Endomorphism Rings and Category Equivalences

J. L. GARCÍA* AND M. SAORÍN*

Departamento de Matemáticas, Universidad de Murcia, 30001 Murcia, Spain

Communicated by Kent R. Fuller

Received January 18, 1988

INTRODUCTION

The use of category equivalences for the study of endomorphism rings stems from the Morita theorem. In a sense, this theorem can be viewed as stating that if P is a finitely generated projective generator of R-mod and $S = \text{End}(_RP)$, then properties of P correspond to properties of S through the equivalence between the categories R-mod and S-mod given by the functor $\text{Hom}_R(P, -)$. Generalizations of this theorem were given in [4, 5]. In [4], P is only assumed to be finitely generated and projective, and $\text{Hom}_R(P, -)$ gives in this case an equivalence between S-mod and a quotient category of R-mod, while in [5] it is shown that if P is a finitely generated quasiprojective self-generator, then the equivalence induced by the same functor is now defined between the category $\sigma[P]$ of all the R-modules subgenerated by P and S-mod.

Later on, other category equivalences were constructed, in an analogous way to those already mentioned, by replacing S-mod by a certain quotient category of S-mod. Thus, in [14] Morita contexts are used to obtain a category equivalence between quotient categories of both R-mod and S-mod for an arbitrary R-module M. On the other hand, if M is a Σ -quasiprojective module, then it is shown in [8] that the functor $\operatorname{Hom}_R(M, -)$ induces an equivalence between quotient categories of $\sigma[M]$ and S-mod, and the latter quotient category coincides with S-mod when M is finitely generated.

All the above constructions can be considered as particular cases of the following: if \mathscr{C} is a locally finitely generated Grothendieck category and M is an object of \mathscr{C} with $S = \operatorname{End}_{\mathscr{C}}(M)$, then the class of the *M*-distinguished objects of \mathscr{C} (in the sense of [10]) is the torsionfree class of a torsion

* With partial support from the CAICYT.

theory (\mathbf{T}, \mathbf{F}) of \mathscr{C} and the functor $\operatorname{Hom}_{\mathscr{C}}(M, -): \mathscr{C} \to S$ -mod induces an equivalence between the quotient category of \mathscr{C} modulo \mathbf{T} and a certain quotient category (S, \mathscr{F}) -mod of S-mod (Theorem 1.7). Moreover, this latter quotient category consists of all the S-modules if and only if M is a finitely generated quasiprojective object of \mathscr{C} which is CQF-3 in the sense of [16]. In the first section of this paper, the properties of the foregoing construction are studied.

On the other hand, Ohtake [16] considers a situation which is slightly different from ours: \mathscr{C} is assumed to be a cocomplete abelian category with exact direct limits and the object M of \mathscr{C} is supposed to be CQF-3. The above-mentioned class T is also, in this case, a torsionfree class corresponding to a cohereditary torsion theory (D, T). If M is codivisible with respect to this torsion theory, then another equivalence of categories is obtained between a co-Giraud subcategory of \mathscr{C} and the quotient category (S, \mathscr{F}) -mod to which we referred in the preceding paragraph. In Section 2, we show that if M is CQF-3, then the full subcategory of \mathscr{C} whose objects belong simultaneously to D and F is also equivalent to (S, \mathscr{F}) -mod (Proposition 2.1). Thus, if M is codivisible there are three different full subcategories of \mathscr{C} which are equivalent to (S, \mathscr{F}) -mod. As a consequence, we give a short proof of [16, Theorem 2.5] for the case of \mathscr{C} being a Grothendieck category (Proposition 2.7).

Finally, the preceding results are applied in Section 3 to characterize the modules M such that the endomorphism ring S of M is a left semihereditary ring (Theorem 3.2), a left CS-ring (Theorem 3.5), or a left continuous ring (Proposition 3.7). This is done provided the module Msatisfies certain conditions such as being weakly T-closed (this class of modules includes, for instance, all the M-distinguished and quasi-injective modules M, the Σ -quasiprojective modules, the codivisible CQF-3 modules, or the quasiprojective and trace-accessible modules).

Throughout this paper, all rings will be associative with 1 and all modules are left modules unless otherwise stated. A composition $s \circ t$ of morphisms will be written, alternatively (in particular, when dealing with endomorphism rings), as ts. However, if F and G are functors, then FG will always mean the composition $F \circ G$. The injective hull of a module N will be denoted by E(N). A submodule L of N is said to be essentially closed when L has no proper essential extension within N. On the other hand, if I is a left ideal of a ring R and $a \in R$, (I:a) stands for $\{x \in R \mid xa \in I\}$.

We assume that all functors between abelian categories are additive. A Grothendieck category \mathscr{C} is said to be locally finitely generated when it has a family of finitely generated generators. An object X of \mathscr{C} is called $(\Sigma$ -)quasiprojective when for every finite (arbitrary) set I and every epimorphism $p: X^{(I)} \to Y$ of \mathscr{C} , the induced morphism $p_*: \operatorname{Hom}_{\mathscr{C}}(X, X^{(I)})$

 \rightarrow Hom_{\mathscr{C}}(X, Y) is surjective. An object X of \mathscr{C} is called CQF-3 [16] when for every epimorphism $p: Y \rightarrow Z$ of \mathscr{C} , the induced morphism $p_*:$ Hom_{\mathscr{C}} $(X, Y) \rightarrow$ Hom_{\mathscr{C}}(X, Z) is zero if and only if Hom_{\mathscr{C}}(X, Z) = 0.

Let M be an object of the Grothendieck category \mathscr{C} . An object X of \mathscr{C} is (finitely) M-generated if it is an epimorphic image of a (finite) direct sum $M^{(I)}$ of copies of M. For each X in \mathscr{C} there is a greatest M-generated subobject of X, which is the sum of all the M-generated subobjects of X, and will be denoted by X_M . For $\mathscr{C} = R$ -mod, a module N is subgenerated by Mif it is isomorphic to a submodule of an M-generated module and the full subcategory of R-mod whose objects are all the modules subgenerated by M is denoted by $\sigma[M]$. This category is a locally finitely generated Grothendieck category [20].

Recall from the definition of a torsion theory in a Grothendieck category & [18] that a class T (resp., F) of objects of & is said to be a torsion (resp., a torsionfree) class if it is closed under epimorphic images, extensions, and direct sums (resp., subobjects, extensions, and products). The torsion theory (T, F) is called hereditary (resp., cohereditary) when T is closed under subobjects (resp., F is closed under epimorphic images). The torsion radical associated to (T, F) will be denoted by t_{T} (or t if the torsion class T is clear from the context). Unless otherwise stated, the torsion theories we consider in this paper are hereditary. A subobject L of an object X of \mathscr{C} will be called T-saturated when $X/L \in \mathbf{F}$, and the T-saturated subobjects of X form a complete lattice which we denote by $\operatorname{Sat}_{T}(X)$. If (T, F) is a (not necessarily hereditary) torsion theory and X is an object of \mathscr{C} , then X is called T-injective (resp., T-codivisible) if for each short exact sequence $0 \to L \xrightarrow{u} Y \xrightarrow{p} N \to 0$ in \mathscr{C} such that $N \in \mathbf{T}$ (resp., $L \in \mathbf{F}$), the induced homomorphism u^* : Hom_{\mathscr{C}} $(Y, X) \to$ Hom_{\mathscr{C}}(L, X) (resp., p_* : Hom_{\mathscr{C}}(X, Y) \rightarrow Hom_{\mathscr{C}}(X, N)) is surjective.

If (\mathbf{T}, \mathbf{F}) is a torsion theory in \mathscr{C} , the full subcategory of \mathscr{C} determined by **T** is a localizing subcategory (in the sense of [6]) and thus there exists an associated quotient category \mathscr{C}/\mathbf{T} , which is a Grothendieck category, with canonical functor $\mathbf{a}: \mathscr{C} \to \mathscr{C}/\mathbf{T}$, which is exact. **a** has a right adjoint $\mathbf{i}: \mathscr{C}/\mathbf{T} \to \mathscr{C}$ which is full and faithful, and hence \mathscr{C}/\mathbf{T} can be identified with a full subcategory of \mathscr{C} consisting of all the objects X of \mathscr{C} that are **T**-torsionfree and **T**-injective (these are called **T**-closed objects). The composition $\mathbf{i} \circ \mathbf{a}: \mathscr{C} \to \mathscr{C}$ is usually known as the localization functor and $\psi: \mathbf{1}_{\mathscr{C}} \to \mathbf{i} \circ \mathbf{a}$ will denote the associated natural transformation. For further details about localization in Grothendieck categories, we refer the reader to [6, 18].

In the particular case $\mathscr{C} = R$ -mod, each torsion theory (\mathbf{T}, \mathbf{F}) is given by a Gabriel filter \mathscr{F} of left ideals of R [18, VI.5.1]. In this case, \mathbf{T} will be replaced by \mathscr{F} in our notation (e.g., we write \mathscr{F} -injective, \mathscr{F} -torsionfree, instead of \mathbf{T} -injective or \mathbf{T} -torsionfree), and the corresponding quotient category will be denoted by (R, \mathscr{F}) -mod. Also, for a given module $N, N_{\mathscr{F}}$ will stand for $\mathbf{a}(N)$ (or $\mathbf{i} \circ \mathbf{a}(N)$).

1. TORSION THEORIES OVER ENDOMORPHISM RINGS

Let R be a ring, M a left R-module, and $S = \text{End}(_R M)$, its endomorphism ring. The question of how properties of M are related to properties of S has been studied in many papers, through the construction of equivalences between certain subcategories of R-mod and of S-mod, as stated in the Introduction. Amongst them, we single out the following: (1) the study of the derived context of an arbitrary module [14]; (2) if M is CQF-3 and codivisible, there is an equivalence of categories between full subcategories of R-mod and of S-mod [16]; (3) when M is a Σ -quasiprojective R-module, up to three different subcategories of R-mod are equivalent to a single full subcategory of S-mod [8, 9]. Our aim in this section is to obtain a generalization of the foregoing constructions.

DEFINITION 1.1. Let \mathscr{C} be a Grothendieck category and M an object of \mathscr{C} . An object X of \mathscr{C} is called M-distinguished if for any nonzero morphism $f: Y \to X$ there is a morphism $g: M \to Y$ such that $f \circ g \neq 0$.

