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INTRODUCTION 

The use of category equivalences for the study of endomorphism rings 
stems from the Morita theorem. In a sense, this theorem can be viewed as 
stating that if P is a finitely generated projective generator of R-mod and 
S = End( RP), then properties of P correspond to properties of S through 
the equivalence between the categories R-mod and S-mod given by the 
functor Hom,(P, -). Generalizations of this theorem were given in [4, 51, 
In [S], P is only assumed to be finitely generated and projective, and 
Hom,(P, -) gives in this case an equivalence between S-mod and a 
quotient category of R-mod, while in [S] it is shown that if P is a finitely 
generated quasiprojective self-generator, then the equivalence induced by 
the same functor is now defined between the category a[P] of all the 
R-modules subgenerated by P and S-mod. 

Later on, other category equivalences were constructed, in an analogous 
way to those already mentioned, by replacing S-mod by a certain quotient 
category of S-mod. Thus, in [14] Morita contexts are used to obtain a 
category equivalence between quotient categories of both R-mod and 
S-mod for an arbitrary R-module M. On the other hand, if M is a 
C-quasiprojective module, then it is shown in [8 3 that the functor 
Hom,(M, -) induces an equivalence between quotient categories of o[M] 
and S-mod, and the latter quotient category coincides with S-mod when M 
is finitely generated. 

All the above constructions can be considered as particular cases of the 
following: if V is a locally finitely generated Grothendieck category and M 
is an object of V with S = End,(M), then the class of the M-distinguished 
objects of g (in the sense of [lo]) is the torsionfree class of a torsion 
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theory (T, F) of g and the functor Horn&M, -): %? + S-mod induces an 
equivalence between the quotient category of % modulo T and a certain 
quotient category (S, B)-mod of S-mod (Theorem 1.7). Moreover, this 
latter quotient category consists of all the S-modules if and only if M is a 
finitely generated quasiprojective object of %’ which is CQF-3 in the sense 
of [16]. In the first section of this paper, the properties of the foregoing 
construction are studied. 

On the other hand, Ohtake [16] considers a situation which is slightly 
different from ours: % is assumed to be a cocomplete abelian category with 
exact direct limits and the object M of 9? is supposed to be CQF-3. The 
above-mentioned class T is also, in this case, a torsionfree class corres- 
ponding to a cohereditary torsion theory (D, T). If M is codivisible with 
respect to this torsion theory, then another equivalence of categories is 
obtained between a co-Giraud subcategory of % and the quotient category 
(S, y-)-mod to which we referred in the preceding paragraph. In Section 2, 
we show that if M is CQF-3, then the full subcategory of V whose objects 
belong simultaneously to D and F is also equivalent to (S, g-)-mod 
(Proposition 2.1). Thus, if M is codivisible there are three different full 
subcategories of % which are equivalent to (S, 9)-mod. As a consequence, 
we give a short proof of [16, Theorem 2.51 for the case of % being a 
Grothendieck category (Proposition 2.7). 

Finally, the preceding results are applied in Section 3 to characterize 
the modules M such that the endomorphism ring S of M is a left 
semihereditary ring (Theorem 3.2), a left CS-ring (Theorem 3.5), or a left 
continuous ring (Proposition 3.7). This is done provided the module M 
satisfies certain conditions such as being weakly T-closed (this class of 
modules includes, for instance, all the M-distinguished and quasi-injective 
modules IV, the z-quasiprojective modules, the codivisible CQF-3 modules, 
or the quasiprojective and trace-accessible modules). 

Throughout this paper, all rings will be associative with 1 and all 
modules are left modules unless otherwise stated. A composition so t of 
morphisms will be written, alternatively (in particular, when dealing with 
endomorphism rings), as ts. However, if F and G are functors, then FG 
will always mean the composition F 0 G. The injective hull of a module N 
will be denoted by E(N). A submodule L of N is said to be essentially 
closed when L has no proper essential extension within N. On the other 
hand, if I is a left ideal of a ring R and a E R, (I: a) stands for 
{xERIxuEZ}. 

We assume that all functors between abelian categories are additive. A 
Grothendieck category %? is said to be locally finitely generated when it has 
a family of finitely generated generators. An object X of $? is called 
(C-)quasiprojective when for every finite (arbitrary) set Z and every 
epimorphism p: X(‘) + Y of 9?:, the induced morphism p* : Horn&X, X”‘) 
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-+ Horn&X, Y) is surjective. An object X of W is called CQF-3 [16] 
when for every epimorphism p: Y + 2 of %‘, the induced morphism 
p* : Horn&X, Y) -+ Horn&X, 2) is zero if and only if Horn&X, 2) = 0. 

Let M be an object of the Grothendieck category $5’. An object X of %’ 
is (~nitely) M-generated if it is an epimorphic image of a (unite) direct sum 
M(‘) of copies of M. For each X in V there is a greatest M-generated sub- 
object of X, which is the sum of all the M-generated subobjects of X, and 
will be denoted by X,. For V = R-mod, a module N is subgenerated by M 
if it is isomorphic to a submodule of an M-generated module and the full 
subcategory of R-mod whose objects are all the modules subgenerated by 
M is denoted by a[M]. This category is a locally finitely generated 
Grothendieck category [20]. 

Recall from the definition of a torsion theory in a Grothendieck category 
%Z [ 181 that a class T (resp., F) of objects of %? is said to be a torsion (resp., 
a torsionfree) class if it is closed under epimorphic images, extensions, and 
direct sums (resp., subobjects, extensions, and products). The torsion 
theory (T, F) is called hereditary (resp., cohereditary) when T is closed 
under subobjects (resp., F is closed under epimorphic images). The torsion 
radical associated to (T, F) will be denoted by t, (or t if the torsion class 
T is clear from the context). Unless otherwise stated, the torsion theories 
we consider in this paper are hereditary. A subobject L of an object X of 
%7 will be called T-saturated when X/L E F, and the T-saturated subobjects 
of X form a complete lattice which we denote by Sat,(X). If (T, F) is a (not 
necessarily hereditary) torsion theory and X is an object of %?, then X is 
called T-injective (resp., T-codivisible) if for each short exact sequence 
0 -+ L 1: Y 5 N+ 0 in V such that NET (resp., L E F), the induced 
homomorphism u*: Horn&Y, X) + Horn&L, X) (resp., p* : Horn&X, Y) 
-+ Horn&X, N)) is surjective. 

If (T, F) is a torsion theory in %:, the full subcategory of W determined 
by T is a localizing subcategory (in the sense of [6]) and thus there exists 
an associated quotient category ‘X/T, which is a Grothendieck category, 
with canonical functor a: W -+ c&IT, which is exact. a has a right adjoint 
i: %‘/T + %? which is full and faithful, and hence ‘iki/T can be identi~ed with 
a full subcategory of 48 consisting of all the objects X of %’ that are 
T-torsionfree and T-injective (these are called T-closed objects). The 
composition i 0 a: %? --, %? is usually known as the localization functor and 
I@ 1, + i 0 a will denote the associated natural transformation. For further 
details about localization in Grothendieck categories, we refer the reader to 
C6, 181. 

In the particular case ‘3 = R-mod, each torsion theory (T, F) is given by 
a Gabriel filter 9 of left ideals of R [ 18, VIS.l]. In this case, T will be 
replaced by F in our notation (e.g., we write P--injective, P-torsionfree, 
instead of T-injective or T-torsionfree), and the corresponding quotient 



ENDOMORPHISM RINGS AND EQUIVALENCES 185 

category will be denoted by (R, F-)-mod. Also, for a given module N, NF 
will stand for a(N) (or i 0 a(N)). 

