe (Siqueira et al., 2004). Briefly, 20 uL of the sample was
incubated with 80 puL of DCF-DA (125 pM) at 37 °C for 30 min and
protected from light. Formation of the oxidized fluorescent deriva-
tive (DCF) was monitored at excitation and emission wavelengths
of 488 and 525 nm, respectively, in a fluorescent plate reader (Cary
Eclipse, Varian, USA). The results were normalized by protein con-
tent and expressed as a percentage of the ischemia control.

CAT activity was assayed based on the decomposition of H,0,
by the enzyme (Shangari and O’Brien, 2006). Briefly, the reaction
was started by the addition of supernatant to 7.5 mM of H,0, pre-
pared in 50 mM of potassium phosphate buffer (pH 7.0) in a final
volume of 1 mL. The rate of decomposition of H,0, was measured
by spectrophotometry and the optical density was noted in 15s
intervals during 1.5 min, on absorbance at 240 nm (25 °C). The re-
sults were normalized by protein content and expressed as a per-
centage of the ischemia control.

Superoxide dismutase (SOD) activity was evaluated using a
spectrophotometric method previously described (Marklund and
Marklund, 1974). The hippocampal homogenate was incubated in
a solution containing 100 mM potassium phosphate buffer and
50 mM EDTA, pH 7.4. Reaction was initiated by the addition of
2mM pyrogallol. Oxidation of pyrogallol was measured at
420 nm (UV/visible U-200L Spectrophotometer, Hitachinaka,
Japan) for 5 min, at intervals of 30 s. A 50% inhibition was defined
as one unit (U) of SOD, and the results were normalized by protein
content and expressed as a percentage of the ischemia control.

2.7. Evaluation of glutathione system

Activity of glutathione peroxidase (GPX) was determined
according to Paglia and Valentine (1967). Briefly, reaction solution

were prepared in 580 pL of phosphate buffer (100 mM; pH 7.0)
containing EDTA 5 mM, 100 pL of NADPH 8.4 mM, 10 pL of gluta-
thione reductase (100IU/mg protein/mL), 10puL of NaN3
1.125 M; 100 pL of reduced glutathione 0.15 M and 100 pL of the
sample. Enzymatic reaction was started by adding 250 pL of
2.2 mM H,0,. Conversion of NADPH to NADP was measured by
in a spectrophotometer (Hitachi, model U-2001, Hitachinaka City,
Japan) during 4 min. Enzyme unit was determined by the oxidation
of 1 mol of NADPH per minute and was calculated based on the
absorbance of NADPH at 340 nm. The results were normalized by
protein of sample and expressed as a percentage of the ischemia
control.

Glutathione reductase (GR) was determined according to Carl-
berg and Mannervik (1975). Briefly, 100 pL of sample were added
to 900 pL of 0.10 M potassium phosphate buffer and 0.5 mM EDTA
with 67 uM of NADPH and 133 puM of oxidized glutathione (pH
7.6). Enzyme unit was determined by the oxidation of 1 mol of
NADPH per minute and was calculated based on the molar absorp-
tive of NADPH at 340 nm. The results were normalized by protein
of sample and expressed as a percentage of the ischemia control.

Activity of glutathione S-transferase (GST) was performed
according to Habig et al. (1974). Briefly, 50 pL of sample was added
to 850 pL of phosphate buffer 0.1 M and EDTA 1.0 mM (pH 6.5)
with GSH (1.06 mM) and 1-chloro-2,4-dinitrobenzene (1.06 mM)
(Sigma-Aldrich). The reagents were placed directly into buckets
and the readings were made in a spectrophotometer (Hitachi,
model U-2001, Hitachinaka City, Japan) at 345 nm.

Glutathione reduced (GSH) content was determined according
to Tietze (1969). Briefly, 25 pL of supernatant was added in 96
wells, containing 165 puL of phosphate buffer 0.1 M and EDTA
1.0mM (pH 8.0) and 10 pL of 100 mM of dinitrobisnitrobenzoic
acid were added. The plate were incubated for 30 min and the
absorbance was read after 5 min at 412 nm. The results were nor-
malized by protein of sample and expressed as a percentage of the
ischemia control.