The preceding definition was given by Kato [10] for the particular case of a category of modules.

PROPOSITION 1.2. Let \mathscr{C} be a Grothendieck category and M an object of \mathscr{C} . The class \mathbf{F} of M-distinguished objects is a torsionfree class of \mathscr{C} . The corresponding torsion class \mathbf{T} is the smallest (hereditary) torsion class of \mathscr{C} containing all objects of the form X/X_M for X an object of \mathscr{C} . If U is a generator of \mathscr{C} , then \mathbf{T} is the smallest torsion class containing U/U_M .

Proof. The fact that F is a torsionfree class is proved in a straightforward way. Analogously to [9, Proposition 1.1] one can then show that T is generated by all the objects of the form X/X_M . Finally, it is easy to see that for each X in \mathcal{C} , X/X_M is a quotient of a direct sum of copies of U/U_M , if U is a generator, from which the last statement of the proposition follows.

From now on, we will assume in this section that a Grothendieck category \mathscr{C} is given and M is a fixed object of \mathscr{C} , with $S = \operatorname{End}_{\mathscr{C}}(M)$, the endomorphism ring of M. The torsion theory of Proposition 1.2 will be denoted by (\mathbf{T}, \mathbf{F}) and its associated torsion radical by \mathbf{t} , while \bar{X} will stand for X/t(X). The quotient category \mathscr{C}/\mathbf{T} will be written \mathscr{C}_M . \mathscr{C}_M can be identified with the full subcategory of \mathscr{C} whose objects are all the **T**-closed

objects of \mathscr{C} . The canonical functor $\mathbf{a}: \mathscr{C} \to \mathscr{C}_M$ is exact and has a right adjoint i, which can be identified with the inclusion functor. These identifications will be assumed in the sequel. The canonical morphism $\psi_M: M \to \mathbf{i} \circ \mathbf{a}(M)$ will be denoted by ψ .

LEMMA 1.3. $\mathbf{a}(M)$ is a generator of \mathscr{C}_M .

Proof. Let $h: M^{(\text{Hom}(M,X))} \to X$ be the canonical morphism for each T-closed object X in \mathscr{C} . Since Coker $h \in \mathbf{T}$, it follows from the exactness of the functor **a** and the fact that **a** commutes with direct sums that $\mathbf{a}(h): \mathbf{a}(M)^{(\text{Hom}(M,X))} \to X$ is an epimorphism.

Given an object X of a Grothendieck category \mathscr{A} , let us put $R = \operatorname{End}_{\mathscr{A}}(X)$. By [13, Theorem VI.3.1], the functor $\operatorname{Hom}_{\mathscr{A}}(X, -)$ from \mathscr{A} to R-mod has a left adjoint which we denote by $X \otimes_R -: R \operatorname{-mod} \to \mathscr{A}$. If I is a left ideal of R, then XI will denote the image of the canonical morphism $X \otimes_R I \to X \otimes_R R \cong X$. Then it is clear that $XI = \sum \{\operatorname{Im} \alpha \mid \alpha \in I\}$. Henceforth, we will use S' to denote the endomorphism ring of $\mathbf{a}(M), S' = \operatorname{End}_{\mathscr{C}_M}(\mathbf{a}(M)) \cong \operatorname{End}_{\mathscr{C}}(\mathbf{ia}(M))$. There is a canonical ring homomorphism $\mu: S \to S'$ given by $\mu(f) = \mathbf{a}(f)$ (= $\mathbf{ia}(f)$).

PROPOSITION 1.4. The class \mathcal{F} of all the left S'-modules X such that $\mathbf{ia}(M) \otimes_{S'} X$ is a torsion object of \mathcal{C} is a torsion class of S'-mod. If \mathcal{G} is the Gabriel filter on S' corresponding to this torsion theory, then the functor $H = \operatorname{Hom}_{\mathscr{C}}(\mathbf{ia}(M), -): \mathcal{C} \to S'$ -mod induces an equivalence of categories between \mathcal{C}_M and the quotient category (S', \mathcal{G}) -mod.

Proof. By [18, Theorem X.4.1], the functor $H \circ \mathbf{i} \colon \mathscr{C}_M \to S'$ -mod induces an equivalence of categories between \mathscr{C}_M and the quotient category (S', \mathscr{G}) -mod of S'-mod corresponding to a certain torsion theory $(\mathbf{T}', \mathbf{F}')$ of S'-mod. Then, the composition of the localization functor from S'-mod to (S', \mathscr{G}) -mod followed by the equivalence is a left adjoint of $H \circ \mathbf{i}$, thus it can be identified with $\mathbf{a} \circ G$, where $G = \mathbf{ia}(M) \otimes_{S'} -: S'$ -mod $\rightarrow \mathscr{C}$. Therefore a left S'-module X is **T**'-torsion if and only if $\mathbf{a}(\mathbf{ia}(M) \otimes_{S'} X) = 0$, that is, if and only if $\mathbf{ia}(M) \otimes_{S'} X$ is a torsion object of \mathscr{C} , i.e., $\mathbf{T}' = \mathscr{T}$.

Note that the Gabriel filter \mathscr{G} consists of all the left ideals I of S' such that ia(M)/ia(M)I is a torsion object of \mathscr{C} .

It is natural to ask under what conditions the category equivalence of Proposition 1.4 results in an equivalence between \mathscr{C}_M and a quotient category of S-mod. To answer this, we will need the following lemma.

LEMMA 1.5. Let I be a left ideal of S. Then, M/MI is a **T**-torsion object of \mathscr{C} if and only if $S'\mu(I) \in \mathscr{G}$.

Proof. Let $h: M^{(1)} \to M$ be the unique morphism such that, for each

 $f \in I$, we have $h \circ q_f = f$, $q_f \colon M \to M^{(I)}$ being the canonical injections. Then Im h = MI and we have an induced commutative diagram in \mathscr{C} :

where the existence of a unique h' follows from the facts that ia(M) is T-closed and Ker $\psi^{(I)}$ and Coker $\psi^{(I)}$ are T-torsion objects. Then, h' verifies $h' \circ q'_f = \mu(f)$, where the q'_f are the canonical injections from ia(M) to $ia(M)^{(I)}$. From this it follows that Im $h' = \Sigma \{Im(\mu(f)) | f \in I\} =$ $ia(M) S'\mu(I)$. Thus we obtain a unique morphism $g: MI \rightarrow ia(M) S'\mu(I)$ such that Coker g is T-torsion (because it is a quotient of Coker $\psi^{(I)}$) and the diagram

is commutative with exact rows. Inasmuch as Ker ψ and Coker ψ are Ttorsion, Ker k and Coker k are T-torsion as well, by the Ker-Coker lemma. Therefore, M/MI is T-torsion if and only if so is $ia(M)/ia(M) S'\mu(I)$, that is, M/MI is T-torsion if and only if $S'\mu(I)$ belongs to \mathscr{G} .

We are now ready to prove the main result of this section.

THEOREM 1.6. Let $j: (S', \mathscr{G})$ -mod $\rightarrow S'$ -mod be the inclusion functor and $\mu_*: S'$ -mod $\rightarrow S$ -mod the restriction of scalars functor. The following conditions are equivalent.

(i) $\mu_* \circ j: (S', \mathscr{G})$ -mod $\rightarrow S$ -mod has an exact left adjoint.

(ii) For each S-monomorphism $L \to N$, the kernel of the induced morphism $M \bigotimes_{S} L \to M \bigotimes_{S} N$ is a T-torsion object of \mathscr{C} .

(iii) The class of all the left S-modules X such that $M \otimes_S X$ is **T**-torsion is a (hereditary) torsion class of S-mod.

(iv) $\mathscr{F} = \{I \leq_S S \mid M/MI \text{ is a } \mathbf{T}\text{-torsion object of } \mathscr{C}\}$ is a left Gabriel topology of S.

Moreover, when these equivalent conditions hold, the functor $\operatorname{Hom}_{\mathscr{C}}(M, -)$: $\mathscr{C} \to S\operatorname{-mod}$ induces an equivalence of categories between \mathscr{C}_M and $(S, \mathscr{F})\operatorname{-mod}$, and S' is the ring of quotients of S with respect to $\mathscr{F}, S' = S_{\mathscr{F}}$. *Proof.* (i) \Rightarrow (ii) Since (S', \mathscr{G}) -mod and \mathscr{C}_M are equivalent categories, the hypothesis implies that the functor $\mu_* \circ H \circ i$ from \mathscr{C}_M to S-mod has an exact left adjoint. By using the fact that, for all objects X in \mathscr{C}_M , we have $\operatorname{Hom}_{\mathscr{C}}(\operatorname{ia}(M), \operatorname{i}(X)) \cong \operatorname{Hom}_{\mathscr{C}}(M, \operatorname{i}(X))$, we see that the above functor is naturally equivalent to the composition $\mathscr{C}_M \xrightarrow{i} \mathscr{C} \xrightarrow{\operatorname{Hom}_{\mathscr{C}}(M, -)} S$ -mod. A left adjoint to this composition is precisely S-mod $\xrightarrow{M \otimes S^-} \mathscr{C} \xrightarrow{a} \mathscr{C}_M$. But, by (i), this functor is exact and hence, bearing in mind that **a** is also exact, we easily obtain that (ii) holds.

(ii) \Rightarrow (iii) Since the class { $X \in S$ -mod | $M \otimes_S X$ is T-torsion} is always closed under extensions, direct sums, and epimorphic images, it is only left to show that it is closed for submodules. But this follows from (ii) in a straightforward manner.

(iii) \Rightarrow (iv) By hypothesis, $\{I \leq_S S \mid M \otimes_S (S/I) \text{ is T-torsion}\}$ is a left Gabriel topology [18, Theorem VI.5.1]. Since $M \otimes_S (S/I) \cong M/MI$, the result is clear.