1. TORSION THEORIES OVER ENDOMORPHISM RINGS 

Let R be a ring, M a left R-module, and S= End(,M), its endo- 
morphism ring. The question of how properties of M are related to 
properties of S has been studied in many papers, through the construction 
of equivalences between certain subcategories of R-mod and of S-mod, as 
stated in the Introduction. Amongst them, we single out the following: 
(1) the study of the derived context of an arbitrary module [14]; (2) if M 
is CQF-3 and codivisible, there is an equivalence of categories between 
full subcategories of R-mod and of S-mod [16]; (3) when M is a 
C-quasiprojective R-module, up to three different subcategories of R-mod 
are equivalent to a single full subcategory of S-mod [8, 93. Our aim in this 
section is to obtain a generalization of the foregoing constructions. 

DEFINITION 1.1. Let %? be a Grothendieck category and M an object of 
%. An object X of % is called M-distinguished if for any nonzero morphism 
f: Y + X there is a morphism g: M -+ Y such that fo g # 0. 

The preceding definition was given by Kato [lo] for the particular case 
of a category of modules. 

PROPOSITION 1.2. Let V be a Grothendieck category and M an object of 
V. The class F of M-distinguished objects is a torsionfree class of V. The 
corresponding torsion class T is the smallest (hereditary) torsion class of 
V containing all objects of the form XIX, for X an object of %. If U is a 
generator of W, then T is the smallest torsion class containing UJU,. 

Proof The fact that F is a torsionfree class is proved in a 
straightforward way. Analogously to [9, Proposition 1.11 one can then 
show that T is generated by all the objects of the form X/X,,,,. Finally, it 
is easy to see that for each X in %?, X/X, is a quotient of a direct sum of 
copies of UJU,, if U is a generator, from which the last statement of the 
proposition follows. 

From now on, we will assume in this section that a Grothendieck 
category QZ is given and M is a fixed object of %?, with S= End,(M), the 
endomorphism ring of M. The torsion theory of Proposition 1.2 will be 
denoted by (T, F) and its associated torsion radical by t, while 8 will stand 
for X/t(X). The quotient category W/T will be written WM. %‘,,, can be 
identified with the full subcategory of %? whose objects are all the T-closed 
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objects of %7. The canonical functor a: %? + %?,+, is exact and has a right 
adjoint i, which can be identified with the inclusion functor. These 
identifications will be assumed in the sequel. The canonical morphism 
$M: A4 + i 0 a(M) will be denoted by +. 

LEMMA 1.3. a(M) is a generator of qM. 

Proof Let h: M(Hom(M,X)) -+X be the canonical morphism for each 
T-closed object X in $7. Since Coker h E T, it follows from the exactness of 
the functor a and the fact that a commutes with direct sums that 
a(h): a(j#HWW + X is an epimorphism. 

Given an object X of a Grothendieck category d, let us put 
R = End,(X). By [ 13, Theorem VI.3.11, the functor Horn&(X, -) from & 
to R-mod has a left adjoint which we denote by XOR -: R-mod + &. If Z 
is a left ideal of R, then XI will denote the image of the canonical 
morphismX~,Z~XO,R~X.ThenitisclearthatXZ=~{Imcr~cr~Z}. 
Henceforth, we will use S’ to denote the endomorphism ring of a(M), S’ = 
End,,(a(M)) g End,(ia(M)). There is a canonical ring homomorphism 
p:S+S’ given by ,u(f)=a(f) (=ia(f)). 

PROPOSITION 1.4. The class F of all the left S-modules X such that 
ia OS* X is a torsion object of %? is a torsion class of S-mod. Zf $9 is the 
Gabriel filter on s’ corresponding to this torsion theory, then the functor 
H= Hom,(ia(M), -): %? + S’-mod induces an equivalence of categories 
between %‘M and the quotient category (S’, %)-mod. 

Proof By [ 18, Theorem X.4.1 1, the functor Hoi: gM + S-mod induces 
an equivalence of categories between gM and the quotient category 
(S’, %)-mod of S’-mod corresponding to a certain torsion theory (T’, F’) of 
S’-mod. Then, the composition of the localization functor from S-mod to 
(S’, Y)-mod followed by the equivalence is a left adjoint of H 0 i, thus it can 
be identified with a0 G, where G = ia(M) -: S-mod --* ‘6. Therefore a 
left S-module X is T’-torsion if and only if a(ia(M) OY x)) = 0, that is, if 
and only if ia OF X is a torsion object of 97, i.e., T’ = F. 

Note that the Gabriel filter 99 consists of all the left ideals Z of S’ such 
that ia(M)/ia(M)Z is a torsion object of +2. 

It is natural to ask under what conditions the category equivalence of 
Proposition 1.4 results in an equivalence between %?,,, and a quotient 
category of S-mod. To answer this, we will need the following lemma. 

LEMMA 1.5. Let Z be a left ideal of S. Then, M/MI is a T-torsion object 
of 9? tf and only tf s’p(Z) E 9. 

Proof Let h: M”’ -+ A4 be the unique morphism such that, for each 
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f~ Z, we have ho qf= S, qi : M -+ M(I) being the canonical injections. Then 
Im h = MI and we have an induced commutative diagram in 59: 

MC” -5 M 
*“i Iti 

ia( M)(‘) h’ ia 

where the existence of a unique h’ follows from the facts that ia is 
T-closed and Ker t,G(‘) and Coker II/(‘) are T-torsion objects. Then, h’ verifies 
h’ o q;= p(f), where the qi are the canonical injections from ia to 
ia(M) From this it follows that Im h’=,2{Im(Z@)) 1 FEZ} = 
ia S’,U(Z). Thus we obtain a unique morphism g: MI+ ia SIP(Z) 
such that Coker g is T-torsion (because it is a quotient of Coker $“‘) and 
the diagram 

O-MI-M - Coker h z MJMI F 0 

g * k 

1 1 1 
0 - ia( M) S’p(I) - ia - Coker h’ E ia( M)/ia( M) s’p( I) - 0 

is commutative with exact rows. Inasmuch as Ker $ and Coker I,$ are T- 
torsion, Ker k and Coker k are T-torsion as well, by the Ker-Coker lemma. 
Therefore, M/MI is T-torsion if and only if so is ia(M)/ia(M) S/p(Z), that 
is, M/MI is T-torsion if and only if S/p(Z) belongs to Y. 

We are now ready to prove the main result of this section. 

THEOREM 1.6. Let j: (S’, %)-mod + S-mod be the inclusion functor and 
u.+ : S-mod + S-mod the restriction of scalars functor. The following condi- 
tions are equivalent. 

(i) u* 0 j: (S’, Y)-mod + S-mod has an exact left adjoint. 

(ii) For each S-monomorphism L --+ N, the kernel of the induced 
morphism M Qs L + M OS N is a T-torsion object of %T. 

(iii) The class of all the left S-modules X such that MO, X is 
T-torsion is a (hereditary) torsion class of S-mod. 

(iv) 9 = {Ids S 1 M/MI is a T-torsion object of U} is a left Gabriel 
topology of s. 

Moreover, when these equivalent conditions hold, the functor Hom,(M, -): 
9? + S-mod induces an equivalence of categories between %,,,, and 
(S, 9)-mod, and s’ is the ring of quotients of S with respect to 9, S’ = S,. 
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PvooJ (i) =E- (ii) Since (S’, Q)-mod and qM are equivalent categories, 
the hypothesis implies that the functor ,u* 0 Hoi from %,,., to S-mod has an 
exact left adjoint. By using the fact that, for all objects X in qM, we have 
Horn~(i~(~}, i(~))~Hom~(~, i(X)), we see that the above functor is 
naturally equivalent to the composition %Z?,, -i+ % - S-mod. A ieft 

HomdM. 1 

adjoint to this composition is precisely S-mod M % ;: %?,. But, by (i), 

this functor is exact and hence, bearing in mind that a is also exact, we 
easily obtain that (ii) holds. 