2.8. Lipid peroxidation

Lipid peroxidation was determined by measuring the accumu-
lation of thiobarbituric acid reactive substances (TBARS) in homog-
enates and expressed as malonaldehyde (MDA) content, which was
measured at 532 nm (UV/visible U-200L Spectrophotometer,
Hitachinaka, Japan), as described by Ohkawa et al. (1979). The
results were expressed as percentage of increase on TBARS (nmol
of MDA/mg protein) relative to their respective controls.

2.9. Data analysis

Experiments of cell viability were analyzed with one-way
ANOVA followed by Bonferroni test. The other experiments were
analyzed by two-way ANOVA followed by Bonferroni test. Results
were expressed as mean = SEM from at least five independent
experiments. A p < 0.05 was considered statistically significant.

3. Results

3.1. Sarcosine preconditioning induced ischemic tolerance in
hippocampal slices submitted to OGD

Hippocampal slices from rats pre-treated with different doses of
sarcosine (30, 100 and 300 mg/kg) or saline daily during 7 days
were submitted to 20 min of OGD and 4 h of reperfusion (Fig. 1).
Sarcosine 30 mg/kg did not promote neuroprotection (p > 0.05,
One-Way ANOVA, followed by Bonferroni post-test). Nevertheless,
sarcosine 100 mg/kg had a neuroprotective effect as cell death
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reduced to 55.05 + 6.26% (p < 0.05, One-Way ANOVA, followed by
Bonferroni post-test). The animals treated with 300 mg/kg of
sarcosine showed 38.00 * 3.33% of cell death (p < 0.05, One-Way
ANOVA, followed by Bonferroni post-test), a value close to that
found in the negative control (29.28 + 2.47% of cell death).

To confirm the ischemic tolerance induced by sarcosine we
evaluated the effect of sarcosine 300 mg/kg on the content of
LDH in the supernatant. LDH release from hippocampal slices ex-
posed to OGD was lower in the sarcosine group (SRG)
(106.0 £3.45%) in comparison with the saline group (SLG)
(154.3 £11.57%) after I/R injury (Fig. 1C; p < 0.05, Two-Way ANO-
VA, followed by Bonferroni post-test). In addition, LDH release
from SRG hippocampal slices exposed to OGD was similar to the
SRG without OGD injury (104.4 + 12.09%) (Fig. 1C). Taken together,
these data indicate that preconditioning with sarcosine produced
ischemic tolerance in hippocampal slices exposed to OGD.

3.2. Sarcosine preconditioning reduced the release of excitotoxic
signals in hippocampal slices submitted to OGD

To investigate the excitotoxic signals in hippocampal slices sub-
mitted to OGD, we evaluated the release of glutamate and NO pro-
duction in the supernatant after 20 min of ischemic insult. Fig. 2A
shows that the content of glutamate on the supernatant of SLG hip-
pocampal slices increased by 206.1 + 39.51% after 20 min of OGD
(p <0.05, Two-Way ANOVA, followed by Bonferroni post-test). In
constrast, SRG animals submitted to OGD showed a lower release
of glutamate in the supernatant (112.5 £ 14.27%) when compared
to SLG (p < 0.05, Two-Way ANOVA, followed by Bonferroni post-
test). Fig. 2B shows that the SRG animals submitted to OGD
presented a decrease in NO production (54.83 +15.82%) when
compared to SLG (171.8 £24.48%) after 20 min of ischemia
(p <0.05, Two-Way ANOVA, followed by Bonferroni post-test).
These data suggest that preconditioning with sarcosine reduced
main signals of excitotoxicity induced by ischemic insult.
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3.3. Sarcosine preconditioning reduced oxidative damage in
hippocampal slices submitted to OGD

To access cells damage induced by OGD, we firstly performed
the evaluation of the content of ROS in hippocampal slices.
Fig. 3A shows that OGD insult increased the levels of ROS in SLG
hippocampus (337.4 £ 55.33%) after I/R injury (p < 0.05, Two-Way
ANOVA, followed by Bonferroni post-test). However, the levels of
ROS in SRG hippocampus (61.12 + 15.35%) were lower when com-
pared to SLG hippocampus (p < 0.05, Two-Way ANOVA, followed
by Bonferroni post-test), indicating that sarcosine treatment re-
duced the production of ROS after I/R process.