(iv) \Rightarrow (i) We first prove that $\mu: S \rightarrow S'$ has \mathscr{F} -torsion kernel and cokernel. Note that, as a left S-module, S' may be identified with Hom_{\mathscr{C}}(M, ia(M)). Let then $s \in \text{Ker } \mu$, so that Im $s \subseteq t(M)$ and M/Ker s is a T-torsion object. Hence if $I = \text{Hom}_{\mathscr{C}}(M, \text{Ker } s)$ then $MI = (\text{Ker } s)_M$ and thus $I \in \mathscr{F}$ and annihilates s. This shows that Ker μ is \mathscr{F} -torsion. Now, let $s' \in S'$ and consider the cartesian square

Since Coker β is a subobject of Coker ψ , it is T-torsion. Let *I* be the left ideal of *S* consisting of all the endomorphisms of *M* factoring through β . Then we have that $MI = \beta(X_M)$ and hence M/MI is also T-torsion, because Coker $\beta \cong M/\beta(X)$ and X/X_M are T-torsion. Thus $I \in \mathcal{F}$ and, since $\mu(S) = \{f \in S' \mid f = \psi \circ s, \text{ for some } s \in S\}$, we see that $Is' \subseteq \mu(S)$, from which it follows that $S'/\mu(S) \cong \text{Coker } \mu$ is an \mathcal{F} -torsion module.

We then proceed to show that S' is \mathscr{F} -torsionfree. Let $\mathscr{F}^e = \{I' \leq S' \mid \mu^{-1}(I') \in \mathscr{F}\}$. We deduce from Lemma 1.5 that $I' \in \mathscr{F}^e$ if and only if $S'\mu\mu^{-1}(I') \in \mathscr{G}$. Then, clearly $\mathscr{F}^e \subseteq \mathscr{G}$. Conversely, let $I' \in \mathscr{G}$. Then $I'/S'\mu\mu^{-1}(I')$ is \mathscr{F} -torsion as a left S-module and it follows from [12, Lemma 2.2] and the fact that $\mathscr{F}^e \subseteq \mathscr{G}$ that it is also \mathscr{G} -torsion. It is then immediate by using again Lemma 1.5 that $I' \in \mathscr{F}^e$. Therefore, $\mathscr{G} = \mathscr{F}^e$ and, since S' is \mathscr{G} -torsionfree, we conclude from [12, Theorem 2.5] that S' is also \mathscr{F} -torsionfree as a left S-module.

Let $S_{\mathscr{F}}$ be the ring of quotients of $S, \phi: S \to S_{\mathscr{F}}$ the canonical

homomorphism. Then, due to the facts that μ has torsion kernel and cokernel and $S_{\mathscr{F}}$ is \mathscr{F} -closed, ϕ factors uniquely through μ , in the form $\phi = \sigma \circ \mu$. Since S' is \mathscr{F} -torsionfree, we have that Ker $\mu = \mathbf{t}_{\mathscr{F}}(S) = \text{Ker } \phi$, so that, bearing in mind that $\mu(S)$ is essential in S', we obtain that σ is a monomorphism. In fact, it is easy to see that σ is also a ring homomorphism, so that there is an exact sequence of S'-modules $0 \rightarrow S' \xrightarrow{\sigma} S_{\mathscr{F}} \rightarrow T \rightarrow 0$, where T, being an \mathscr{F} -torsion S-module, is also \mathscr{G} -torsion by [12, Theorem 2.5]. Inasmuch as S' is \mathscr{G} -closed, T must be zero and σ is an isomorphism. Then $\mu: S \rightarrow S'$ can be considered as the ring of quotients of S with respect to \mathscr{F} and thus the functor $\mu_* \circ j$ from (S', \mathscr{G}) -mod to S-mod has an exact left adjoint [18, p. 217], proving (i).

When these equivalent conditions hold, then, as we have just seen, $\mathscr{G} = \mathscr{F}^e$ and the quotient category (S, \mathscr{F}) -mod consists exactly of the \mathscr{G} -closed S'-modules, viewed as left S-modules. Therefore, by Proposition 1.4, the funtor $\operatorname{Hom}_{\mathscr{C}}(M, -): \mathscr{C} \to S$ -mod induces an equivalence of categories between \mathscr{C}_M and (S, \mathscr{F}) -mod.

Next we show that the conditions of Theorem 1.6 do hold under fairly general hypotheses.

THEOREM 1.7. If \mathscr{C} is a locally finitely generated Grothendieck category, then the functor $\operatorname{Hom}_{\mathscr{C}}(M, -): \mathscr{C} \to S\operatorname{-mod}$ induces an equivalence of categories between \mathscr{C}_M and $(S, \mathscr{F})\operatorname{-mod}$, \mathscr{F} being the left Gabriel topology $\{I \leq_S S \mid M/MI \text{ is } T\text{-torsion}\}.$

Proof. It will be enough to prove that \mathscr{F} is indeed a left Gabriel topology on S, and then use Theorem 1.6. In order to do this, we only need to show that \mathscr{F} satisfies the following two properties (see [18, Lemma VI.5.2]):

- T3. $(I:s) \in \mathscr{F}$ for every $s \in S$ and every $I \in \mathscr{F}$.
- T4. If $(I:s) \in \mathscr{F}$ for every $s \in J$, with $J \in \mathscr{F}$, then $I \in \mathscr{F}$.

As a consequence of the fact that $\{X \in S \text{-mod} \mid M \otimes_S X \in \mathbf{T}\}$ is always closed under extensions, direct sums, and quotients, property T4 is deduced in an entirely similar way to [18, Theorem VI.5.1]. To show that property T3 holds, let us consider for each object X of \mathscr{C} the following S-submodule X^* of $\operatorname{Hom}_{\mathscr{C}}(M, X), X^* = \{f: M \to X \mid \text{there is } X_0 \leq X, X_0 \text{ finitely}$ generated, and $\operatorname{Im} f \subseteq X_0\}$, and the morphism $\phi: M^{(X^*)} \to X$ such that $\phi \circ q_f = f$, for every $f \in X^*, q_f: M \to M^{(X^*)}$ being the canonical injections. Since X is the direct union of its finitely generated subobjects (because \mathscr{C} is locally finitely generated), it is not hard to prove that Coker ϕ is a quotient of a direct sum of objects of the type N/N_M , where N ranges over all the finitely generated subobjects of X. Consequently, Coker ϕ is a T-torsion object of \mathscr{C} . Now, let $I \in \mathscr{F}$ and $s \in S$, and let $\alpha: M^{(I)} \to M$ be such that $\alpha \circ q_f = f$, for every $f \in I$. Consider then the cartesian square

where Coker $\alpha \cong M/MI$ is T-torsion and thus so is Coker $\beta \cong M/\beta(X)$. Let X^* and ϕ be as before; then $X^*\beta = \{\beta \circ f \mid f \in X^*\} = J$ is a left ideal of S and $MJ = \beta(\operatorname{Im} \phi)$ is such that M/MJ is T-torsion, because, as we have just seen, Coker ϕ is T-torsion. On the other hand, it is easy to see that if $g \in Js = X^*v\alpha$ ($= \{\alpha \circ v \circ f \mid f \in X^*\}$), then there exist a finite subset $F \subseteq I$ and a morphism $g': M \to M^{(F)}$ such that $g = \alpha \circ u \circ g', u: M^{(F)} \to M^{(I)}$ being the canonical morphism. If we denote by $q'_f: M \to M^{(F)}$ and $p'_f: M^{(F)} \to M$ the canonical injections and projections for each f in F, we have $g = \alpha \circ u \circ (\Sigma_F q'_f \circ p'_f) \circ g' = \Sigma_F(\alpha \circ q_f) \circ (p'_f \circ g') = \Sigma_F f \circ s_f$, where $s_f = p'_f \circ g' \in S$. Thus $g = \Sigma_F s_f f \in I$, hence $Js \subseteq I$ and $J \subseteq (I:s)$ from which property T3 follows.

EXAMPLES 1.8. (a) Let R be a ring and $\mathscr{C} = R$ -mod, so that M is a left R-module. Then (T, F) is in this case the torsion theory of R-mod determined by the trace T_M of M on R ($T_M = \Sigma \{ \text{Im } \alpha \mid \alpha \in \text{Hom}_R(M, R) \}$) and the corresponding quotient category \mathscr{C}_M coincides with the category \mathscr{U}_R in [14]. By Theorem 1.7, the functor $\text{Hom}_R(M, -)$: R-mod \rightarrow S-mod induces an equivalence between \mathscr{U}_R and (S, \mathscr{F}) -mod. This equivalence is also obtained as a consequence of [14, Theorem 3].

(b) Let M be a left R-module and take $\mathscr{C} = \sigma[M]$, the category of all the left R-modules subgenerated by M [20]. Then the torsion theory (**T**, **F**) is just the torsion theory of $\sigma[M]$ given in [9, Proposition 1.1]. The quotient category in this case was denoted therein by $\mathscr{C}[M]$ and it is equivalent to (S, \mathscr{F}) -mod, since $\sigma[M]$ is a locally finitely generated Grothendieck category. The **T**-torsionfree modules of $\sigma[M]$ are called M-faithful modules.

Some corollaries of the above results are worth mentioning.

COROLLARY 1.9. Let M be a left R-module and $S = \text{End}(_R M)$. Then for each monomorphism $L \to N$ in S-mod, the kernel of the induced homomorphism $M \otimes_S L \to M \otimes_S N$ is a torsion R-module in the theory determined by the trace ideal T_M of M in R.

COROLLARY 1.10. Let M be a left R-module, $S = \text{End}(_{R}M)$, and N an

M-faithful module. Then $\operatorname{Hom}_{R}(M, N)$ is an injective left S-module if and only if N is M-injective.

Proof. This is obtained from [9, Theorem 2.1], by removing the condition that all canonical homormorphisms $M \otimes_S I \to M$ have torsion kernel, since we know by Theorem 1.7 that this is indeed the case.

COROLLARY 1.11. Let \mathscr{C} be a locally finitely generated Grothendieck category and let us assume that M is M-distinguished and S is left nonsingular. Then the endomorphism ring of the injective hull of M is isomorphic to the maximal left ring of quotients of S.

Proof. If M is T-torsionfree, then the injective hull of M, E(M), coincides with the injective hull of $\mathbf{a}(M)$ in the category \mathscr{C}_M [6, Proposition III.6]. Thus, in the equivalence of Theorem 1.7 it corresponds to the injective hull of $S_{\mathscr{F}}$, which is precisely E(S), because S is \mathscr{F} -torsionfree. The endomorphism rings of these two corresponding objects are then isomorphic and, since S is left nonsingular, each of them is isomorphic to the maximal left ring of quotients of S.

Note that, in particular, if M satisfies the hypotheses of [21, Theorem 2.2], then M is clearly M-distinguished in R-mod and S is left nonsingular, so that [21, Theorem 2.2(ii)] can be deduced from Corollary 1.11.