(ii) =+ (iii) Since the class {XE S-mod 1 jMOsX is T-torsion) is 
always closed under extensions, direct sums, and ~pimorphic images, it is 
only left to show that it is closed for submodules. But this follows from (ii) 
in a straigh~orward manner. 

(iii) z- (iv) By hypothesis, {I& S 1 Ma3, (S/1) is T-torsion) is a left 
Gabriel topology [lg, Theorem VI.S.l]. Since i!40s (~/~}~~~~~, the 
result is clear. 

(iv)*(i) We first prove that h: S -+ S’ has F-torsion kernel and 
cokernel. Note that, as a left S-module, S’ may be identified with 
Hom,(M, ia(M Let then s E Ker ,u, so that Im s c t(M) and M/Ker s is 
a T-torsion object. Hence if I= Hom,(M, Ker s) then MI= (Ker s)~ and 
thus XE ,F and annihilates s. This shows that Ker b is F-torsion. Now, let 
s’ E s’ and consider the Cartesian square 

Since Coker /I is a subobject of Coker rfi, it is T-torsion. Let I be the left 
ideal of S consisting of all the endomorphisms of A4 factoring through @. 
Then we have that MI= fl(X,) and hence M/MZ is also T-torsion, because 
Coker /3z M/p(X) and X/X, are T-torsion. Thus 1~3 and, since p(S)= 
fffs’lf=$os, for some SE S), we see that Is’c,u(S), from which it 
follows that S/p(S) Y Coker p is an s-torsion module. 

We then proceed to show that s’ is .F-torsionfree. Let FGe= 
(I’<&” ( ,u-*(II)ES). We deduce from Lemma 1.5 that I’EF~ if and 
only if S’pp- ‘(1’) E 3. Then, clearly F-’ c 3, Conversely, let I’ E Y. Then 
I’/S’yp--‘(I’) is S-torsion as a left S-module and it follows from [ 12, 
Lemma 2.21 and the fact that F’c9 that it is also 8-torsion. It is then 
immediate by using again Lemma 1.5 that i’ E F”. Therefore, Q = Fe and, 
since s’ is Y3-torsionfree, we conclude from [ 12, Theorem 2.53 that s’ is 
also 9-torsionfree as a left S-module. 

Let S, be the ring of quotients of S, (b: S+ SF the canonical 
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homomorphism. Then, due to the facts that p has torsion kernel and coker- 
nel and S, is %-closed, 4 factors uniquely through p, in the form 4 = 0 0 p. 
Since S’ is %-torsionfree, we have that Ker p = tiP(S) = Ker 4, so that, 
bearing in mind that p(S) is essential in S’, we obtain that cr is a 
monomorphism. In fact, it is easy to see that (r is also a ring 
homomorphism, so that there is an exact sequence of S-modules 
04’~s~ -+ T + 0, where T, being an %-torsion S-module, is also 
$-torsion by [12, Theorem 2.51. Inasmuch as S’ is s-closed, T must be 
zero and (J is an isomorphism. Then p: S + S’ can be considered as the ring 
of quotients of S with respect to 9 and thus the functor p* oj from (S’, g)- 
mod to S-mod has an exact left adjoint [18, p. 2171, proving (i). 

When these equivalent conditions hold, then, as we have just seen, 
9 = %-’ and the quotient category (S, %)-mod consists exactly of the 
F&closed S-modules, viewed as left S-modules. Therefore, by Proposi- 
tion 1.4, the funtor Horn&M, -): q + S-mod induces an equivalence of 
categories between g,,,, and (S, %)-mod. 

Next we show that the conditions of Theorem 1.6 do hold under fairly 
general hypotheses. 

THEOREM 1.7. If W is a locally finitely generated Grothendieck category, 
then the jiinctor Horn&M, -): %? + S-mod induces an equivalence of 
categories between WM and (S, %)-mod, 9 being the left Gabriel topology 
{I<, S 1 M/MI is T-torsion}. 

ProoJ: It will be enough to prove that % is indeed a left Gabriel 
topology on S, and then use Theorem 1.6. In order to do this, we only 
need to show that 9 satisfies the following two properties (see [ 18, 
Lemma VI.5.21): 

T3. (I: s) E % for every s E S and every IE %. 

T4. If (I: s) E % for every s E J, with JE %, then ZE %. 

As a consequence of the fact that {XE S-mod 1 MO, XE T} is always 
closed under extensions, direct sums, and quotients, property T4 is deduced 
in an entirely similar way to [ 18, Theorem VI.5.11. To show that property 
T3 holds, let us consider for each object X of q the following S-submodule 
X* of Horn&M, X), X* = {f: M + Xl there is X0 4 X, X0 finitely 
generated, and Im f E X0}, and the morphism 4: MCx*) + X such that 
#oq,-=J for every f EX*, qf: M + MCx*) being the canonical injections. 
Since X is the direct union of its finitely generated subobjects (because w  
is locally finitely generated), it is not hard to prove that Coker 4 is a 
quotient of a direct sum of objects of the type N/N,, where N ranges over 
all the finitely generated subobjects of X. Consequently, Coker 4 is a 
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T-torsion object of V. Now, let ZE $r and s E S, and let a: M(‘) + M be such 
that u 0 q,-=f, for every f E I. Consider then the Cartesian square 

X-M 
B 

” 

I I 

s 

M(I)--, M 

where Coker c1 g M/MI is T-torsion and thus so is Coker /? z M/p(X). Let 
X* and 4 be as before; then X*/I = ( /I 0 f 1 f E X*} = J is a left ideal of S 
and MJ= /?(Im 4) is such that M/MJ is T-torsion, because, as we have just 
seen, Coker 4 is T-torsion. On the other hand, it is easy to see that if 
gEJs=X*ooz(={aovof IfEX*}), then there exist a finite subset FGZ 
and a morphism g’: A4 + McF) such that g = a 0 u 0 g’, U: McF) --$ M(‘) being 
the canonical morphism. If we denote by q; : M + McF) and p; : McF) + M 
the canonical injections and projections for each f in F, we have g = 
a 0 uo (C,q;o pi) 0 g’ = C,(cro qr) 0 (pi0 g’) = C,f ass, where sr= ~$0 g’ E S. 
Thus g = C,s,-f E Z, hence Js E Z and JE (I: s) from which property T3 
follows. 

EXAMPLES 1.8. (a) Let R be a ring and V = R-mod, so that M is a left 
R-module. Then (T, F) is in this case the torsion theory of R-mod deter- 
mined by the trace T, of Mon R (T,=C{Imrx 1 aEHom,(M, R)}) and 
the corresponding quotient category VM coincides with the category %R in 
[ 141. By Theorem 1.7, the functor Hom.(M, -): R-mod + S-mod induces 
an equivalence between %R and (S, g))-mod. This equivalence is also 
obtained as a consequence of [14, Theorem 31. 

(b) Let A4 be a left R-module and take W = a[M], the category of all 
the left R-modules subgenerated by M [20]. Then the torsion theory (T, F) 
is just the torsion theory of a[M] given in [9, Proposition 1.11. The 
quotient category in this case was denoted therein by %[M] and it is 
equivalent to (S, F))-mod, since a[M] is a locally finitely generated 
Grothendieck category. The T-torsionfree modules of a[A4] are called 
M-faithful modules. 