In accordance with this data, lipoperoxidation of SLG hippocam-
pus submitted to OGD increased by 144.6 + 16.34% after I/R injury
(Fig. 3B). Preconditioning with sarcosine reduced lipoperoxidation
induced by OGD (72.92 +4.956%) when compared with SLG
(p<0.05, Two-Way ANOVA, followed by Bonferroni post-test).
These data suggests that oxidative damage was reduced by the
treatment with sarcosine.

3.4. Effect of sarcosine preconditioning on the activity of antioxidant
enzymes in hippocampal slices submitted to OGD

In order to evaluate the involvement of antioxidant enzymes on
the reduction of oxidative stress in hippocampal slices from SRG
submitted to OGD, we performed the biochemical evaluation of
CAT and SOD activity. As shown in Fig. 4A, we observed a reduction
on SOD activity in SLG submitted to OGD (77.97 £11.29%)
(p < 0.05, Two-Way ANOVA, followed by Bonferroni post-test). In
addition, SOD activity of SRG was similar in control and ischemia
groups after I/R injury. Sarcosine also reduced SOD activity of hip-
pocampal slices not exposed to OGD, (63.19 + 6.07%). In contrast
with SOD, CAT activity increased in SLG submitted to OGD
(473.3+£72.83%) when compared with the control group
(p <0.05, Two-Way ANOVA, followed by Bonferroni post-test).
Moreover, as observed in Fig. 4B, SRG presented lower CAT activity

v 300 mg/kg

Control
C @ Control 3 Ischemia
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Fig. 1. Preconditioning with sarcosine induced tolerance in hippocampal slices submitted to OGD. (A) Representative hippocampal slices of control and sarcosine groups after
I/R process. (B) Cell death assessed by ethidium homodimer stained after I/R process (***p < 0.001, One-Way ANOVA, followed by Bonferroni post-test). (C) LDH activity in
hippocampal slice medium after I/R process (**p < 0.01, Two-Way ANOVA, followed by Bonferroni post-test). The results express the mean + SEM of cell death from at least

five different animals.
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Fig. 2. Preconditioning with sarcosine reduced the release of excitotoxic mediators in hippocampal slices submitted to OGD. (A) Glutamate release from hippocampal slices
after 20 min of OGD insult. (B) NO production from hippocampal slices after 20 min of OGD insult. The results express the mean + SEM of each group from at least five
different animals (*p < 0.05 and **p < 0.01, Two-Way ANOVA, followed by Bonferroni post-test).
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Fig. 3. Preconditioning with sarcosine reduced oxidative stress in hippocampal slices submitted to OGD. (A) ROS production from hippocampal slices after I/R process. (B)
Lipoperoxidation in hippocampal slices after I/R process. The results express the mean + SEM of each group from at least five different animals (*p < 0.05 and ***p < 0.001,

Two-Way ANOVA, followed by Bonferroni post-test).

in hippocampal slices exposed to OGD (97.32 + 30.63%) when com-
pared with SLG (p < 0.05, Two-Way ANOVA, followed by Bonferroni
post-test). These data suggest that antioxidant enzymes activities
were maintained after I/R process in hippocampus of animals trea-
ted with sarcosine.

3.5. Effect of sarcosine preconditioning on glutathione system in
hippocampal slices submitted to OGD

As shown in Fig. 5A, there was a significant decrease on total
glutathione content in SLG after OGD (71.75 +5.03%) (p < 0.05,
Two-Way ANOVA, followed by Bonferroni post-test), which was
not observed in hippocampal slices of SRG. GPX activity of SLG
was also reduced (72.39 £ 6.51%) after I/R process (p < 0.05, Two-
Way ANOVA, followed by Bonferroni post-test), which was not ob-
served in SRG (Fig. 5B). On the other hand, GR activity increased in
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SLG after OGD (315.2 £ 82.0%) (p <0.05, Two-Way ANOVA, fol-
lowed by Bonferroni post-test), an effect that was not observed
in SRG exposed to OGD, despite a slight reduction on basal activity
when comparing SLG with SRG (Fig. 5C). Similarly, GST activity in-
creased in SLG exposed to OGD (256.7 + 51.10%) (Fig. 5D) (p < 0.05,
Two-Way ANOVA, followed by Bonferroni post-test), which was
not observed in SRG. We also observed a slight reduction in GST
basal activity when comparing SLG with SRG. Taken together, these
data indicate that the activity of glutathione system was main-
tained after I/R process in hippocampus from animals precondi-
tioned with sarcosine.