Since we want to study properties of S by using the category equivalence of Theorem 1.7 it will be interesting to determine when the canonical homomorphism $\mu: S \to S'$ is an isomorphism, for, in this case, S is an object of (S, \mathscr{F}) -mod. To accomplish this, we need the following definitions.

DEFINITION 1.12. M will be called weakly M-distinguished if the following two conditions are verified: (i) $\operatorname{Hom}_{\mathscr{C}}(M, t(M)) = 0$; and (ii) for every morphism $f: M \to \overline{M}$ there exists an endomorphism s of M such that $p \circ s = f$, where $p: M \to \overline{M}$ is the canonical projection.

It is clear that M is weakly M-distinguished if and only if the canonical ring homomorphism $S \to \operatorname{End}_{\mathscr{C}}(\overline{M})$ is an isomorphism.

DEFINITION 1.13. Let X be an object of \mathscr{C} . X will be called T-Minjective if for each exact sequence $0 \to L \xrightarrow{u} M \to C \to 0$ such that C is a Ttorsion object of \mathscr{C} , the canonical homomorphism $u^*: \operatorname{Hom}_{\mathscr{C}}(M, X) \to$ $\operatorname{Hom}_{\mathscr{C}}(L, X)$ is a surjection.

Finally, let us call M weakly T-closed when M is weakly M-distinguished and \overline{M} is T-M-injective. We have:

PROPOSITION 1.14. $\mu: S \to S'$ is an isomorphism if and only if M is weakly **T**-closed.

Proof. Since the canonical morphism $\psi: M \to ia(M)$ factors in the form $M \xrightarrow{p} \overline{M} \xrightarrow{j} ia(M)$, where $j = \psi_{\overline{M}}$ is a monomorphism, it is clear that if $\mu: S \to S'$ is an isomorphism, then $S \to \operatorname{End}(_R \overline{M})$ is also an isomorphism. Thus, all we have to prove is that, under the assumption that M is weakly *M*-distinguished, \overline{M} is T-*M*-injective if and only if $\alpha(\overline{M}) \subseteq \overline{M}$ for every $\alpha \in S'$. So, let \overline{M} be T-M-injective and $\alpha \in S'$. Then, let $f = \alpha \circ \psi \colon M \to ia(M)$ and $L = f^{-1}(\overline{M})$. It is clear that M/L is T-torsion and hence there exists $h: M \to \overline{M}$ such that the restrictions to L of h and f coincide. By composing h with j we have that $j \circ h - f$ vanishes on L. Since $M/L \in \mathbf{T}$ and $\mathbf{ia}(M) \in \mathbf{F}$, this implies that $j \circ h = f$, so that $\text{Im } f = \alpha(\overline{M}) \subseteq \overline{M}$. Conversely, assume that this last condition holds for each $\alpha \in S'$ and let $0 \to L \xrightarrow{u} M \to C \to 0$ be an exact sequence with $C \in \mathbf{T}$. If $f: L \to \overline{M}$ is a morphism of \mathscr{C} , then $j \circ f: L \to ia(M)$ induces $g: M \to ia(M)$ with $g \circ u = j \circ f$, by the T-injectivity of ia(M). By hypothesis, since $ia(g) \in S'$, there exists an endomorphism h of \overline{M} such that $j \circ h = \mathbf{ia}(g) \circ j$. Then $j \circ h \circ p \circ u = \mathbf{ia}(g) \circ j \circ p \circ u = g \circ u = j \circ f$, which gives $h \circ p \circ u = f$, because *j* is a monomorphism. Thus $h \circ p: M \to \overline{M}$ is an extension of f to M and \overline{M} is T-M-injective.

Remarks 1.15. (a) If *M* is a left *R*-module and $\mathscr{C} = \sigma[M]$, then *M* is weakly T-closed if *M* is quasi-injective and *M*-faithful in the sense of [9]. On the other hand, if *M* is a *CQF*-3 object of the Grothendieck category \mathscr{C} , then *M* is weakly T-closed if and only if condition (ii) in Definition 1.12 holds; this happens, for instance, if *M* is quasiprojective. In particular, all projective objects are weakly T-closed.

(b) Note that M can be a CQF-3 object of \mathscr{C} without being weakly T-closed. For instance, let R be the ring $\binom{k}{0} \binom{k}{k}$ of upper triangular matrices over a field k, $N = \binom{0}{0} \binom{k}{k}$, $L = \binom{k}{0} \binom{0}{0}$ left ideals of R, U = R/L, and $M = N \oplus U$. Take $\mathscr{C} = R$ -mod. Then the trace of M on R is N, so that M is trace-accessible, hence CQF-3. But $\overline{M} \cong U \oplus U$ and it is easy to see that the homomorphism $f: M \to \overline{M}$ which is zero over N and takes $1 \in U \cong k$ to the pair $(\overline{e_{22}}, 0)$ (where $e_{22} = \binom{0}{0} \binom{0}{1}$) cannot be lifted through the projection $p: M \to \overline{M}$, so that M is not weakly M-distinguished.

On the other hand, if M is weakly T-closed it need not be CQF-3. An example of this is obtained by taking a left self-injective ring A and an idempotent two-sided ideal I of A such that the right annihilator of I in A is zero (for instance, we could take A to be an infinite product of copies of a field $k, A = \prod_{J} k_{J}$, with $k_{J} = k$ for all $j \in J$, and $I = \bigoplus_{J} k_{J}$). Then let R be the ring of upper triangular matrices $R = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ and M be the two-sided ideal of $R, M = \begin{pmatrix} I & A \\ 0 & I \end{pmatrix}$. Then, M is not trace-accessible, since $M^{2} = \begin{pmatrix} I & I \\ 0 & I \end{pmatrix} = N$ and the torsion theory (**T**, **F**) of R-mod associated to M is just the torsion

theory whose Gabriel filter consists of all the left ideals of R containing N. Hence M is M-distinguished, as N does not annihilate any nonzero element of R, and it is not CQF-3. To see that M is weakly T-closed, it is only left to show that it is **T**-M-injective. If we call $N_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $N_2 = \begin{pmatrix} 0 & A \\ 0 & I \end{pmatrix}$, and $N_3 = \begin{pmatrix} 0 & I \\ 0 & I \end{pmatrix}$, then $M = N_1 \bigoplus N_2$, $NN_1 = N_1$, $NN_2 = N_3$. Thus it will suffice to prove that each homomorphism $h: N_3 \rightarrow N_2$ can be extended to an endomorphism of N_2 . But an easy computation shows that, since A is left self-injective, this is indeed the case.

(c) It may happen that M is weakly T-closed as an object of a given category, but not when M is considered as an object of another category. For example, let M be a simple left R-module which is not isomorphic to a left ideal of R. Then, the trace of M on R is zero, so that when one takes $\mathscr{C} = R$ -mod, then S' is the zero ring. But if $\mathscr{C} = \sigma[M]$, then M is a generator of \mathscr{C} and hence ia(M) = M and S' = S. However, the converse situation cannot occur, that is, if M is weakly T-closed as a left R-module, then M has the same property when considered as an object of $\sigma[M]$. This is shown in the next proposition.

PROPOSITION 1.16. Let M be a left R-module. If M is weakly M-distinguished (resp., weakly T-closed) in R-mod, then M is weakly M-distinguished (resp., weakly T-closed) in $\sigma[M]$.

Proof. Let (\mathbf{T}, \mathbf{F}) be the torsion theory of $\sigma[M]$ associated to M and $(\mathbf{T}_1, \mathbf{F}_1)$ the torsion theory of R-mod associated to M, and let \mathbf{t}, \mathbf{t}_1 be the corresponding radicals. Since each module belonging to \mathbf{F}_1 and $\sigma[M]$ is clearly in \mathbf{F} , we have that each module of \mathbf{T} belongs to \mathbf{T}_1 . Therefore, $\mathbf{t}(M) \subseteq \mathbf{t}_1(M)$. Now, if M is weakly M-distinguished in R-mod, then $\operatorname{Hom}_R(M, \mathbf{t}_1(M)) = 0$, so that $\mathbf{t}_1(M) \in \mathbf{T}$ and $\mathbf{t}_1(M) = \mathbf{t}(M)$. Thus it follows that M is also weakly M-distinguished in $\sigma[M]$. The latter assertion is now immediate.

This result suggests that in order to study the endomorphism ring of a left *R*-module *M* by using the equivalence of categories given in Theorem 1.7 it is preferable to take $\mathscr{C} = \sigma[M]$ than $\mathscr{C} = R$ -mod.

When \mathscr{F} is the trivial topology $\{S\}$, then S-mod is equivalent to a quotient category of \mathscr{C} . We study next when this is the case.

THEOREM 1.17. Let \mathscr{C} be locally finitely generated and \mathscr{F} the filter $\{I \leq_S S \mid M/MI \text{ is } \mathbf{T}\text{-torsion}\}$. Then \mathscr{F} is the trivial filter $\mathscr{F} = \{S\}$ if and only if M is a finitely generated quasiprojective and CQF-3 object of \mathscr{C} .

Proof. Let us assume that $\mathscr{F} = \{S\}$. If $f: M \to N$ is an epimorphism and N is a nonzero **T**-torsion object, then $X = \text{Ker } f \subsetneq M$ satisfies that $M/X \in \mathbf{T}$. Consider $I = \text{Hom}_{\mathscr{C}}(M, X)$ as a left ideal of S. Then $MI = X_M$ and so M/MI

is T-torsion, so that $I \in \mathscr{F}$, which is a contradiction because $I \neq S$. This shows that $\mathbf{T} = \{X \in Ob(\mathscr{C}) \mid Hom_{\mathscr{C}}(M, X) = 0\}$ and thus M is a CQF-3 object of \mathscr{C} .

To show that M is finitely generated, we take $\{M_i\}_{i \in I}$ a directed family of subobjects of M with $M = \sum_I M_i$. It is straightforward to see that $\mathbf{a}(M)$ is the direct union of the $\mathbf{a}(M_i)$ in \mathscr{C}_M ; from the equivalence of categories between \mathscr{C}_M and S-mod and the fact that $\mathbf{a}(M)$ corresponds to S in this equivalence, we get that $\mathbf{a}(M)$ is finitely generated (and projective) in \mathscr{C}_M and hence $\mathbf{a}(M) = \mathbf{a}(M_i)$ for some $i \in I$. This implies that M/M_i is T-torsion and, since M is CQF-3, one has $M = M_i$, from which we see that M is finitely generated.