Some corollaries of the above results are worth mentioning. 

COROLLARY 1.9. Let M be a left R-module and S= End(,M). Then for 
each monomorphism L + N in S-mod, the kernel of the induced 
homomorphism M Qs L + M Qs N is a torsion R-module in the theory 
determined by the trace ideal T,+, of M in R. 

COROLLARY 1.10. Let M be a left R-module, S = End( RM), and N an 
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M-faithful module. Then Hom,(M, N) is an injective left S-module if and 
only if N is M-injective. 

Proof: This is obtained from [9, Theorem 2.11, by removing the condi- 
tion that all canonical homormorphisms MO, I + M have torsion kernel, 
since we know by Theorem 1.7 that this is indeed the case. 

COROLLARY 1.11. Let V be a locally finitely generated Grothendieck 
category and let us assume that M is M-distinguished and S is left non- 
singular. Then the endomorphism ring of the injective hull of M is isomorphic 
to the maximal left ring of quotients of S. 

ProoJ If M is T-torsionfree, then the injective hull of M, E(M), coin- 
cides with the injective hull of a(M) in the category VM [6, Proposi- 
tion 111.61. Thus, in the equivalence of Theorem 1.7 it corresponds to the 
injective hull of SF, which is precisely E(S), because S is %-torsionfree. 
The endomorphism rings of these two corresponding objects are then 
isomorphic and, since S is left nonsingular, each of them is isomorphic to 
the maximal left ring of quotients of S. 

Note that, in particular, if M satisfies the hypotheses of [21, 
Theorem 2.23, then M is clearly M-distinguished in R-mod and S is 
left nonsingular, so that [21, Theorem 2.2(ii)] can be deduced from 
Corollary 1.11. 

Since we want to study properties of S by using the category equivalence 
of Theorem 1.7 it will be interesting to determine when the canonical 
homomorphism p: S + S’ is an isomorphism, for, in this case, S is 
an object of (S, Y)-mod. To accomplish this, we need the following 
definitions. 

DEFINITION 1.12. M will be called weakly M-distinguished if the follow- 
ing two conditions are verified: (i) Horn&M, t(M)) = 0; and (ii) for every 
morphism f: M + A? there exists an endomorphism s of M such that 
p 0 s = f, where p: M + li;i is the canonical projection. 

It is clear that M is weakly M-distinguished if and only if the canonical 
ring homomorphism S--t End,(A) is an isomorphism. 

DEFINITION 1.13. Let X be an object of $?. X will be called T-M- 
injective if for each exact sequence 0 +LsM+C+Osuchthat CisaT- 
torsion object of %, the canonical homomorphism u*: Horn&M, X) + 
Horn&L, X) is a surjection. 

Finally, let us call M weakly T-closed when M is weakly M-distinguished 
and ii;i is T-M-injective. We have: 

4X1:127 I-I? 
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PROPOSITION 1.14. p: S -+ s’ is an isomorphism if and only if M is 
weakly T-closed. 

Proof. Since the canonical morphism $: M + ia factors in the form 
M 5 &? 5 ia( where j= 1(/@ is a monomorphism, it is clear that if 
,u: S -+ s’ is an isomo~hism, then S + End( R&?) is also an isomorphism. 
Thus, all we have to prove is that, under the assumption that M is weakly 
M-distinguished, &? is T-M-injective if and only if a(M) c A for every 
a E S’. So, let &.? be T-M-injective and c( E S’. Then, let f = ~10 tl/: M + ia 
and L =f-‘(ii3). It is clear that M/L is T-torsion and hence there exists 
h: M --) li;i such that the restrictions to L of h andfcoincide. By composing 
h with j we have that jo h - f vanishes on L. Since M/L ET and ia E F, 
this implies that jo h =A so that Imf = cr(fi) E L? Conversely, assume that 
this last condition holds for each a E S’ and let 0 + Z. -% M + C + 0 be an 
exact sequence with CE T. If f: L + H is a morphism of g‘, then 
jo$ L + ia induces g: M -+ ia with gou=jof, by the T-i~jectivity 
of ia( By hypothesis, since ia( g) E s’, there exists an endomorphism h 
of 2i;i such thatjoh=ia(g)oj. Thenj~h~p~u=ia(g)~j~p~u=g~u=j~f, 
which gives h 0 p 0 u = f, because j is a monomorphism. Thus h 0 p: M -+ ji? 
is an extension off to M and n;i is T-M-injective. 

Remarks 1.15. (a) If M is a left R-module and ‘% = a[ M], then M is 
weakly T-closed if M is quasi-injective and M-faithful in the sense of [9]. 
On the other hand, if M is a CQF-3 object of the ~rothendieck category 
Q?:, then M is weakly T-closed if and only if condition (ii) in ~e~nition 1.12 
holds; this happens, for instance, if M is quasiprojective. In particular, all 
projective objects are weakly T-closed. 

(b) Note that M can be a CQF-3 object of c$ without being weakly 
T-closed. For instance, let R be the ring ( i ft) of upper triangular matrices 
over a field k, N= (i t), L = (E i) left ideals of R, U = R/L, and 
M = N @ U, Take %? = R-mod. Then the trace of M on R is N, so that M 
is trace-accessible, hence CQF-3. But Hz U@ U and it is easy to see that 
the homomorphism f: M -+ iGi which is zero over N and takes 1 E C7z k to 

- 
the pair (eZ2, 0) (where e 22 = (z y)) cannot be lifted through the projection 
p: M-, Kf, so that M is not weakly M-distinguished. 

On the other hand, if M is weakly T-closed it need not be CQF-3. An 
example of this is obtained by taking a left self-injective ring A and an 
idempotent two-sided ideal Z of A such that the right annihilator of I in A 
is zero (for instance, we could take A to be an infinite product of copies of 
a field k,A=n,k,, with kj=k for alljE.Z, and Z= eJkj). Then let R be 
the ring of upper triangular matrices R = (,” 2) and M be the two-sided 
ideal of R, M = (6 t f. Then, M is not trace-accessible, since M2 = (6 i) = N 
and the torsion theory (T, F) of R-mod associated to A4 is just the torsion 
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theory whose Gabriel filter consists of all the left ideals of R containing N. 
Hence M is M-distinguished, as N does not annihilate any nonzero element 
of R, and it is not CQF-3. To see that M is weakly T-closed, it is only left 
to show that it is T-M-injective. If we call N, = (i i), N, = (“, f), and 
N, = (“, :), then M = N, 0 N2, NN, = N, , NN2 = N3. Thus it will suffice to 
prove that each homomorphism h: N, + N, can be extended to an 
endomorphism of N,. But an easy computation shows that, since A is left 
self-injective, this is indeed the case. 

(c) It may happen that M is weakly T-closed as an object of a given 
category, but not when M is considered as an object of another category. 
For example, let M be a simple left R-module which is not isomorphic 
to a left ideal of R. Then, the trace of M on R is zero, so that when one 
takes q = R-mod, then S’ is the zero ring. But if q = o[M], then M is a 
generator of V and hence ia = M and S’ = S. However, the converse 
situation cannot occur, that is, if M is weakly T-closed as a left R-module, 
then M has the same property when considered as an object of a[M]. This 
is shown in the next proposition. 

PROPOSITION 1.16. Let A4 be a left R-module. Zf M is weakly M-dis- 
tinguished (resp., weakly T-closed) in R-mod, then M is weakly 
M-distinguished (resp., weakly T-closed) in a[M]. 