4. Discussion

The present work demonstrated that pre-treatment with sarco-
sine can be used as preconditioning stimulus in hippocampal
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Fig. 4. Preconditioning with sarcosine maintain antioxidant enzymatic activity in hippocampal slices submitted to oxygen-glucose deprivation. (A) SOD activity of
hippocampal slices after I/R process. (B) Catalase activity of hippocampal slices after I/R process. The results express the mean + SEM of each group from at least five different
animals (*p < 0.05, *p <0.01 and ***p < 0.001, Two-Way ANOVA, followed by Bonferroni post-test).



718 M.CX. Pinto et al./ Neurochemistry International 61 (2012) 713-720

A @l Control [ Ischemia
150+
—
g 100
z ] T
E]
s oo
6
(1]
5 504
(U]
0- T T
Saline Sarcosine
C Bl Control 3 Ischemia
500+ ok
—
I e
4004 -
g
2 3004
2
£ 200-
[*4
[©]
100-j |;|
L Il M
Saline Sarcosine

B HB Control [ Ischemia
150+ .
|
_ — -I
2
E 100+
2 X
T
<
X 504
U]
0' T T
Saline Sarcosine
D HB Control 3 Ischemia
500+
ek
4004 I e
g ——
> .
£ 300 T
< 2001
[2]
4]
100-_-
L ]
Saline Sarcosine

Fig. 5. Preconditioning with sarcosine maintain glutathione system capacity in hippocampal slices submitted to oxygen-glucose deprivation. (A) Glutathione content of
hippocampal slices after I/R process. (B) Glutathione peroxidase activity of hippocampal slices after I/R process. (C) Glutathione reductase activity of hippocampal slices after
I/R process. (D) Glutathione-s-transferase activity of hippocampal slices after I/R process. The results express the mean + SEM of each group from at least five different animals
(*p <0.05, *p<0.01 and ***p < 0.001, Two-Way ANOVA, followed by Bonferroni post-test).

slices, which promote an ischemic tolerance against OGD insult.
Sarcosine is a competitive inhibitor of GlyT-1 (ICso: 40-150 puM),
a co-agonist of NMDA receptor (ICs0: 26 M) and a weak agonist
of glycine receptors (ICsp: 3.0 mM) (Zhang et al., 2009). It is well
know that GlyT-1 inhibitors potentiate NMDA receptors response
in glutamatergic neurotransmission through an increase of the
co-agonist glycine in the synapse cleft (Chen et al.,, 2003; Lim
et al.,, 2004; Kinney et al., 2003). In addition, the stimulation of pre-
synaptic glycine receptors by high concentrations of glycine en-
hanced the release of glutamate (Waseem and Fedorovich, 2010),
which can also activate NMDA receptors. Therefore, the neuropro-
tection observed with sarcosine is closely related to the modula-
tion of glutamatergic neurotransmission and seems to be related
to NMDA receptors.

Indeed, chronic modulation of NMDA receptors is intimately re-
lated to tolerance against excitotoxicity. Chronic administration of
NMDA antagonist to rodents, as phencyclidine and MK-801, has
been associated with an increase on the susceptibility to excitotox-
icity, apoptotic cell death and an up-regulation of NMDA receptor
(NR1 subunit) (Rujescu et al., 2006; Wang et al., 2000; Wang et al.,
1999). On the other hand, NMDA activation with non-convulsivant
doses induces tolerance to excitotoxicity in several experimental
models (Gidday, 2006; Chu et al., 2007; Turovskaya et al., 2011;
Ogita et al., 2003; Boeck et al., 2004; Miao et al., 2005). Sarcosine
treatment is capable to potentiate NMDA activation and its effect
on brain ischemic tolerance seems to be related to an interference
on glutamatergic neurotransmission.