Let now $p: M \to N$ be an epimorphism and $f: M \to N$ an arbitrary morphism. By the exactness of the functor **a** and the projectivity of $\mathbf{a}(M)$ in \mathscr{C}_M , we obtain a morphism $h: \mathbf{a}(M) \to \mathbf{a}(M)$ such that $\mathbf{a}(p) \circ h = \mathbf{a}(f)$. Since in this case M is, clearly, weakly T-closed, we have $h = \mathbf{a}(g)$ for some $g: M \to M$. Then $\mathbf{a}(p \circ g) = \mathbf{a}(f)$ and thus $\operatorname{Im}(p \circ g - f)$ is T-torsion. But $\operatorname{Im}(p \circ g - f)$ is a quotient of M, and hence zero. Therefore $p \circ g = f$ and Mis quasiprojective.

Conversely, let us suppose that M is CQF-3, finitely generated, and quasiprojective. As seen in Remark 1.15(a), M is weakly T-closed. Furthermore, it is easy to see, by using [18, Lemma V.3.3; 1, Proposition I.1.8], that M is Σ -quasiprojective. On the other hand, since M is CQF-3 we have that for a left ideal I of S, $M/MI \in T$ if and only if M = MI, that is, $\mathscr{F} =$ $\{I \leq_S S \mid MI = M\}$. Let $I \in \mathscr{F}$ and take $p: M^{(I)} \to M$ to be such that $p \circ q_f = f$ for every $f \in I$, the q_f being the canonical injections. The assumption that $I \in \mathscr{F}$ implies that p is an epimorphism, and hence it splits, because M is Σ -quasiprojective. Since M is finitely generated, it follows that there exists a finite subset $F \subseteq I$ such that the canonical morphism $p': M^{(F)} \to M$ is a split epimorphism. Then $1_M = p' \circ u = p' \circ (\Sigma_F q'_f \circ g_f) =$ $\Sigma_F f \circ g_f = \Sigma_F g_f f \in I$, where $u: M \to M^{(F)}$ induces $g_f: M \to M$ for each $f \in F$, and $q'_f: M \to M^{(F)}$ are the canonical injections. Thus I = S and $\mathscr{F} = \{S\}$.

Remark 1.18. If in Theorem 1.17 we drop the assumption of M being CQF-3, then the result is no longer true, as the example of a simple module in Remark 1.15(c) shows.

The preceding result is reminiscent of that of Fuller [5, Theorem 1.1] stating that if a full subcategory \mathscr{C} of *R*-mod which is closed under submodules, quotients, and direct sums is equivalent to a module category *S*-mod, then there is a left *R*-module *M* such that $S \cong \text{End}(_R M)$ and *M* is a finitely generated and quasiprojective self-generator. In order to better study this connection we prove the following result.

THEOREM 1.19. Let S be a ring and C a Grothendieck category with a

projective generator. Assume that $(\mathbf{T}_0, \mathbf{F}_0)$ is a torsion theory in \mathscr{C} such that \mathbf{T}_0 is closed under products and let \mathscr{F} be a left Gabriel filter on S such that S is \mathscr{F} -closed. If $F: \mathscr{C}/\mathbf{T}_0 \to (S, \mathscr{F})$ -mod is an equivalence of categories, then there exists an object M of \mathscr{C} such that: $(\mathbf{T}_0, \mathbf{F}_0)$ is the torsion theory (\mathbf{T}, \mathbf{F}) of \mathscr{C} associated to $M, S \cong \operatorname{End}_{\mathscr{C}}(\overline{M}), F$ is naturally equivalent to the restriction to the subcategory \mathscr{C}/\mathbf{T}_0 of the functor $\operatorname{Hom}_{\mathscr{C}}(\overline{M}, -): \mathscr{C} \to (S, \mathscr{F})$ -mod, and $\mathscr{F} = \{I \leq _S S \mid \overline{M}I = \overline{M}\}.$

Proof. For each object X of \mathscr{C} , take $d(X) = \bigcap \{Y \subseteq X \mid X/Y \in \mathbf{T}_0\}$. Since T_0 is closed under products, we have that d is an epi-preserving preradical, $X/d(X) \in \mathbf{T}_0$, and $\operatorname{Hom}_{\mathscr{C}}(d(X), Y) = 0$ for every $Y \in \mathbf{T}_0$. Let U be an object of \mathscr{C}/\mathbf{T}_0 such that $F(U) \cong S \cong S_{\mathscr{F}}$. Then $\operatorname{End}_{\mathscr{C}}(U) = \operatorname{End}_{\mathscr{C}/\mathcal{T}_0}(U) \cong$ $\operatorname{End}_{S}(S) = S$. It follows easily that the functor F is naturally equivalent to $\operatorname{Hom}_{\mathscr{C}}(U, -) \cong \operatorname{Hom}_{\mathscr{C}/\mathbf{T}_0}(U, -)$ from \mathscr{C}/\mathbf{T}_0 to (S, \mathscr{F}) -mod. Let L = d(U) and $X \in \mathbf{F}_0$: we claim that $X/X_L \in \mathbf{T}_0$, i.e., $d(X) \subseteq X_L$. By using the fact that U is a generator of \mathscr{C}/\mathbf{T}_0 , we obtain a morphism $q: U^{(I)} \to \mathbf{a}'(X)$ (where $\mathbf{a}': \mathscr{C} \to \mathscr{C}/\mathbf{T}_0$ is the canonical functor) which has a \mathbf{T}_0 -torsion cokernel. Since $\mathbf{a}'(X)/X$ is \mathbf{T}_0 -torsion, we have that $U^{(I)}/q^{-1}(X)$ is also \mathbf{T}_0 -torsion and hence $d(U^{(1)}) = L^{(1)} \subseteq q^{-1}(X)$ [1, Lemma 3.7.1]. On the other hand, if $q': q^{-1}(X) \to X$ is the restriction of q, then we have an exact sequence $0 \to 0$ $(X \cap \operatorname{Im} q)/\operatorname{Im} q' \to X/\operatorname{Im} q' \to \mathbf{a}'(X)/\operatorname{Im} q$. Now, $(X \cap \operatorname{Im} q)/\operatorname{Im} q'$ is a subobject of Im q/Im q' which, in turn, is a quotient of $U^{(l)}/q^{-1}(X)$ and hence it is T_0 -torsion. Since the third member of the sequence is also T_0 -torsion, we get that $X/\text{Im } q' \in \mathbf{T}_0$. But the fact that $q^{-1}(X)/L^{(l)}$ is \mathbf{T}_0 -torsion implies that Im $q'/q'(L^{(l)}) \in \mathbf{T}_0$ and, consequently, $X/q'(L^{(l)})$ is \mathbf{T}_0 -torsion. Then $d(X) \subseteq q'(L^{(I)}) \subseteq X_L$, establishing the claim.

Note that, by [18, Theorem X.4.1], the category \mathscr{C} is equivalent, via the exact functor $\operatorname{Hom}_{\mathscr{C}}(G, -): \mathscr{C} \to A\operatorname{-mod}$ (where G is a projective generator of \mathscr{C} and $A = \operatorname{End}_{\mathscr{C}}(G)$), to a Giraud subcategory of A-mod, and hence the objects, morphisms, and exact sequences of \mathscr{C} may be considered as being in A-mod. Now, let $I = \operatorname{Hom}_{\mathscr{C}}(L, G/t_0(G))$ and for each $i \in I$, consider the cartesian square

where p is the canonical projection. Then f_i is an epimorphism, with T_0 -torsion kernel. Let M be the limit of the morphisms f_i from X_i to L, so that there are morphisms $g_i: M \to X_i$ such that $f_i \circ g_i$ is a fixed $h: M \to L$. Considering the above diagrams as in A-mod, we see that every f_i is an epimorphism and therefore h is also an epimorphism. Furthermore, Ker h, being a product of T_0 -torsion objects, is T_0 -torsion, so that there is an

exact sequence $0 \to K \to M \to L \to 0$, with $K \in \mathbf{T}_0$. If $\phi: L^{(I)} \to G/\mathbf{t}_0(G)$ is induced by the $i \in I$, then Coker $\phi \in \mathbf{T}_0$, by our previous claim. Thus we have induced morphisms $h': M^{(I)} \to L^{(I)}$ and $g: M^{(I)} \to G$ such that h' is an epimorphism and $\phi \circ h' = p \circ g$, from which it follows that $\operatorname{Coker}(p \circ g) \cong$ $G/\operatorname{Im} g + \mathbf{t}_0(G)) \in \mathbf{T}_0$ and hence $G/\operatorname{Im} g \in \mathbf{T}_0$ and $G/G_M \in \mathbf{T}_0$. Let (\mathbf{T}, \mathbf{F}) be the torsion theory of \mathscr{C} associated to M. By Proposition 1.4, $\mathbf{T} \subseteq \mathbf{T}_0$. Since clearly M can be assumed to verify d(M) = M, we have also that $\mathbf{T}_0 \subseteq \mathbf{T}$ and thus $(\mathbf{T}, \mathbf{F}) = (\mathbf{T}_0, \mathbf{F}_0)$.

On the other hand, note that $\overline{M} = L$ and $\mathbf{a}'(M) \cong U$, so that the functor $\operatorname{Hom}_{\mathscr{C}}(U, -)$: $\mathscr{C}/\mathbf{T}_0 \to (S, \mathscr{F})$ -mod is naturally equivalent to $\operatorname{Hom}_{\mathscr{C}}(M, -)$: $\mathscr{C}/\mathbf{T}_0 \to (S, \mathscr{F})$ -mod and hence this functor is equivalent to F. Besides, $\operatorname{Hom}_{\mathscr{C}}(L, U/L) = 0$ implies that $S \cong \operatorname{End}_{\mathscr{C}}(U) \cong \operatorname{End}_{\mathscr{C}}(L) = \operatorname{End}_{\mathscr{C}}(\overline{M})$. The final assertion of the theorem follows from the fact that \overline{M} has no nonzero torsion quotients, along with Theorem 1.6.