Proof: Let (T, F) be the torsion theory of a[M] associated to M and 
(T,, F,) the torsion theory of R-mod associated to M, and let t, t,,be the 
corresponding radicals. Since each module belonging to F, and a[M] is 
clearly in F, we have that each module of T belongs to T1. Therefore, 
t(M) E t,(M). Now, if M is weakly M-distinguished in R-mod, then 
Hom,(M, t,(M)) = 0, so that t,(M) ET and t,(M) = t(M). Thus it follows 
that M is also weakly M-distinguished in a[M]. The latter assertion is now 
immediate. 

This result suggests that in order to study the endomorphism ring of a 
left R-module M by using the equivalence of categories given in 
Theorem 1.7 it is preferable to take V = a[M] than q = R-mod. 

When % is the trivial topology {S}, then S-mod is equivalent to a 
quotient category of V. We study next when this is the case. 

THEOREM 1.17. Let V be locally finitely generated and % the filter 
{I<, S 1 MjMZ is T-torsion}. Then 9 is the trivial filter % = (S} if and 
only if M i8 a finitely generated quasiprojective and CQF-3 object of %?. 

ProoJ Let us assume that % = {S}. If f: M + N is an epimorphism and 
N is a nonzero T-torsion object, then X= Kerf 5 M satisfies that M/XE T. 
Consider Z = Horn&M, X) as a left ideal of S. Then MI = X, and so M/MI 
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is T-torsion, so that ZE p;“, which is a contradiction because I# S. This 
shows that T= {XEO~(W) 1 Horn&M, X) =0} and thus M is a CQF-3 
object of %. 

To show that M is finitely generated, we take (M, > ie I a directed family 
of subobjects of M with M= XI M,. It is strai~tforward to see that a(M) 
is the direct union of the a(M,) in gM; from the equivalence of categories 
between gM and S-mod and the fact that a(M) corresponds to S in this 
equivalence, we get that a(M) is finitely generated (and projective) in gM 
and hence a(M) = a(Mi) for some i E I. This implies that M/M, is T-torsion 
and, since M is CQF-3, one has M= Mi, from which we see that A4 is 
finitely generated. 

Let now p: M+ N be an epimorphism and f: M -+ N an arbitrary 
morphism. By the exactness of the functor a and the projectivity of a(M) 
in qM, we obtain a morphism h: a(M) + a(M) such that a(p) 0 h = a(f). 
Since in this case M is, clearly, weakly T-closed, we have k = a(g) for some 
g: M-+ M. Then a(po g) = a(f) and thus Imfpo g-f) is T-torsion. But 
Im( p 0 g - f) is a quotient of M, and hence zero. Therefore p 0 g = f and A4 
is quasiprojective. 

Conversely, let us suppose that M is CQF-3, finitely generated, and 
quasiprojective. As seen in Remark 1.15(a), it4 is weakly T-closed. Further- 
more, it is easy to see, by using [lS, Lemma V.3.3; 1, Proposition I.1.81, 
that M is C-quasiprojective. On the other hand, since M is CQF-3 we have 
that for a left ideal Z of S, i%f/‘h4Z~ T if and only if M= MZ, that is, 9 = 
(Ids S 1 MZ= M). Let ZEN and take p: M(‘)-+ M to be such that 
PO qr=f for every f~ Z, the qy being the canonical injections. The assump- 
tion that Zrz9 implies that p is an epimorphism, and hence it splits, 
because M is C-quasiprojective. Since M is finitely generated, it follows 
that there exists a finite subset FcZ such that the canonical morphism 
p’: McF) + M is a split epimorphism. Then 1 M = p’ 0 u = p’ 0 (C,q+ g,) = 
zt,,.f~g,=C,g~f~Z, where~:M+M~~‘inducesg~:M-+Mforeachf~F, 
and 4): M + McF) are the canonical injections. Thus Z= S and 9 = (Sj. 

Remark 1.18. If in Theorem 1.17 we drop the assumption of M being 
CQF-3, then the result is no longer true, as the example of a simple module 
in Remark 1.15(c) shows. 

The preceding result is reminiscent of that of Fuller [S, Theorem 1.1 f 
stating that if a full subcategory W of R-mod which is closed under sub- 
modules, quotients, and direct sums is equivalent to a module category 
S-mod, then there is a left R-module M such that Sg End(,M) and M is 
a finitely generated and quasiprojective self-generator. In order to better 
study this connection we prove the following result. 

THEOREM 1.19. Let S be a ring and %T a G~of~e~~ieck category with a 
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projective generator. Assume that (T,, F,) is a torsion theory in %2 such that 
T,, is closed under products and let 9 be a left Gabriel filter on S such that 
S is g-closed. Zf F: %7/T, + (S, 9)-mod is an equivalence of categories, then 
there exists an object M of %? such that: (T,,, F,) is the torsion theory (T, F) 
of % associated to M, Sr End,(W), F is naturally equivalent to the restric- 
tion to the subcategory %/TO of the functor Horn&D, -): +? -+ (S, y))-mod, 
and B = {Ids S 1 i@Z= n}. 

Proof For each object X of %?, take d(X) = (7 { YE X 1 X/Y E T,}. Since 
T,, is closed under products, we have that d is an epi-preserving preradical, 
X/d(X) ET,, and Horn&d(X), Y) = 0 for every YET,. Let U be an object 
of %/To such that F(U) z SE SF. Then End,(U) = End,,,( U) g 
End,(S) = S. It follows easily that the functor F is naturally equivalent to 
Hom,( U, -) z Horn,,,& U, -) f rom %?/T, to (S, P)-mod. Let L = d(U) and 
XE F,: we claim that X/X, ET,, i.e., d(X) E X,. By using the fact that U 
is a generator of g/To, we obtain a morphism q: U(r) + a’(X) (where 
a’: %? + g/T,, is the canonical functor) which has a T,-torsion cokernel. 
Since a’(x)/x is T,-torsion, we have that U”‘/qq’(X) is also To-torsion 
and hence d( UC’)) = L(‘)c q-‘(X) [l, Lemma 3.7.11. On the other hand, if 
q’: q- ‘(X) + X is the restriction of q, then we have an exact sequence 0 + 
(xn Im q)/Im q’ + X/Im q’ + a’(x)/Im q. Now, (X n Im q)/Im q’ is a sub- 
object of Im q/Im q’ which, in turn, is a quotient of U”‘/qq’(X) and hence 
it is To-torsion. Since the third member of the sequence is also T,-torsion, 
we get that x/Im q’ ET,,. But the fact that qql(X)/L”’ is To-torsion implies 
that Im q’/q’( L”‘) E T, and, consequently, X/q’(L”‘) is T,-torsion. Then 
d(X) E q’( L”)) s X,, establishing the claim. 

Note that, by [ 18, Theorem X.4.11, the category % is equivalent, via the 
exact functor Horn&G, -): %? + A-mod (where G is a projective generator 
of V and A = End,(G)), to a Giraud subcategory of A-mod, and hence the 
objects, morphisms, and exact sequences of %? may be considered as being 
in A-mod. Now, let Z= Horn&L, G/t,,(G)) and for each i E Z, consider the 
Cartesian square 

I 
x 

I 
P 

L i G/t,(G) 

where p is the canonical projection. Then fi is an epimorphism, with 
To-torsion kernel. Let M be the limit of the morphismsfi from Xi to L, so 
that there are morphisms gi: M-r Xi such that fro gi is a fixed h: M+ L. 
Considering the above diagrams as in A-mod, we see that every fi is an 
epimorphism and therefore h is also an epimorphism. Furthermore, Ker h, 
being a product of To-torsion objects, is T,-torsion, so that there is an 
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exact sequence 0 -+ K -+ MT-+ L + 0, with KET~. If Q): L(l) + G/t,(G) is 
induced by the in Z, then Coker #ET,, by our previous claim. Thus we 
have induced morphisms h’: M”’ + L(‘) and g: M(I) -+ G such that h’ is an 
epimorphism and # 0 h’ = p 0 g, from which it follows that Coker(p o g) g 
G/Im g + t,(G)) ET, and hence G/Im g E T, and G/G, ET,. Let (T, F) be 
the torsion theory of %’ associated to M. By Proposition 1.4, TET,. Since 
clearly M can be assumed to verify d(M) = M, we have also that T, E T 
and thus (T, F) = (T,, F,). 