In agreement with this idea, we observed a reduction on gluta-
mate release during I/R injury and a trend to reduction of gluta-
mate release under basal conditions in the sarcosine group.
Recent studies have shown that some drugs are capable to induce
neuroprotection by a similar mechanism. The treatment with res-
veratrol (30 mg/kg) during 7 days had a neuroprotective effect in a
middle cerebral artery occlusion (MCAO) model in rats (Li et al.,
2010). This effect was related to a decrease on the release of

excitatory neurotransmitters (glutamate, aspartate and p-serine)
during the I/R period and an increase on basal levels of inhibitory
neurotransmitters (GABA, glycine and taurine). It was also described
the neuroprotective effect of ceftriaxone and beta-lactam antibiot-
ics in in vitro OGD model and in vivo MCAO model of brain ischemia
after 5 days of treatment, being this phenomenon related to an
interference on glutamate uptake by the glutamate transporter
EAAT2 (Lipski et al., 2007; Chu et al., 2007; Rothstein et al., 2005).

We also observed that sarcosine treatment decreased NO re-
lease from hippocampal slices after OGD. It is well know that
NMDA receptors present a physical binding to nNOS, which corrob-
orate to NO production during glutamate activation of neurons
(Jimenez et al., 2011). Taken together this data indicate that cell
death was reduced by a decrease of excitotoxic mediators, indicat-
ing that ischemic tolerance achieved by sarcosine is related to the
classic preconditioning effect observed with NMDA agonists, which
involves the reduction of glutamate release and also the excito-
toxic signals during OGD.

We observed a reduction on the production of ROS from hippo-
campal slices of the animals treated with sarcosine, which is in
agreement with the decrease on glutamate and NO signaling. The
reduction of ROS production during the ischemic insult is related
to the low lipoperoxidation in hippocampal slices of sarcosine trea-
ted animals submitted to OGD. On the other hand, the oxidative
stress is an important step of the ischemic tolerance induced by
a preconditioning stimulus (Obrenovitch, 2008). In fact, the admin-
istration of antioxidant compounds can suppress the ischemic pre-
conditioning in MCAO model (Mori et al, 2000). The
preconditioning treatment with sarcosine did not change the basal
activity of SOD or CAT, as well the activity during the ischemic in-
sult. Some studies using hypoxic condition as a preconditioning
agent reported an increase on the expression and activity of SOD
enzymes at basal condition (Arthur et al., 2004; Danielisova
et al., 2005). In contrast, this effect did not occur in a MCAO model
of preconditioning (Puisieux et al., 2004). In this model, CAT activ-
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ity increased after 5 min of four-vessel occlusion precondition.
Although it does not affect the activity of these enzymes, other
antioxidant system may be involved.

The glutathione system is involved in the control of peroxides
by brain cells and protection against ROS (Ralf, 2000). Primary cul-
tures of rat cortical neurons subjected to hypoxic preconditioning
presents an increase in GPX and GR activities, which is in accor-
dance with the role of an antioxidant mechanism during the pre-
conditioning (Arthur et al., 2004). Nevertheless, ischemic
tolerance induced by MCAO in rats did not change the activity
and expression of GPX (Puisieux et al., 2004). Our results showed
that preconditioning stimulus with sarcosine was able to maintain
the activity of glutathione system after the OGD insult with no in-
crease on the antioxidant capacity.

In conclusion, brain ischemic tolerance induced by a precondi-
tioning treatment with sarcosine seems to be related to a reduction
on glutamate release during the OGD insult. The decrease on gluta-
mate release reduced the production of NO and ROS and conse-
quently, decreased cell damage that was not associated with an
increase on the activity of antioxidant enzymes. Brain ischemic
tolerance induced by sarcosine preconditioning might be related
to protein expression in membrane or/and with mitochondrial
function. Further studies using in vitro and in vivo approaches are
necessary to investigate the preconditioning effect of sarcosine in
other brain structures, the functional activity of animals exposed
to ischemic insult, as well as, the glutamatergic activity after
neuromodulation.
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