Remark 1.20. It follows from the proof of the theorem that the condition of \mathscr{C} having a projective generator may be replaced by either the existence of a T_0 -torsionfree generator of \mathscr{C} or the condition that \mathscr{C} is equivalent to a quotient category (R, \mathscr{H}) -mod such that \mathscr{H} is the left Gabriel filter of the ring R generated by an idempotent ideal. In the first case, $M = L = \overline{M}$ and $S \cong \operatorname{End}_{\mathscr{C}}(M)$. To complete the proof in the second case, note that, with the notation used above, $\operatorname{Im} h = \bigcap {\operatorname{Im} f_i \mid i \in I}$ in R-mod, so that h is also an epimorphism of \mathscr{C} .

On the other hand, if we delete the hypothesis of T_0 being closed under products, then the result is no longer true, as the example of [10, Example 5] shows. Finally, the assumption of S being \mathcal{F} -closed is not restrictive, because in the general case a similar result to that of the theorem holds with $S_{\mathcal{F}}$ instead of S.

COROLLARY 1.21. Let \mathscr{C} be a Grothendieck category with a projective generator and \mathbf{T}_0 a torsion class of \mathscr{C} which is closed under products. Assume that there is an equivalence $F: \mathscr{C}/\mathbf{T}_0 \to S$ -mod for some ring S. Then there exists an object M of \mathscr{C} such that M is a finitely generated, quasiprojective, and CQF-3 object of \mathscr{C} , F is naturally equivalent to the functor $\operatorname{Hom}_{\mathscr{C}}(M, -)$: $\mathscr{C}/\mathbf{T}_0 \to S$ -mod, $S \cong \operatorname{End}_{\mathscr{C}}(M)$, and $\mathbf{T}_0 = \{X \mid \operatorname{Hom}_{\mathscr{C}}(M, X) = 0\}$.

Proof. It follows from Theorem 1.19 and the proof of Theorem 1.17.

2. CQF-3 OBJECTS

We keep the notations and general setting of the preceding section. As stated earlier, M is CQF-3 if and only if for every object X in \mathscr{C} , $X \in T$ if and only if $Hom_{\mathscr{C}}(M, X) = 0$. In particular, T is, in this case, closed under

products and hence **T** is also a torsionfree class for a (not necessarily hereditary) torsion theory. However, **T** may be closed under products without M being CQF-3. For instance, if $\mathscr{C} = R$ -mod, then **T** is closed under products if and only if the trace ideal T_M of M on R is idempotent [18, Proposition VI.6.12], while M is CQF-3 if and only if $T_M M = M$ (see [16]) and thus if $T_M = 0$ and $M \neq 0$, then **T** is closed under products but M is not CQF-3.

Suppose that **T** is closed under products and let (\mathbf{D}, \mathbf{T}) be the corresponding cohereditary torsion theory. **d** will denote the associated radical, which is epimorphism-preserving [15, Lemma 1.8]. Let \mathscr{CD}_M be the full subcategory of \mathscr{C} whose objects are precisely those which belong simultaneously to **D** and **F**. Then we have the following result.

PROPOSITION 2.1. Let **T** be closed under products. Then the functor $\mathscr{CD}_M \to \mathscr{C}_M$ given by $X \to \mathbf{a}(X)$ is an equivalence of categories with inverse defined by $Z \to \mathbf{d}(Z)$.

Proof. It is an easy exercise to verify that if X is in \mathscr{CD}_M , then $\mathbf{d}(\mathbf{a}(X)) = X$, and if Z is in \mathscr{C}_M , then $\mathbf{a}(\mathbf{d}(Z)) \cong Z$.

We are going to show next that the study of weakly T-closed objects M reduces to that of weakly T-closed CQF-3 objects M, when T is assumed to be closed under products.

PROPOSITION 2.2. If **T** is closed under products, then $\mathbf{d}(M)$ is CQF-3. Moreover, if M is weakly **T**-closed, then $\mathbf{d}(M)$ is weakly **T**-closed and $\operatorname{End}_{\mathscr{C}}(\mathbf{d}(M)) \cong \operatorname{End}_{\mathscr{C}}(M)$.

Proof. Take X in **D**. The canonical morphism $M^{(\text{Hom}(M,X))} \to X$ is an epimorphism (because its cokernel must belong to both **T** and **D**) and hence it induces an epimorphism $\mathbf{d}(M)^{(\text{Hom}(M,X))} \to X = \mathbf{d}(X)$. This proves that **D** consists precisely of all the objects generated by $\mathbf{d}(M)$, so that $\mathbf{d}(M)$ is *CQF*-3 [16, Lemma 2.2]. On the other hand, in view of the facts that $\mathbf{ad}(M) \cong \mathbf{a}(M)$ and $M/\mathbf{d}(M)$ is *T*-torsion, we have $\text{End}_{\mathscr{C}}(\mathbf{d}(M)) \cong S \cong S' \cong \text{End}_{\mathscr{C}}(\mathbf{a}(\mathbf{d}(M)))$, thus showing that $\mathbf{d}(M)$ is weakly T-closed.

According to [19, Theorem 1.8], if M is CQF-3 and \mathscr{C} has enough projectives, then every object X of \mathscr{C} has a colocalization with respect to (\mathbf{D}, \mathbf{T}) (that is, a morphism $f: Q \to X$ such that Q is **D**-codivisible, $Q \in \mathbf{D}$, and Ker f and Coker f are in **T**). In fact, if M is CQF-3 and has a colocalization $f: Q \to M$, then every object of \mathscr{C} has a colocalization (by the same argument of the proof of [16, Theorem 2.6(i) \Rightarrow (ii)]). Now, we will see that if we want to study endomorphism rings of CQF-3 and weakly **T**-closed objects M such that M has a colocalization, we may already suppose that M is **D**-codivisible. **PROPOSITION 2.3.** If M is CQF-3 and $f: Q \to M$ is a colocalization of M, then Q is also CQF-3 and Q is weakly **T**-closed. Moreover, if M is weakly M-distinguished, then $\text{End}_{\mathscr{G}}(Q) \cong S$.

Proof. Since M is Q-generated and $Q \in \mathbf{D}$, it is clear that \mathbf{D} consists of all the Q-generated objects of \mathscr{C} , so that Q is CQF-3 [16, Lemma 2.2]. Q is weakly T-closed, because it is \mathbf{D} -codivisible. Also, a direct argument shows that $\overline{M} \cong \overline{Q}$ and $\operatorname{End}_{\mathscr{C}}(Q) \cong \operatorname{End}_{\mathscr{C}}(\overline{M})$. Therefore, if M is weakly M-distinguished, then clearly $\operatorname{End}_{\mathscr{C}}(Q) \cong S$.

Let us assume that **T** is closed under products. We denote by \mathscr{C}^{M} the full subcategory of \mathscr{C} whose objects are all the **D**-torsion and **D**-codivisible objects of \mathscr{C} . It is shown in [19] that, if every object of \mathscr{C} has a colocalization with respect to (**D**, **T**), then the inclusion functor $\mathbf{u}: \mathscr{C}_{M} \to \mathscr{C}$ has an exact right adjoint **c**, which assigns to each object X of \mathscr{C} its colocalization object. Moreover, we recall the following result, which was proved in [19, Proposition 4.4].

PROPOSITION 2.4. Assume that **T** is closed under products and that each object of \mathscr{C} has a colocalization with respect to (\mathbf{D}, \mathbf{T}) . Then, the restrictions to \mathscr{C}_M and \mathscr{C}^M of the functors **c** and **a**, respectively, are inverse equivalences of categories between \mathscr{C}_M and \mathscr{C}^M .

If, in particular, M is CQF-3 and **D**-codivisible, then the hypotheses of Proposition 2.4 are fulfilled. In this case, an easy check shows that the category \mathscr{C}_M consists of all those objects X of \mathscr{C} such that there exists an exact sequence of the form $M^{(I)} \to M^{(J)} \to X \to 0$. These are precisely the objects which have M-codominant dimension ≥ 2 , according to the terminology of [17].

Under the hypotheses of Proposition 2.4, we have that each of the categories $\mathscr{C}_M, \mathscr{C}^M$, and $\mathscr{C}D_M$ is equivalent to (S, \mathscr{F}) -mod. With an additional assumption, we obtain up to six equivalent categories, as shown below.

PROPOSITION 2.5. Assume that \mathscr{C} is a locally finitely generated Grothendieck category with a projective generator U and that the object M is such that **T** is closed under products. Let J be the left ideal of S consisting of all the endomorphisms f of M which factor in the form $f = h \circ g$, where h: $U^n \to M$ and g: $M \to U^n$ verify that $\operatorname{Im} h \subseteq \mathbf{d}(M)$ and $\operatorname{Im} g$ is contained in a finitely generated subobject U' of U^n . Then, the left Gabriel filter \mathscr{F} of S consists of all left ideals I such that $J \subseteq I$.

Proof. The same methods used in the proof of Theorem 1.7 show, in this case, that $J \in \mathscr{F}$. On the other hand, if $I \in \mathscr{F}$, then there is M' such that $\mathbf{d}(M) \subseteq M' \subseteq M$ and an epimorphism $\pi: M^{(I)} \to M'$, with $f = \pi \circ q_f$ for

each $f \in I$ (where, as usual, q_f are the canonical injections). If $\alpha \in J$, $\alpha = h \circ g$, with Im $h \subseteq \mathbf{d}(M) \subseteq M'$, and Im $g \subseteq U'$, U' being a finitely generated subobject of some U". The projectivity of U" implies that $h: U^n \to M$ factors through π , and it is then clear that α factors through some canonical injection $M^{(F)} \to M^{(I)}$, F being a finite set, from which it follows that $\alpha \in I$. Therefore, $\mathscr{F} = \{I \leq_S S \mid J \subseteq I\}$.

By Proposition 2.5, J is an idempotent two-sided ideal and the torsion theory of S-mod associated to J verifies that its torsion class is closed under products and that each object of S-mod has a colocalization [19, Theorem 1.8]. Thus the quotient category (S, \mathcal{F}) -mod is equivalent, by Propositions 2.1 and 2.4, to the full subcategories of S-mod consisting of: (i) the J-generated \mathcal{F} -torsionfree S-modules; and (ii) the J-generated and codivisible S-modules (this latter category is the category $_{J}\mathcal{C}$ of [11]). Thus we have the following corollary.