On the other hand, note that R= L and a’(M) 2 U, so that the functor 
Horn&U, -): V/T,, + (S, F))-mod is naturally equivalent to Horn&M, -): 
%?7TT, --+ (S, g))-mod and hence this functor is equivalent to F. Besides, 
Hom,(L, U/L) = 0 implies that Sz End,(U) g End,(L) = End,(M). The 
linal assertion of the theorem follows from the fact that li;i has no nonzero 
torsion quotients, along with Theorem 1.6. 

Remark 1.20. It follows from the proof of the theorem that the condi- 
tion of %? having a projective generator may be replaced by either the exist- 
ence of a T,-torsionfree generator of %’ or the condition that g is equivalent 
to a quotient category (R, X)-mod such that # is the left Gabriel filter of 
the ring R generated by an idempotent ideal. In the first case, M = L = ii;i 
and Sz End,(M). To complete the proof in the second case, note that, 
with the notation used above, Im h = n (Imfi 1 ieZ} in R-mod, so that h 
is also an epimorphism of V. 

On the other hand, if we delete the hypothesis of T, being closed under 
products, then the result is no longer true, as the example of [lo, 
Example 51 shows. Finally, the assumption of S being p-closed is not 
restrictive, because in the general case a similar result to that of the 
theorem holds with S.F instead of S. 

COROLLARY 1.21. Let W be a Grothendieck category with a projective 
generator and T, a torsion class of % which is closed under products. Assume 
that there is an equivalence F: VfI’* + S-mod for some ring S. Then there 
exists an object M of 9 such that M is a finitely generated, ~u~iproje~tive, 
and CQF-3 object of%?, F is naturally e~uivaient to the functor Hom,(M, -): 
%/To -+ S-mod, S s End,(M), and T, = (X 1 Horn&M, X) = 0 >. 

Proof: It follows from Theorem 1.19 and the proof of Theorem 1.17. 

2. CQF-3 OBJECTS 

We keep the notations and general setting of the preceding section. As 
stated earlier, M is CQF-3 if and only if for every object X in %?, XE T if 
and only if Horn&M, X) = 0. In particular, T is, in this case, closed under 
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products and hence T is also a torsionfree class for a (not necessarily 
hereditary) torsion theory. However, T may be closed under products 
without M being CQF-3, For instance, if ‘X= R-mod, then T is closed 
under products if and only if the trace ideal T, of M on R is idempotent 
[18, Proposition VI.6.123, while M is CQF-3 if and only if T,M = A4 (see 
[ 161) and thus if T,% =0 and Mf 0, then T is closed under products but 
M is not CQF-3. 

Suppose that T is closed under products and let (D, T) be the corre- 
sponding cohereditary torsion theory. d will denote the associated radical, 
which is epimorphism-preserving [ 15, Lemma 1.81. Let VD, be the full 
subcategory of %? whose objects are precisely those which belong 
simultaneously to D and F. Then we have the following result. 

PROPOSITION 2.1. Let T bt, closed under products. Then rhe f~nc~~~ 
%?D, + %M given by X-+ a(X) is an equivalence of categories with i~uerse 
defined by Z -+ d(Z). 

ProojI It is an easy exercise to verify that if X is in VD,, then 
d(a(X))=X, and if Z is in wM, then a(d(Z))rZ. 

We are going to show next that the study of weakly T-closed objects M 
reduces to that of weakly T-closed CQF-3 objects M, when T is assumed 
to be closed under products. 

PROPOSI~ON 2.2. If T is closed under prodgets, then d(M) is. CQF-3. 
Moreover, if M is weakly T-closed, then d(M) is weakly T-closed and 
End&d(M)) E End,(M). 

ProojI Take X in D. The canonical morphism M(Hom(M,X)) + X is an 
epimorphism (because its cokernel must belong to both T and D) and 
hence it induces an epimorphism d( M)(H”m(M,X)) -+ X = d(X). This proves 
that D consists precisely of all the objects generated by d(M), so that d(M) 
is CQF-3 [16, Lemma 2.21. On the other hand, in view of the facts that 
ad(M) g a(M) and ~/d(M) is T-torsion, we have End~(d(M)) g S g S’ r 
End~(a(d(~})), thus showing that d(M) is weakly T-closed. 

According to [19, Theorem 1.81, if M is CQF-3 and %’ has enough 
projectives, then every object X of %’ has a colocalization with respect to 
(D, T) (that is, a morphism f: Q -+ X such that (2 is D-codivisible, QED, 
and Kerf and Cokerf are in T). In fact, if M is CQF-3 and has a colo- 
calization f: Q + M, then every object of %? has a colocalization (by the 
same argument of the proof of [ 16, Theorem 2.6(i) =+ (ii)]). Now, we will 
see that if we want to study endomorphism rings of CQF-3 and weakly 
T-closed objects M such that M has a colocalization, we may already 
suppose that M is D-codivisible. 
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PROPOSITION 2.3, If M is CQF-3 and f: Q + M is a colocalization of M, 
then Q is also CQF-3 and Q is weakly T-closed. Moreover, tf M is weakly 
M-distinguished, then End,(Q) g S. 

Proof. Since M is Q-generated and QED, it is clear that D consists of 
all the Q-generated objects of %??, so that Q is CQF-3 [16, Lemma 2.21. Q 
is weakly T-closed, because it is D-codivisible. Also, a direct argument 
shows that li;rg Q and End,(Q) 2 End,(M). Therefore, if M is weakly 
M-distinguished, then clearly End,(Q) z S. 

Let us assume that T is closed under products. We denote by gM the full 
subcategory of GF? whose objects are all the D-torsion and D-codivisible 
objects of V. It is shown in [19] that, if every object of V has a colocaliza- 
tion with respect to (D, T), then the inclusion functor u: gM --t %? has an 
exact right adjoint c, which assigns to each object X of V its colocalization 
object. Moreover, we recall the following result, which was proved in [ 19, 
Proposition 4.43. 

PROPOSITION 2.4. Assume that T is closed under products and that each 
object of % has a colocalization with respect to (D, T). Then, the restrictions 
to %M and %M of the functors c and a, respectively, are inverse equivalences 
of categories between WM and V”. 

If, in particular, M is CQF-3 and D-codivisible, then the hypotheses of 
Proposition 2.4 are fulfilled. In this case, an easy check shows that the 
category w:M consists of all those objects X of GF? such that there exists an 
exact sequence of the form M(‘) -+ McJ) + X -+ 0. These are precisely the 
objects which have M-codominant dimension 22, according to the 
terminology of [ 173. 

Under the hypotheses of Proposition 2.4, we have that each of the 
categories %YM, q”, and %?D, is equivalent to (S, F)-mod. With an 
additional assumption, we obtain up to six equivalent categories, as shown 
below. 

PROPOSITION 2.5. Assume that %Z is a locally finitely generated Grothen- 
dieck category with a projective generator U and that the object M is such 
that T is closed under products. Let J be the left ideal of S consisting of ail 
the endomorphisms f of M which factor in the form f = ho g, where 
h: u” -+ M and g: M + U” verify that Im h c d(M) and Im g is contained in 
a finitely generated subobject U’ of U”. Then, the left Gabriel filter F of S 
consists of all left ideals I such that JS I. 

Proof: The same methods used in the proof of Theorem 1.7 show, in 
this case, that JEW. On the other hand, if ZEF, then there is M’ such 
that d(M) c M’ G M and an epimorphism K: M(t) + M’, with f = n 0 qr for 
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each fE Z (where, as usual, qr are the canonical injections). If LX E J, M: = h 0 g, 
with Im h E d(M) c M’, and Im g 5 U’, U’ being a finitely generated sub- 
object of some U”. The projectivity of U” implies that h: U” + M factors 
through x, and it is then clear that c( factors through some canonical 
injection MCF) + MC’) F being a finite set, from which it follows that a E I. 
Therefore, B = {ZGs’S 1 JcZ}. 

By Proposition 2.5, J is an idempotent two-sided ideal and the torsion 
theory of S-mod associated to J verifies that its torsion class is closed 
under products and that each object of S-mod has a colocalization [19, 
Theorem 1.83. Thus the quotient category (S, F)-mod is equivalent, by 
Propositions 2.1 and 2.4, to the full subcategories of S-mod consisting of: 
(i) the J-generated F-torsionfree S-modules; and (ii) the J-generated and 
codivisible S-modules (this latter category is the category ,V of [ll]). 
Thus we have the following corollary. 

COROLLARY 2.6. In the hypotheses of Proposition 2.5, the following six 
categories are equivalent. (i) %&, (ii) w”, (iii) VD,, (iv) (S, y))-mod, 
(v) J%?, and (vi) the category of all J-generated and 9-torsionfree left 
S-modules. 

When one takes a ,Gquasiprojective module A4 and %’ = a[M] then we 
have in particular [9, Theorem 1.33. On the other hand, the equivalence 
between %FM and (S, F)-mod is given in [ 16, Theorem 2.51 under the 
more general assumption that V be a cocomplete abelian category with 
exact direct limits. In fact, [ 16, Theorem 2.51 identifies also the colocaliza- 
tion and localization functors c and a. This we do now in a shorter way 
(j and b below denote the inclusion functor from (S, 9)-mod to S-mod 
and its left adjoint, respectively). 

PROPOSITION 2.7. Zf A4 is CQF-3 and D-codivisible, then the colocaliza- 
tion functor u oc: %? + %? is equivalent to the composition of the functors 
H = Hom,(M, -): V + S-mod followed by G = M@s -: S-mod -+ V. On the 
other hand, the localization functor j 0 b: S-mod + S-mod is equivalent to the 
composition H 0 G. 

Proof. By Propositions 1.4 and 2.4, and the fact that S’ ES in this 
case, we see that the functor Z? gM + (S, F)-mod given on objects by 
F(Z) = Horn&M, iau(Z)) is an equivalence, whose inverse is given 
by F’: (S, F-)-mod -+ V”, with F’(X) =c(MOs X). Thus for each 
object Z of VM one has a canonical isomorphism between Z and 
c(M@, Horn&M, iau(Z))). But it follows from the fact that ii4 is CQF-3 
and D-codivisible that Horn&M, iau(Z)) = Horn&M, u(Z)) and that 
MOs Y belongs to gM for every s Y (because it has M-codominant dimen- 
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sion 22) so that u(Z)gM@, Hom,(M, u(Z)). This gives that, for each 
X in %‘, UC(X) z MOs Horn&M, UC(X)). But again the conditions on M 
clearly imply that Horn&M, UC(X)) z Hom,(M, X), so that there is a 
natural isomorphism M OS Horn&M, X) z UC(X). 

To prove the second part of the proposition, note that one can easily 
show that the equivalence of Theorem 1.6 gives in this case that for 
each object X of (S, S)-mod there is a canonical isomorphism 
xgHom,(M, M@,X). It follows that if M is CQF-3 and weakly 
T-closed, the localization functor assigns to each left S-module Y the 
S-module Horn&M, ia(M@, Y)). The D-codivisibility of M now implies 
the result. 

3. APPLICATIONS TO THE STUDY OF ENDOMORPHISM RINGS 

In this section M will be a left R-module, S = End( RM). As suggested by 
Proposition 1.16, we shall take %?= e[A4] from now on. We need the 
following definition, due to Brodskii [2]. 

D~~NITION 3.1. A left R-module h4 will be called intrinsically projec- 
tive when for every natural number n and every epimorphism p: M” -+ L, 
where L is a submodule of M, the induced homomorphism 
p*: Hom,(M, M”) --f Horn&J, L) is surjective. 

From [2, Lemma 21 ‘it follows that M is intrinsically projective if 
and only if every finitely generated left ideal Z of S verities 
I= {f~ S 1 ImSEMZ}, so that Z can be identified, in this case, with 
Hom,(M, MI). We have the following result. 

THEOREM 3.2. IA M be a Ieft R-module which is weakly T-closed as an 
object of GEM]. The following conditions are equivalent. 

(i) S is Ieft semihered~tary. 

(ii) M is intrinsically projective and for every finitely M-generated 
submodule N of M, h40s Horn&V, N) is a direct summand of Ad” for some 
integer n. 

(iii) M is intrinsically projective and for every finitely M-generated 
s&module N of-M there exists an exact sequence 0 + K + L + N -+ 0, where 
K is T-torsion and L is a direct summand of M” for some integer n. 

Proof. (i) =- (ii) By hypothesis, every finitely generated left ideal Z of 
S is a direct summand of some S’ and hence Z is F-closed, in view of 
Proposition 1.14. By [ 18, Proposition 1X.4.21, I is F-saturated in S. Now, 
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if J= Hom,(M, MI) < S, we have a commutative diagram with exact rows 
and columns 

M@,Z--+ MO, J- MOs (J/Z) - 0 

o- MI MI-0 

I I 
0 0 

By the Ker-Coker lemma, Ker g E MO, (J/Z) is isomorphic to a quotient 
of Kerf, which is T-torsion by Theorems 1.6 and 1.7. Therefore, J/Z is 
F-torsion and hence J= Z, because S/Z is %-torsionfree. This means that 
A4 is intrinsically projective. 

Let now M” 5 N + 0 be exact, with N a submodule of M. Inasmuch 
as A4 is intrinsically projective, we have that p*: Hom,(M, M”) + 
Hom,(M, N) is surjective. Since Hom,(M, N) is a finitely generated left 
ideal of S, we have that p* splits. By tensoring with M we get that 
MO, Hom,(M, N) is a direct summand of MO, Hom,(M, M”) 1 M”. 

(ii) = (iii) If N is a finitely M-generated submodule of M, then the 
canonical homomorphism 4: MO, Hom,(M, N) + M verifies that Ker 4 is 
T-torsion, by Theorems 1.6 and 1.7, Im 4 = N, and MO, Hom,(M, N) is 
a direct summand of M” for some n. 

(iii) = (i) Let Z be a finitely generated left ideal of S. By (iii) there is 
an exact sequence 0 + K + L -+ MI+ 0, where K is T-torsion and L is a 
direct summand of M”. Since Hom,(M, t(M)) = 0 by the hypothesis, 
Hom,(M, t(M”)) =0 and hence Hom,(M, K) = 0. On the other hand, 
taking into account that A4 is intrinsically projective, Hom.(M, L) + 
Hom,(M, MI) is an epimorphism and, in fact, an isomorphism. 
Since Hom,(M, L) is a direct summand of Hom,(M, M”) z S”, Z= 
Hom,(M, MI) is a projective left S-module. 