COROLLARY 2.6. In the hypotheses of Proposition 2.5, the following six categories are equivalent. (i) \mathscr{C}_M , (ii) \mathscr{C}^M , (iii) $\mathscr{C}D_M$, (iv) (S, \mathcal{F}) -mod, (v) $_J\mathscr{C}$, and (vi) the category of all J-generated and \mathcal{F} -torsionfree left S-modules.

When one takes a Σ -quasiprojective module M and $\mathscr{C} = \sigma[M]$ then we have in particular [9, Theorem 1.3]. On the other hand, the equivalence between \mathscr{C}^M and (S, \mathscr{F}) -mod is given in [16, Theorem 2.5] under the more general assumption that \mathscr{C} be a cocomplete abelian category with exact direct limits. In fact, [16, Theorem 2.5] identifies also the colocalization and localization functors **c** and **a**. This we do now in a shorter way (**j** and **b** below denote the inclusion functor from (S, \mathscr{F}) -mod to S-mod and its left adjoint, respectively).

PROPOSITION 2.7. If M is CQF-3 and D-codivisible, then the colocalization functor $\mathbf{u} \circ \mathbf{c} : \mathscr{C} \to \mathscr{C}$ is equivalent to the composition of the functors $H = \operatorname{Hom}_{\mathscr{C}}(M, -) : \mathscr{C} \to S$ -mod followed by $G = M \otimes_{S} -: S$ -mod $\to \mathscr{C}$. On the other hand, the localization functor $\mathbf{j} \circ \mathbf{b} : S$ -mod $\to S$ -mod is equivalent to the composition $H \circ G$.

Proof. By Propositions 1.4 and 2.4, and the fact that $S' \cong S$ in this case, we see that the functor $F: \mathscr{C}^M \to (S, \mathscr{F})$ -mod given on objects by $F(Z) = \operatorname{Hom}_{\mathscr{C}}(M, \operatorname{iau}(Z))$ is an equivalence, whose inverse is given by $F': (S, \mathscr{F})$ -mod $\to \mathscr{C}^M$, with $F'(X) = \mathbf{c}(M \otimes_S X)$. Thus for each object Z of \mathscr{C}^M one has a canonical isomorphism between Z and $\mathbf{c}(M \otimes_S \operatorname{Hom}_{\mathscr{C}}(M, \operatorname{iau}(Z)))$. But it follows from the fact that M is CQF-3 and D-codivisible that $\operatorname{Hom}_{\mathscr{C}}(M, \operatorname{iau}(Z)) \cong \operatorname{Hom}_{\mathscr{C}}(M, \mathbf{u}(Z))$ and that $M \otimes_S Y$ belongs to \mathscr{C}^M for every $_S Y$ (because it has M-codominant dimen-

sion ≥ 2), so that $\mathbf{u}(Z) \cong M \otimes_S \operatorname{Hom}_{\mathscr{C}}(M, \mathbf{u}(Z))$. This gives that, for each X in \mathscr{C} , $\mathbf{uc}(X) \cong M \otimes_S \operatorname{Hom}_{\mathscr{C}}(M, \mathbf{uc}(X))$. But again the conditions on M clearly imply that $\operatorname{Hom}_{\mathscr{C}}(M, \mathbf{uc}(X)) \cong \operatorname{Hom}_{\mathscr{C}}(M, X)$, so that there is a natural isomorphism $M \otimes_S \operatorname{Hom}_{\mathscr{C}}(M, X) \cong \mathbf{uc}(X)$.

To prove the second part of the proposition, note that one can easily show that the equivalence of Theorem 1.6 gives in this case that for each object X of (S, \mathscr{F}) -mod there is a canonical isomorphism $X \cong \operatorname{Hom}_{\mathscr{C}}(M, M \otimes_S X)$. It follows that if M is CQF-3 and weakly T-closed, the localization functor assigns to each left S-module Y the S-module $\operatorname{Hom}_{\mathscr{C}}(M, \operatorname{ia}(M \otimes_S Y))$. The D-codivisibility of M now implies the result.

3. Applications to the Study of Endomorphism Rings

In this section M will be a left R-module, $S = \text{End}(_R M)$. As suggested by Proposition 1.16, we shall take $\mathscr{C} = \sigma[M]$ from now on. We need the following definition, due to Brodskii [2].

DEFINITION 3.1. A left *R*-module *M* will be called intrinsically projective when for every natural number *n* and every epimorphism $p: M^n \to L$, where *L* is a submodule of *M*, the induced homomorphism $p_*: \operatorname{Hom}_R(M, M^n) \to \operatorname{Hom}_R(M, L)$ is surjective.

From [2, Lemma 2] it follows that M is intrinsically projective if and only if every finitely generated left ideal I of S verifies $I = \{f \in S \mid \text{Im } f \subseteq MI\}$, so that I can be identified, in this case, with $\text{Hom}_R(M, MI)$. We have the following result.

THEOREM 3.2. Let M be a left R-module which is weakly T-closed as an object of $\sigma[M]$. The following conditions are equivalent.

(i) S is left semihereditary.

(ii) *M* is intrinsically projective and for every finitely *M*-generated submodule *N* of *M*, $M \otimes_S \operatorname{Hom}_R(M, N)$ is a direct summand of M^n for some integer *n*.

(iii) *M* is intrinsically projective and for every finitely *M*-generated submodule *N* of *M* there exists an exact sequence $0 \rightarrow K \rightarrow L \rightarrow N \rightarrow 0$, where *K* is **T**-torsion and *L* is a direct summand of *M*ⁿ for some integer *n*.

Proof. (i) \Rightarrow (ii) By hypothesis, every finitely generated left ideal I of S is a direct summand of some S' and hence I is \mathscr{F} -closed, in view of Proposition 1.14. By [18, Proposition IX.4.2], I is \mathscr{F} -saturated in S. Now,

if $J = \text{Hom}_{\mathcal{R}}(M, MI) \leq S$, we have a commutative diagram with exact rows and columns

By the Ker-Coker lemma, Ker $g \cong M \otimes_S (J/I)$ is isomorphic to a quotient of Ker f, which is T-torsion by Theorems 1.6 and 1.7. Therefore, J/I is \mathscr{F} -torsion and hence J = I, because S/I is \mathscr{F} -torsionfree. This means that M is intrinsically projective.

Let now $M^n \xrightarrow{p} N \to 0$ be exact, with N a submodule of M. Inasmuch as M is intrinsically projective, we have that $p_*: \operatorname{Hom}_R(M, M^n) \to$ $\operatorname{Hom}_R(M, N)$ is surjective. Since $\operatorname{Hom}_R(M, N)$ is a finitely generated left ideal of S, we have that p_* splits. By tensoring with M we get that $M \otimes_S \operatorname{Hom}_R(M, N)$ is a direct summand of $M \otimes_S \operatorname{Hom}_R(M, M^n) \cong M^n$.

(ii) \Rightarrow (iii) If N is a finitely M-generated submodule of M, then the canonical homomorphism $\phi: M \otimes_S \operatorname{Hom}_R(M, N) \to M$ verifies that Ker ϕ is T-torsion, by Theorems 1.6 and 1.7, Im $\phi = N$, and $M \otimes_S \operatorname{Hom}_R(M, N)$ is a direct summand of M^n for some n.

(iii) \Rightarrow (i) Let *I* be a finitely generated left ideal of *S*. By (iii) there is an exact sequence $0 \rightarrow K \rightarrow L \rightarrow MI \rightarrow 0$, where *K* is T-torsion and *L* is a direct summand of M^n . Since $\operatorname{Hom}_R(M, t(M)) = 0$ by the hypothesis, $\operatorname{Hom}_R(M, t(M^n)) = 0$ and hence $\operatorname{Hom}_R(M, K) = 0$. On the other hand, taking into account that *M* is intrinsically projective, $\operatorname{Hom}_R(M, L) \rightarrow$ $\operatorname{Hom}_R(M, MI)$ is an epimorphism and, in fact, an isomorphism. Since $\operatorname{Hom}_R(M, L)$ is a direct summand of $\operatorname{Hom}_R(M, M^n) \cong S^n, I =$ $\operatorname{Hom}_R(M, MI)$ is a projective left *S*-module.

COROLLARY 3.3. If M is T-M-injective and M-distinguished in $\sigma[M]$, then S is left semihereditary if and only if M is intrinsically projective and every finitely M-generated submodule of M is a direct summand of some M^n .

COROLLARY 3.4. If M is a Σ -quasiprojective left R-module, then S is left semihereditary if and only if every finitely M-generated submodule of \overline{M} is a direct summand of some \overline{M}^n .

Note that [7, Theorem 7] is a consequence of Corollary 3.4. In [3] a module M is called a CS-module when every essentially closed submodule of M is a direct summand of M, and a ring R is a left CS-ring when $_{R}R$ is a CS-module. Clearly, M is a CS-module if and only if every submodule of M is essential in a direct summand. We have the following result.

THEOREM 3.5. Let M be weakly M-distinguished in $\sigma[M]$. Then S is a left CS-ring if and only if \overline{M} is a CS-module.

Proof. Assume first that S is left CS and let $X \le \overline{M}$. It is easy to see that there exists an M-generated submodule X_0 of M such that $p(X_0) \subseteq X$ and $X/p(X_0) \in T$, p being the canonical projection of M onto \overline{M} . If $I = \{f \in S \mid \text{Im } f \subseteq X_0\}$, then, by hypothesis, I is essential in Se for some idempotent e of S. Let N = Im e; thus we have that $Se = \{f \in S \mid \text{Im } f \subseteq N\}$. Then p(N) is a direct summand of \overline{M} , $p(X_0) \subseteq p(N)$, and we have a commutative diagram with exact rows and columns

where the vertical arrow on the right must be zero since $X/p(X_0)$ is T-torsion and $\overline{M}/p(N) \in \mathbf{F}$. Thus there exists $v: X \to p(N)$ such that $u \circ v = j$ and so $X \subseteq p(N)$. To prove that \overline{M} is a CS-module it will be enough to show that $p(X_0)$ is essential in p(N). To see this, let $0 \neq Y \subseteq p(N)$. By the same reasoning made above, there exists an M-generated submodule Y_0 of M such that $0 \neq p(Y_0) \subseteq Y$. Let J be the left ideal of $S, J = \{f \in S \mid \text{Im } f \subseteq Y_0\} \neq 0$. Since $Y_0 \subseteq N$, we have $J \subseteq Se$ and, inasmuch as I is essential in $Se, I \cap J \neq 0$. But if $f \in I \cap J$ and $f \neq 0$, then $\text{Im } f \subseteq$ $Y_0 \cap X_0$. Therefore $Y_0 \cap X_0$ is not T-torsion (because $\text{Hom}_R(M, t(M)) = 0$ by hypothesis) and thus $p(Y_0) \cap p(X_0) \neq 0$.