COROLLARY 3.3. If M is T-M-injective and M-distinguished in a[M], 
then S is left semihereditary if and only if M is intrinsically projective and 
every finitely M-generated submodule of M is a direct summand of some M”. 

COROLLARY 3.4. If M is a 2-quasiprojective left R-module, then S is left 
se?nihereditary if and only if every finitely M-generated submodule of ii? is 
a direct summand of some i@“. 

Note that [7, Theorem 71 is a consequence of Corollary 3.4. 
In [3] a module M is called a CS-module when every essentially closed 
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submodule of M is a direct summand of M, and a ring R is a left CS-ring 
when RR is a CS-module. Clearly, M is a CS-module if and only if every 
submodule of A4 is essential in a direct summand. We have the following 
result. 

THEOREM 3.5. Let A4 be weakly M-distinguished in o[M]. Then S is a 
left CS-ring if and only if ii;i is a C&module. 

Proof: Assume first that S is left CS and let X< R. It is easy to see 
that there exists an M-generated submodule X,, of A4 such that p(X,) E X 
and Xlp(X,) ET, p being the canonical projection of M onto R. If 
Z= {f E S 1 Im f s X0}, then, by hypothesis, Z is essential in Se for some 
idempotent e of S. Let N= Im e; thus we have that Se = {f E S 1 Im f s N}. 
Then p(N) is a direct summand of li;i, p(X,) G p(N), and we have a 
commutative diagram with exact rows and columns 

0 0 

I I 
0 - PWCI) - x - WP(&) - 0 

i 

1 L -1 
0- p(N) ---!!-+ M- M/p(N)- 0 

where the vertical arrow on the right must be zero since X/p(X,,) is 
T-torsion and &?/p(N) E F. Thus there exists u: X+ p(N) such that u 0 u = j 
and so Xsp(N). To prove that li;i is a CS-module it will be enough 
to show that p(X,,) is essential in p(N). To see this, let 0 # Yc p(N). 
By the same reasoning made above, there exists an M-generated sub- 
module Y, of M such that 0 # p( Y,) E Y. Let J be the left ideal of 
S,J={f~SIImfGY,}#O.S ince Y, E N, we have JG Se and, inasmuch 
as Z is essential in Se,ZnJ#O. But if fGZnJ and f #O, then Imf E 
Y0 n X0. Therefore Y0 n X0 is not T-torsion (because Hom,(M, t(M)) = 0 
by hypothesis) and thus p( Y,,) n p(X,) # 0. 

Conversely, assume that li;i is a CS-module and let Z be an essentially 
closed left ideal of S. Calling s = End( .&?) z S, Z may also be considered 
as a left ideal of 3. Since, as it was seen in the proof of Theorem 1.6, the 
torsion ideal of S, t9(S), is just Hom,(M, t(M)), S is 9-torsionfree and 
hence the essentially closed left ideals of S are precisely the essentially 
closed elements of the lattice Sat,(S). By the equivalence of categories 
between %?M and (S, 9)-mod, this lattice is isomorphic to the lattice 
Sat,(m), by means of the mapping J+ $&‘(ia(Zi?J)), and hence in this 
isomorphism the left ideal Z corresponds to X= $G’(ia(li;ll)), which is an 
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essentially closed submodule of li;i, for 1c;i is T-torsionfree. By hypothesis, 
there is an idempotent e in S such that @e= X and thus Se= 
Horn,@, 2’). By using the equivalence of categories of Theorems 1.6 and 
1.7, it is easily seen that the localization functor b: S-mod + (S, &F)-mod is 
given by b(N)rHom,(M, ia(M@, N)). Therefore IF is isomorphic to 
Hom,(M, ia(Mc?Js I)) r Hom,(M, ia( z Hom,(M, ia( and, since 
S is 9-torsionfree, Z is an essential S-submodule of Hom,(li;i, ia(B 
Now, Hom,(ll;i, @Z) G Hom,(@, X) c Horn,{&& ia( and hence the 
left ideal Horn,.@, X) of S is an essential extension of Z, so that 
Z= Hom,(li;l; X) = Se is a direct summand of Se S. 

The following corollary generalizes [3, Corollary 3.61. 

COROLLARY 3.6. Zf M is ~-d~st~ngujshed in o[M], then S is a left 
CS-ring if and only if M is a CS-module. 

A particular class of left CS-rings is that of left continuous rings. Recall 
that a ring R is said to be left continuous when R is a left CS-ring such that 
if a left ideal Z of R is isomorphic to a direct summand of R, then Z is also 
a direct summand of R. The concept of a continuous module is analogous. 

PROPOSITION 3.7. Let A4 be weakly M-distinguished in ~[i&f]. Then S is 
a left continuous ring if and only if I@ is a continuous module. 

ProoJ Let S be left continuous and S= End,(R) z S. In view of 
Theorem 3.5, we only have to show that if L and N are isomorphic 
submodules of A;i and N is a direct summand of @, then so is L. 
Put Z= (f~S1 Imf &L} and J= (f ES1 Imf EN). It is clear that the 
isomorphism L g N induces an isomorphism between Z and J. Now, J is a 
direct summand of S and, by hypothesis, so is I. Since LzN is 
M-generated, L = L, = ii;ir is a direct summand of R. 

To prove the converse, let e be an idempotent of S with N= I% and 
p: Se -+ Z an isomorphism between Se and a left ideal Z of S. If P(e) = h E Z, 
then the annihilator ann s(e) is just ann S(h) and, since ann s(e) = 
Hom,(M, Ker e) and ann $(h) = Hom,(ii;i, Ker h), we have Ker e = 
(Ker h),+,. Now, Ker h/Ker e is isomorphic to a submodule of N, which is 
T-torsionfree and hence Ker e = Ker h. If we call u1 and u2 to the canonical 
injections of N and L = ah, respectively, into I@ and e,: li3‘-, N and 
h, : &?-+ L are such that u1 eel = e, u2 0 h, = h, then the above equation 
gives an isomorphism 8: N -+ L such that 0 0 e, = h, . Let f: &! -+ L be an 
arbitrary homomorphism. Then the image of 0-l 0 f is contained in N and 
thus there exists SES with @-‘af =e,os, so that f =(l?oe,)os=h,os and 
hence the left ideal Hom,(li;i, L) is contained in Sh =Z, and both ideals 
coincide. Since Il;i is continuous and L r N, L is a direct summand of R 
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and therefore I is a direct summand of s. Finally, Theorem 3.5 completes 
the proof. 

Recall that a ring R is said to be left Kasch [18, Chap. XIV] when 
E( R R) is a cogenerator of the category R-mod. A module M is called an 
RZ-module if every simple quotient of M is isomorphic to a submodule of 
M. In [9, Theorem 3.11 it is shown that the endomorphism ring of a 
C-quasiprojective module M is left Kasch if and only if li;i is a finitely 
generated R&module. More generally, we have the following result. 

PROPOSITION 3.8. Suppose that Hom,(44, t(M)) = 0. Then 5’ is a kfi 
Kasch ring if and on/y if M is a finitely generated ~aas~projectiue module and 
&f is an RZ-module. 

Proof By our assumption, 5’ is P-torsionfree. The condition of S being 
left Kasch implies that every simple quotient of 5’ is isomorphic to a left 
ideal and hence 8-torsionfree. Thus there is no proper left ideal of S in 6 
and 9 is the trivial filter, .P = {S). By Theorem t.17, M is a finitely 
generated and quasiprojective module, so that M is a C-quasiprojective 
module [ 1, Proposition 1.1.81. Now, [9, Theorem 3.11 achieves the proof. 
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