Conversely, assume that \overline{M} is a CS-module and let I be an essentially closed left ideal of S. Calling $\overline{S} = \operatorname{End}(_R \overline{M}) \cong S$, I may also be considered as a left ideal of \overline{S} . Since, as it was seen in the proof of Theorem 1.6, the torsion ideal of S, $t_{\mathscr{F}}(S)$, is just $\operatorname{Hom}_R(M, t(M))$, S is \mathscr{F} -torsionfree and hence the essentially closed left ideals of S are precisely the essentially closed elements of the lattice $\operatorname{Sat}_{\mathscr{F}}(S)$. By the equivalence of categories between \mathscr{C}_M and (S, \mathscr{F}) -mod, this lattice is isomorphic to the lattice $\operatorname{Sat}_T(\overline{M})$, by means of the mapping $J \to \psi_{\overline{M}}^{-1}(\operatorname{in}(\overline{M}J))$, and hence in this isomorphism the left ideal I corresponds to $X = \psi_{\overline{M}}^{-1}(\operatorname{in}(\overline{M}I))$, which is an essentially closed submodule of \overline{M} , for \overline{M} is T-torsionfree. By hypothesis, there is an idempotent e in \overline{S} such that $\overline{M}e = X$ and thus $\overline{S}e =$ Hom_R(\overline{M} , X). By using the equivalence of categories of Theorems 1.6 and 1.7, it is easily seen that the localization functor **b**: S-mod $\rightarrow (S, \mathscr{F})$ -mod is given by $\mathbf{b}(N) \cong \operatorname{Hom}_R(M, \mathbf{ia}(M \otimes_S N))$. Therefore $I_{\mathscr{F}}$ is isomorphic to Hom_R($M, \mathbf{ia}(M \otimes_S I)$) $\cong \operatorname{Hom}_R(M, \mathbf{ia}(MI)) \cong \operatorname{Hom}_R(\overline{M}, \mathbf{ia}(\overline{M}I))$ and, since S is \mathscr{F} -torsionfree, I is an essential S-submodule of Hom_R($\overline{M}, \mathbf{ia}(\overline{M}I)$). Now, Hom_R($\overline{M}, \overline{M}I$) $\subseteq \operatorname{Hom}_R(\overline{M}, X) \subseteq \operatorname{Hom}_R(\overline{M}, \mathbf{ia}(\overline{M}I))$ and hence the left ideal Hom_R(\overline{M}, X) of \overline{S} is an essential extension of I, so that $I = \operatorname{Hom}_R(\overline{M}, X) = \overline{S}e$ is a direct summand of $\overline{S} \cong S$.

The following corollary generalizes [3, Corollary 3.6].

COROLLARY 3.6. If M is M-distinguished in $\sigma[M]$, then S is a left CS-ring if and only if M is a CS-module.

A particular class of left CS-rings is that of left continuous rings. Recall that a ring R is said to be left continuous when R is a left CS-ring such that if a left ideal I of R is isomorphic to a direct summand of R, then I is also a direct summand of R. The concept of a continuous module is analogous.

PROPOSITION 3.7. Let M be weakly M-distinguished in $\sigma[M]$. Then S is a left continuous ring if and only if \overline{M} is a continuous module.

Proof. Let S be left continuous and $\overline{S} = \operatorname{End}_R(\overline{M}) \cong S$. In view of Theorem 3.5, we only have to show that if L and N are isomorphic submodules of \overline{M} and N is a direct summand of \overline{M} , then so is L. Put $I = \{f \in \overline{S} \mid \operatorname{Im} f \subseteq L\}$ and $J = \{f \in \overline{S} \mid \operatorname{Im} f \subseteq N\}$. It is clear that the isomorphism $L \cong N$ induces an isomorphism between I and J. Now, J is a direct summand of \overline{S} and, by hypothesis, so is I. Since $L \cong N$ is M-generated, $L = L_M = \overline{M}I$ is a direct summand of \overline{M} .

To prove the converse, let e be an idempotent of \overline{S} with $N = \overline{M}e$ and $p: \overline{S}e \to I$ an isomorphism between $\overline{S}e$ and a left ideal I of \overline{S} . If $p(e) = h \in I$, then the annihilator ann $_{\overline{S}}(e)$ is just ann $_{\overline{S}}(h)$ and, since ann $_{\overline{S}}(e) = \text{Hom}_R(\overline{M}, \text{Ker } e)$ and ann $_{\overline{S}}(h) = \text{Hom}_R(\overline{M}, \text{Ker } h)$, we have $\text{Ker } e = (\text{Ker } h)_M$. Now, Ker h/Ker e is isomorphic to a submodule of N, which is T-torsionfree and hence Ker e = Ker h. If we call u_1 and u_2 to the canonical injections of N and $L = \overline{M}h$, respectively, into \overline{M} and $e_1: \overline{M} \to N$ and $h_1: \overline{M} \to L$ are such that $u_1 \circ e_1 = e, u_2 \circ h_1 = h$, then the above equation gives an isomorphism $\theta: N \to L$ such that $\theta \circ e_1 = h_1$. Let $f: \overline{M} \to L$ be an arbitrary homomorphism. Then the image of $\theta^{-1} \circ f$ is contained in N and thus there exists $s \in \overline{S}$ with $\theta^{-1} \circ f = e_1 \circ s$, so that $f = (\theta \circ e_1) \circ s = h_1 \circ s$ and hence the left ideal $\text{Hom}_R(\overline{M}, L)$ is contained in $\overline{S}h = I$, and both ideals coincide. Since \overline{M} is continuous and $L \cong N$, L is a direct summand of \overline{M}

and therefore I is a direct summand of \overline{S} . Finally, Theorem 3.5 completes the proof.

Recall that a ring R is said to be left Kasch [18, Chap. XIV] when $E(_RR)$ is a cogenerator of the category R-mod. A module M is called an RZ-module if every simple quotient of M is isomorphic to a submodule of M. In [9, Theorem 3.1] it is shown that the endomorphism ring of a Σ -quasiprojective module M is left Kasch if and only if \overline{M} is a finitely generated RZ-module. More generally, we have the following result.

PROPOSITION 3.8. Suppose that $\operatorname{Hom}_{R}(M, t(M)) = 0$. Then S is a left Kasch ring if and only if M is a finitely generated quasiprojective module and \overline{M} is an RZ-module.

Proof. By our assumption, S is \mathscr{F} -torsionfree. The condition of S being left Kasch implies that every simple quotient of S is isomorphic to a left ideal and hence \mathscr{F} -torsionfree. Thus there is no proper left ideal of S in \mathscr{F} and \mathscr{F} is the trivial filter, $\mathscr{F} = \{S\}$. By Theorem 1.17, M is a finitely generated and quasiprojective module, so that M is a Σ -quasiprojective module [1, Proposition I.1.8]. Now, [9, Theorem 3.1] achieves the proof.

REFERENCES

- 1. T. ALBU AND C. NASTASESCU, "Relative Finiteness in Module Theory," Dekker, New York, 1984.
- 2. G. M. BRODSKII, Annihilator conditions in endomorphism rings of modules, Mat. Zametki 16 (1974), 933-942.
- 3. A. W. CHATTERS AND S. M. KHURI, Endomorphism rings of modules over non-singular CS-rings, J. London Math. Soc. (2) 21 (1980), 434-444.
- 4. R. S. CUNNINGHAM, E. A. RUTTER, AND D. R. TURNIDGE, Rings of quotients of endomorphism rings of projective modules, *Pacific J. Math.* 47 (1973), 199-220.
- 5. K. R. FULLER, Density and equivalence, J. Algebra 29 (1974), 528-550.
- 6. P. GABRIEL, Des catégories abéliennes, Bul. Soc. Math. France 90 (1962), 323-448.
- J. L. GARCÍA HERNÁNDEZ AND J. L. GÓMEZ PARDO, Hereditary and semi-hereditary endomorphism rings, in "Ring Theory Proceedings, Antwerp, 1985," Springer-Verlag, Berlin/Heidelberg/New York, 1986.
- J. L. GARCÍA HERNÁNDEZ AND J. L. GÓMEZ PARDO, On endomorphism rings of quasiprojective modules, *Math. Z.* 196 (1987), 87-108.
- 9. J. L. GARCÍA HERNÁNDEZ AND J. L. GÓMEZ PARDO, Self-injective and *PF* endomorphism rings, *Israel J. Math.* 58 (1987), 324–350.
- 10. T. KATO, U-Distinguished modules, J. Algebra 25 (1973), 15-24.
- 11. T. KATO, Duality between colocalization and localization, J. Algebra 55 (1978), 351-374.
- 12. K. LOUDEN, Torsion theories and ring extensions, Comm. Algebra 4 (1976), 503-532.
- 13. B. MITCHELL, "Theory of Categories," Academic Press, New York, 1965.
- 14. B. J. MÜLLER, The quotient category of a Morita context, J. Algebra 28 (1974), 389-407.
- 15. K. OHTAKE, Colocalization and localization, J. Pure Appl. Algebra 11 (1977), 217-241.

- 16. K. OHTAKE, Equivalence between colocalization and localization in abelian categories with applications to the theory of modules, J. Algebra 79 (1982), 169-205.
- 17. T. ONODERA, Codominant dimensions and Morita equivalences, Hokkaido Math. J. 6 (1977), 169-182.
- 18. B. STENSTRÖM, "Rings of Quotients," Springer-Verlag, Berlin/Heidelberg/New York, 1975.
- H. TACHIKAWA AND K. OHTAKE, Colocalization and localization in abelian categories, J. Algebra 56 (1979), 1-23.
- 20. R. WISBAUER, Localization of modules and the central closure of rings, Comm. Algebra 9 (1981), 1455-1493.
- 21. J. M. ZELMANOWITZ, Endomorphism rings of torsionless modules, J. Algebra 5 (1967), 325-341.